Using Mata to accelerate the familywise error rate calculation for multi-arm multi-stage clinical trial designs

Daniel Bratton

MRC Clinical Trials Unit at UCL

12th September 2014

Overview

- Multi-arm multi-stage (MAMS) designs
- Familywise error rate (FWER)
- How to calculate FWER using simulation
- Speed of simulation using Stata only
- How to perform the calculation in Mata pointers
- Comparison of speed of calculations
- Summary

Multi-arm multi-stage (MAMS) designs

- MAMS designs are aimed at accelerating the evaluation of new therapies over more conventional approaches.
- **Multi-arm** evaluate multiple new treatments in a single trial against a common control arm.
- Multi-stage evaluate each arm at a series of interim analyses, ceasing recruitment to poorly performing arms.
- Interim assessments can be made on an intermediate outcome (*I*) which is on the causal pathway to the primary outcome (*D*) of the trial.
- e.g. in cancer, *I* = progression-free survival (PFS) and *D* = overall survival (OS).

Example — 3-arm 2-stage I = D trial

nstage, nstage(2) alpha(0.5 0.025) omega(0.95 0.9) hr0(1 1) hr1(0.75 0.75) ///
t(1 1) accrue(250 250) arms(3 3)

Operating c	haracteristics						
	Alpha(1S)	Power	HR HO	HR H1	Crit.HR	Length*	Time*
Stage 1	0.5000	0.950	1.000	0.750	1.000	1.927	1.927
Stage 2	0.0250	0.901	1.000	0.750	0.842	2.584	4.511
Pairwise	0.0230	0.871				4.511	

* Length (duration of each stage) is expressed in one year periods and assumes survival times are exponentially distributed

Sample size and number of events							
	Stage 1			Stage 2			
	Overall	Control	Exper.	Overall	Control	Exper.	
Arms	3	1	2	3	1	2	
Acc. rate	250	83	167	250	83	167	
Patients*	482	161	321	1128	376	752	
Events**	192	72	120	725	261	464	

* Patients are cumulative across stages

** Events are cumulative across stages, but are only displayed for those arms to which patients are still being recruited ** Events are for the same outcome at stages 1 and 2

Familywise error rate (FWER)

- The FWER of a MAMS trial is the probability of recommending at least one ineffective treatment at the end of the trial.
- This often has to be controlled at some conventional level (e.g. 5%) especially in a confirmatory trial.
- FWER is maximised under the global null hypothesis, *H_G* (i.e. when *H*₀ is true for all experimental arms).
- Calculating the FWER under *H*_G is therefore of prime interest.
- The FWER of a MAMS design can be calculated using simulation.

Notation

- K experimental arms, J stages ((K + 1)-arm J-stage trial).
- Denote stages by j = 1, ..., J and experimental treatment arms by k = 1, ..., K.
- Denote the standardised test statistic (e.g. *z*-statistic for the log hazard ratio) for the *k*th arm in stage *j* by *Z_{ik}*.
- Ignoring stopping rules, $Z_{jk} \sim N(0, 1)$ under H_0 .

Requirements for calculation

I = D time-to-event outcomes

• Need to simulate $Z_{jk} \sim N(0, 1)$ such that:

$$\operatorname{corr}(Z_{jk}, Z_{j'k}) = \sqrt{\frac{e_j}{e_{j'}}}, \ j' > j \tag{1}$$

$$\operatorname{corr}(Z_{jk}, Z_{jk'}) = \frac{A}{A+1}, \ k \neq k'$$
(2)

where e_j is the number of control arm events in the *j*th stage and *A* is the ratio between the number of events observed in the experimental and control arms.

• This can be done using a generalisation of a simulation procedure by Wason and Jaki (2012) for *I* = *D* MAMS designs with equal group sizes.

FWER calculation

I = D time-to-event outcomes

Generate x_{jk} ~ N(0, 1) (j = 1, ..., J; k = 0, ..., K) such that

$$\operatorname{corr}(x_{jk}, x_{j'k}) = \sqrt{\frac{e_j}{e_{j'}}}$$

• Can be achieved using the drawnorm command in Stata, e.g.

drawnorm x11 x21, corr(S) sd('sd') n(250000) double

• 250,000 replicates provides a precise estimate of the FWER and takes only a few seconds to run (depending on *J* and *K*).

FWER calculation

• Then use the following formula to simulate Z_{jk} (j = 1, ..., J; k = 1, ..., K):

$$Z_{jk}=\sqrt{rac{A}{A+1}}x_{j0}+\sqrt{rac{1}{A+1}}x_{jk}$$

• The FWER is the proportion of replicates which, for any k:

$$Z_{jk} < z_{lpha_j}$$
 for all $j = 1, \ldots, J$

where α_j is the significance level for each comparison in the *j*th analysis.

FWER calculation — output

Stagewise significance levels: $\alpha_1 = 0.50$, $\alpha_2 = 0.025$

z11	z21	z12	z22	pass11	pass21	pass12	pass22
.57464456	.28498412	.63879568	.44834618	0	0	0	0
. 82476848	.73010319	.32077323	.13767086	0	0	1	0
.83623639	.5763814	.61637843	.57662708	0	0	0	0
.96220493	.8850676	.92685639	.63945521	0	0	0	0
. 34649736	.16833927	.54588476	.11634171	1	0	0	0
.9857904	.68945553	.57506626	.82511308	0	0	0	0
. 59947405	.30840953	.69953476	.78644393	0	0	0	0
.06774324	.00540695	.35532399	.05308241	1	1	1	0
.66492092	.64917445	.72497049	.2583492	0	Λ 0	0	0
.80596521	.49308509	.82937441	.86934286	0	4 2 0	0	0

Type I error!

Implementation

- This calculation estimates the FWER to be 4.1% (SE 0.04%) for the 3-arm 2-stage design shown earlier.
- The methods are applicable to any outcome analysed using a normally distributed test statistic.
- A subroutine for calculating the FWER of a MAMS design has been added to nstage which now estimates FWER by default.
- Other useful things can be calculated such as expected number of events or expected sample size (a measure of the 'efficiency' of the design).

Speed of nstage with FWER calculation

Below is the time taken for nstage to output the design of MAMS designs with K = 2 - 6 experimental arms and J = 2 - 5 stages (20 designs in total) using Intel Core2 Duo 3GHz processor and 2GB RAM.

Accelerating the calculation using Mata

- Although the calculation is quite quick we often have to search through lots of designs to find the most efficient or suitable one to use in practice.
- Thus the total computing time will be very long!
- This could be considerably reduced by performing the calculation using Mata.
- Instead of generating a dataset, we can generate a *J* × *K* × *R* matrix containing the simulated Z_{jk} where *R* is the total # of replicates.
- This involves the use of 'pointers' to generate 3-dimensional matrices in Mata.

Pointers

- A pointer contains the address of another variable or matrix.
- Thus each element of a 2D matrix of pointers could point to a vector of numbers, so it is effectively a 3D matrix.
- They use two operators: the reference (&) and the dereference (*).
- & instructs what the pointer, p, should point to, e.g. p=&x
- * is then used ask what the pointer is pointing to, e.g. *p
- Much of what I learnt about pointers is from http://www.ssc.wisc.edu/sscc/pubs/4-26.htm and Stata's Mata manual.

Generating a 3D matrix in Mata

```
To generate a 3 \times 3 \times 3 matrix of zeroes, P, we do the following
P = J(3,3,NULL)
for (i=1; i<=rows(P); i++) {</pre>
     for (j=1; j<=cols(P); j++) {</pre>
          P[i,j] = \&J(3,1,0)
   }
}
```

To work with an element of the pointer, P[i, j], we use the following syntax:

*(P[i,j])

To work with an element in the 3D matrix, P[i,j,k], we use

(*(P[i,j]))[k]

Using 3D matrices in Mata

```
mata:
                                                               mata (type end to exit) —
: P = J(3, 3, NULL)
: for (i=1; i<=rows(P); i++) {
            for (j=1; j<=cols(P); j++) {
        P[i,j] = &J(3,1,0)</pre>
  *(P[1,1])
        0
  (*(P[1,1]))[2]
  0
  end
```

FWER calculation in Mata - generating the x_{jk}

- First generate J × (K + 1) matrix of pointers X each of which point to a R × 1 vector of zeroes
- Then do the following

```
Sc = cholesky(S)
for (r=1 ; r<=R ; r++) {
    for (k=1 ; k<=K+1 ; k++) {
        y = invnormal(runiform(J,1))
        x = Sc*v
        for (j=1 ; j<=J ; j++) {
            (*(X[j,k]))[r] = x[j]
        }
    }
}
```

FWER calculation in Mata - generating the z_{jk}

- Generate J × K matrix of pointers Z each of which point to a R × 1 vector of zeroes
- Then do the following

Comparison of speed of FWER calculations

Summary

- We have developed a calculation for the FWER of MAMS designs and implemented it into the nstage program for MAMS trials with time-to-event outcomes.
- nstage now outputs the FWER by default
- The calculation works by simulating the joint distribution of the *z*-test statistics for each arm at each stage.
- Calculating the FWER of a MAMS design using Stata alone is relatively quick for small *J* and *K*.
- However, a faster calculation would make searching over multiple designs to find the most suitable one more practical

Summary

- Computing time can be considerably reduced by performing the calculation in Mata, particularly for large *J* and *K*
- This can be accomplished through the use of pointers to generate 3-dimensional matrices of the simulated *z_{jk}*.
- However, there is little difference in speed for fast machines and for smaller *J* and *K* the Mata calculation may even be slower!
- It's very probable that better programming is what's needed.

References

- Barthel, F. M.-S., Royston, P., & Parmar, M. K. B. (2009). A menu-driven facility for sample-size calculation in novel multi-arm, multi-stage randomized controlled trials with a time-to-event outcome. *Stata Journal*, *9*(4), 505-523(19).
- Bratton, D. J., Choodari-Oskooei, B., & Royston, P. (2014). A menu-driven facility for sample size calculation in multi-arm multi-stage randomised controlled trials with time-to-event outcomes: Update. *Stata Journal.* (In press)
- Bratton, D. J., Phillips, P. P. J., & Parmar, M. K. B. (2013). A multi-arm multi-stage clinical trial design for binary outcomes with application to tuberculosis. *Medical Research Methodology*, *13*, 139.
- Royston, P., Barthel, F. M., Parmar, M. K., Choodari-Oskooei, B., & Isham,
 V. (2011). Designs for clinical trials with time-to-event outcomes based on stopping guidelines for lack of benefit. *Trials*, *12*, 81.
- Royston, P., Parmar, M. K., & Qian, W. (2003). Novel designs for multi-arm clinical trials with survival outcomes with an application in ovarian cancer. *Stat Med*, *22*(14), 2239–56.
- Wason, J. M., & Jaki, T. (2012). Optimal design of multi-arm multi-stage trials. *Stat Med*, 31(30), 4269-79.