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Outline of this presentation 
 

 

□    Statistical background and related studies 

□    The Rubin’s potential outcome model with neighborhood interactions  

□    Model’s estimation 

□    Stata implementation via ntreatreg  

□    Application to real data 

□    Conclusions 
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In standard Econometrics of Program Evaluation (aimed at estimating the effect of a 
policy on supported individuals) it is assumed the so-called  SUTVA (Rubin 1978): 
 

SUTVA: Stable-Unit-Treatment-Value-Assumption 
  

  
 
 

“treatment received by one unit do 
not affect outcomes for another unit” 

 
 

It means that: only the treatment applied to the specific individual is assumed to potentially 

affect the outcome for that particular individual.  
 

===>  We would like to relax this assumption and understand what happens to the estimation 

of the effect of a “treatment” in the presence of potential contagion (or neighborhood, or 

social) effects. 
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SUTVA and NO-SUTVA setting 

Treated

FINANCING 

AGENCY

Untreated

No Externality effect

 

Treated

FINANCING 

AGENCY

Untreated

Externality effect

 
 

� Rubin (1978): calls this important assumption as Stable-Unit-Treatment-Value-Assumption 

(SUTVA) 
 

� Manski (2011): refers to Individualistic-Treatment-Response (ITR) to emphasize that this poses a 

restriction in the form of the treatment response function that the analyst considers. 
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• AIM : estimating the “Average Treatment Effects” (ATEs) of a policy program in a non-experimental 

setup in the presence of endogenous neighbourhood (or externality) interactions (Manski, 1993), by 

assuming that Conditional Mean Independence (i.e., selection-on-observables) holds.  
 

• SETTING : we consider a binary treatment variable w - taking value 1 for treated and 0 for untreated 

units - assumed to affect an outcome variable y that can take a variety of forms: binary, count, 

continuous, etc..  
 

• NOTATION: 
 

− N   =  number of units involved in the (social) experiment 

− N1  =  number of treated units 

− N0  =  number of untreated units 

− wi  =  treatment variable assuming value “1” if the unit is treated and “0” if untreated 

− y1i  =  outcome of unit i when he is treated  

− y0i  = outcome of unit i when he is untreated 

− xi = (x1i , x2i ,  x3i  ...  xMi)  =  row vector of M observable variables for unit i.   
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The notion of “endogenous” neighbourhood effects 

Manski (1993) identifies three types of effects corresponding to three arguments of an 

individual outcome equation incorporating social effects:  

 

1. Endogenous effects: the outcome of an individual depends on the outcomes of other 

individuals belonging to his neighbourhood. 

 

2. Exogenous (or contextual) effects: the outcome of an individual is affected by the 

exogenous idiosyncratic characteristics of the individuals belonging to his neighbourhood.  

 

3. Correlated effects: due to belonging to a specific group and thus sharing some 

institutional/normative condition (that one can loosely define as “environment”).   
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Contextual and correlated effects are to be assumed as exogenous, as they clearly 

depend on pre-determined characteristics of the individuals in the neighbourhood (case 2)  

or of the neighbourhood itself (case 3).  

 

Endogenous effects are of broader interest: they depend on the behaviour (measured as 

“outcome”) of other individuals involved in the same neighbourhood.  

 

Endogenous effects both comprise direct and indirect effects linked to a given external 

intervention on individuals.  

 

The model presented here incorporates the presence of  endogenous neighbourhood effects as 

defined by Manski within a traditional binary counterfactual model and provides both an 

identification and an estimation procedure of the Average Treatment Effects (ATEs) in a 

simple parametric case.   
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Some related literature 
 
Rosenbaum (2007) discusses methods for testing null hypotheses on the presence of 
interference in trials where random assignment occurs within groups and interference 
does not cross group boundaries.  
 
 
Hudgens and Halloran (2008) extend the previous work in the setting of a two-stage 
randomized trial in which some groups are randomly assigned to host treatments, and 
then treatments are assigned at random within the selected groups. Interference is 
presumed to operate only within groups.  
 
 
Tchetgen-Tchetgen and VanderWeele (2010) extend Hudgens and Halloran’s 
results, providing conservative variance estimators, a framework for finite sample 
inference and extensions to observational studies. Hierarchical treatment assignment 
and interference limited to groups greatly simplifies the estimation problem, as 
inference can proceed assuming independence across groups. 
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===>  Sobel (2006) analyzes the potential for bias when no-interference is mistakenly 
assumed, and then defines a number of direct and indirect effects that may be identifiable. 
 
He characterizes the usual estimators of treatment effects developing their form when 
interference is allowed. 
 

“When interference is present, the difference between a treatment 

group mean and a control group mean (unadjusted or adjusted for 

covariates) estimates not an average treatment effect, but rather the 

difference between two effects defined on two distinct 

subpopulations. This result is of great importance, for a researcher 

who fails to recognize this could easily infer that a treatment is 

beneficial when in fact it is universally harmful” (p. 1398). 
 
=== >  Application: social experiment (with randomization)      

 
            === >  MTO program (“Move To Opportunity”)  

 
     === >  LATE estimator (à la Angrist)   
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Position of this paper within previous literature 
 
 

Previous literature assumes: 
 

1.  Randomized assignment 

2.  Multiple treatment 

3.  Non-parametric form for the potential outcome and interaction 
 
 

This paper assumes: 
 

1.  Non-randomized assignment 

2.  Binary treatment 

3.  Parametric form for the potential outcome and interaction 

 
 
=== > Therefore: this paper suggests a simpler and less general way to relax SUTVA, but one 
that is easy to implement in many contexts of application. 
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DEFINITION OF (AVERAGE) TREATMENT EFFECTS (ATEs) 

 

Unit i Treatment Effect:  

TEi = y1i  - y0i 

 

we observe just one of the two quantities (y1i ; y0i), but never both: missing observation 

problem (Holland, 1986). 

 

What is observable to the analyst is the single status of unit i, that is: 
 

yi = y0i + wi (y1i  - y0i) 
 

called the Potential Outcome Model, and it links unobservable with observable 

outcomes.   
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Since recovering the entire distributions of y1i  and  y0i is too demanding, we focus on the 

population Average Treatment Effects (hereinafter ATEs) and on ATEs conditional on x (i.e., 

ATE(x)) of a policy intervention, defined as: 
 

ATE = E(yi1 - yi0)  
ATE(xi) = E(yi1 - yi0 | xi)  

 

ATET = E(yi1-yi0 | wi=1)  
ATET(xi) = E(yi1 - yi0 | xi, wi=1)  

 

ATENT = E(yi1-yi0 | wi=0)  

ATENT(xi) = E(yi1 - yi0 | xi, wi=0)  

 

 

where E(·) is the mean operator. These parameters are equal to the difference between the average of 

the target variable when the individual is treated (y1), and the average of the target variable when the 

same individual is untreated (y0). Observe that by LIE: ATE =Ex{ATE( x)}, ATET =Ex{ATET( x)}, 

ATENT =Ex{ATENT( x)}.  
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A NEIGHBORHOOD -EFFECT TREATMENT MODEL 

y0i  and  y1i need to have a representation including the neighborhood effect from treated to 
untreated units. We start by this parametric model system: 
 

1 1 1 1i i i
y eµ= + +x β     Outcome equation for the treated status 

0 0 0 0i i i i
y s eµ γ= + + +x β     Outcome equation for the non-treated status with neighbourhood effect  “s”  

1

1
1

   if  { 0}

0             if  { 1}

N

ij j
j

i

y i w
s

i w

ω
=

 ∈ == 
 ∈ =

∑
    Form of the neighbourhood effect of treated js on unit i (weighted mean) 

0 1 0
( )

i i i i i
y y w y y= + −     Potential Outcome Equation (POM) 

1

1

1
N

ij
j

ω
=

=∑     Weights add to one 

1
1,...,   and  1, ...,i N j N= =     i: index for all units; j: index for treated units 

 
and Conditional Mean Independence (CMI) holds:  
 

E(yig | wi , xi) = E(yig | xi)    with    g = {0,1}  
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We need to solve the previous SYSTEM to recover an estimation of ATEs. By 

substitutions within the previous system, we eventually get that: 

1

0 0 0 1 0
1

µ γ ω
=

= + + +∑
N

i i ij j i
j

y y ex β
 

Hence, ATE is equal to: 

( )
1

1 0 1 1 1 0 0 1 0
1

ATE = E( ) E µ µ γ ω
=

  
− = + + − + + +  

   
∑
N

i i i i i ij j i
j

y y e y ex β x β
 

After some manipulations, we get that: 

1

1
1

ATE = µ ω γ
=

 
+ −  

 
∑
N

i ij j
j

x δ x β
 

where:  E( ).i i=x x    
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We are also interested in estimating ATE(x). Using the previous 

results, we finally get that: 

 

1

1
1

ATE( ) = ATE ( ) ( )ω γ
=

+ − + −∑
N

i i ij j
j

x x x δ x x β
 

 
 
where it is clear that ATE(x) depends on x. 
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Once the formulas for ATE and ATE(x) are available, it is also possible to recover the Average 

Treatment Effect on Treated (ATET) and on non-Treated (ATENT), that is:   

 

1

1
1 1

1

1
ATET ATE ( ) ( )

NN

i i ij jN
i j

i
i

w
w

ω γ
= =

=

 
= + − + − 

 
∑ ∑

∑
x x δ x x β

 
 

 

and: 
 

1

1
1 1

1

1
ATENT ATE (1 ) ( ) ( )

(1 )

NN

i i ij jN
i j

i
i

w
w

ω γ
= =

=

 
= + − − + − 

 −
∑ ∑

∑
x x δ x x β

 
 

 

These quantities are functions of observable components and parameters to be firstly 

consistently estimated. Once these estimates are available, standard errors for ATET and 

ATENT can be obtained via bootstrapping (Wooldridge, 2010, Ch. 21). 
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How to get consistent estimation of ATEs ? 
 

Using an i.i.d. sample of observed variables for each individual i: 

 

{ yi, wi, xi} with i = 1, …, N 

 

and by substitution into the POM, we get this Switching Random Coefficient 

Model: 

 

( )
1 1

0 0 1 0 1 1 1 0 0 1 0
1 1

N N

i i ij j i i i i ij j i
j j

y y e w e y eµ γ ω µ µ γ ω
= =

    
= + + + + + + − + + +    

     
∑ ∑x β x β x β  
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After sorting out previous formula, we finally get that: 
 

0 1
1

ATE+ ( ) ( )
N

i i i i i i ij j j i
j

y w w w w eη ω γ
=

= + ⋅ + − + − +∑x β x x δ x x β
 

with: 

1 1

1 0 1 0 1

1 0 1 0 1
1 1

;  

( )
N N

i ij j i i i i i ij j
j j

e e e w e e w e

µ µ µ γµ η µ γµ

γ ω γ ω
= =

= − − = +

= + + − −∑ ∑  

 

This is a usual regression model whose parameters – under CMI  – can be estimated 

consistently by Ordinary Least Squares (OLS). With an estimation of the parameters at hand 

we can estimate ATE (directly from the regression) and ATEs by plugging parameters into their 

formulas. Observe, however, that a matrix of distance weights Ω=[ωij] needs beforehand to be 

provided by the analyst.  
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A PROTOCOL FOR ESTIMATING  PARAMETRICALLY  ATEs  

UNDER “NEIGHBORHOOD INTERACTIONS” 

 

1.Provide a matrix of distance weights Ω=[ωij] between the generic unit i 

(untreated) and unit j (treated).  
 

2.Estimate the regression model by an OLS of: 
 

1

   on   1,   ,   ,   ( ),   ( )
N

i i i i i i ij j j
j

y w w w wω
=

 
− − 

 
∑x x x x x

 

 

 

3.Obtain  { }0 1
ˆ ˆ ˆ,   ,   ˆ,   γβ δ β  and put them into the formulas for ATEs. 
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INTERPRETATION OF THE “ NEIGHBOURHOOD BIAS ” 
 

By comparing the formula of ATE with (γ ≠ 0) and without (γ = 0) neighbourhood effect, we get 

the so-called Neighbourhood Bias (Sobel, 2006): 
 

 

 

1

no-neigh with-neigh 1
1

Bias = ATE - ATE = 
N

ij j
j

ω γ
=

 
 
 
∑ x β

 

 

 

This can also be seen as the externality effect produced by the policy: it depends on: 

1. weights 

2. mean of x 

3. magnitude and sign of coefficients γ and β1.  
 

Observe that it can be positive as well as negative.  
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Observe that the NEIGHBOURHOOD BIAS  can also be interpreted as a 

SPECIFICATION  ERROR in the outcome equation arising when potential 

outcomes are modelled without taking into account externality effects.  

 

Finally, by defining:   

1γ =β λ  

 

one can (parametrically) test whether this bias is or is not statistically 

significant by testing this null:  

 

0 1 2H :   ... 0Mλ λ λ= = = =   
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STATA implementation: the “ntreatreg” command  

 

The syntax of  ntreatreg is a very common one for a STATA command: 

  

ntreatregntreatregntreatregntreatreg    outcome treatment varlist , hetero(hetero(hetero(hetero(varlist_h)))) 

spillspillspillspill((((matrix)))) graphicgraphicgraphicgraphic    

    

 

where: 
 

outcome: y 

treatment: w 

varlist: xxxx 

varlist_h: subset of xxxx 

matrix: distance matrix ΩΩΩΩ    
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Stata help-file for ntreatreg 
 

 

 

    observational studies.
    model.  As such, it provides an attempt to rela x the Stable Unit Treatment Value Assumption (SUTVA ) generally used in
    interactions may be present. It incorporates su ch externalities within the traditional Rubin’s pot ential outcome
    ntreatreg estimates Average Treatment Effects ( ATEs) under Conditional Mean Independence (CMI) whe n neighbourhood

Description

    fweights, iweights, and pweights are allowed; s ee w ei ght .

                 vce(robust) const(noconstant) head (noheader)]
        ntreatreg  outcome treatment [ varlist] [ if] [ in] [ weight], [spill( matrix) hetero( varlist_h) conf( number) graphic

Syntax

    ntreatreg    Stata module for estimation treatment effects in the presence of neighbourhood Interactions

Title

                                                                                                                           
help ntreatreg
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     conf( number) sets the confidence level equal to the specified number. The default is number=95.

    const(noconstant) suppresses regression constan t term. It is optional for all models.

    beta reports standardized beta coefficients. It  is optional for all models.

    vce(robust) allows for robust regression standa rd errors. It is optional for all models.

        optional for all models and gives an outcom e only if variables into hetero() are specified.
    graphic allows for a graphical representation o f the density distributions of ATE(x), ATET(x) and ATENT(x). It is

        subset of the variables specified in varlist.
        the specified model without heterogeneous a verage effect. Observe that varlist_h should be the same set or a
        ATET(x) and ATENT(x), where x= varlist_h. It is optional. When this option is not specified , the command estimates
    hetero( varlist_h) specifies the variables over which to calculate t he idyosincratic Average Treatment Effect ATE(x),

        It could be a distance matrix, with distanc e loosely defined either as vector or spatial.
    spill( matrix) specifies the adjacent (weighted) matrix used to define presence and strength of units’ relationship .
    
Options
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        r(atent) is the value of the Average Treatm ent Effect on Non-treated.

        r(atet) is the value of the Average Treatme nt Effect on Treated.

        r(ate) is the value of the Average Treatmen t Effect.

        r(N_untreat) is the number of (used) untrea ted units.

        r(N_treat) is the number of (used) treated units.

        r(N_tot) is the total number of (used) obse rvations.

    ntreatreg returns the following scalars:

        ATENT(x) is an estimate of the idiosyncrati c Average Treatment Effect on Non-Treated.

        ATET(x) is an estimate of the idiosyncratic  Average Treatment Effect on treated.

        ATE(x) is an estimate of the idiosyncratic Average Treatment Effect.

        specified.
        z_ws_ varname_h are the spillover additional regressors used in mo del's regression when hetero( varlist_h) is

        _ws_ varname_h are the additional regressors used in model's regr ession when hetero( varlist_h) is specified.

    ntreatreg creates a number of variables:
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        Press, Cambridge.
    Wooldridge, J. M. 2010.   Econometric Analysis of Cross Section and Panel Data, 2nd Edition.  Chapter 21. The MIT

        Working Paper Cnr-Ceris, N° 04/2014.
    Cerulli, G. 2014. Identification and Estimation  of Treatment Effects in the Presence of Neighbourh ood Interactions,

References

. test  z_ws_age1 = z_ws_agesq1 = z_ws_evermarr1 = 0
  hetero(age agesq evermarr) spill(dist_abs) graphi c
. ntreatreg children educ7 age agesq evermarr elect ric tv , ///
. matewmf dist dist_abs, f(abs)
. matrix dissimilarity dist = age agesq urban elect ric tv , corr
. use "FERTIL2_200.DTA"
. ssc install ntreatreg

Example

    version of Stata installed.
    Please remember to use the update query command  before running this program to make sure you have an up-to-date

    When option hetero is not specified, ATE(x), AT ET(x) and ATENT(x) are one singleton number equal t o ATE=ATET=ATENT.

    The treatment has to be a 0/1 binary variable ( 1 = treated, 0 = untreated).

Remarks 
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Example 1: effect of location on crime 
 

Dataset. “SPATIAL_COLUMBUS.DTA” provided by Anselin (1988) containing information (22 

variables) on property crimes in 49 neighbourhoods in Columubus, Ohio, in 1980.  

 

Objective. Evaluating the impact of housing location on crimes, i.e. the causal effect of the variable “cp” - 

taking value 1 if the neighbourhood is located in the “core” of the city and 0 if located in the “periphery” - 

on the number of residential burglaries and vehicle thefts per thousand households (i.e., the variable 

“crime”).  

 

Confounding observables. Only two main factors: the household income in $1,000 (“inc”) and the 

housing value in $1,000 (“hoval”).  

 

===>  We are interested in detecting the effect of housing location on the number of crimes in such a 

setting, by taking into account possible interactions among neighbourhoods.   
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STEP 0. INPUT DATA FOR THE REGRESSION MODEL 

y: crime 

w: cp  

x: inc hoval  

Matrix Ω: W 

 

STEP 1. LOAD THE STATA ROUTINE "NTREATREG" AND THE DATASET 

. ssc install ntreatreg 

. ssc install spatwmat // see package: sg162 from 

http://www.stata.com/stb/stb60 

. use "SPATIAL_COLUMBUS.DTA " 
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STEP 2. PROVIDE THE MATRIX "OMEGA" (HERE WE CALL IT "W") 

. spatwmat, name(W) xcoord($xcoord) ycoord($ycoord)  band(0 $band) /// 

standardize eigenval(E)   // this generates the inv erse distance matrix W  

 

The following matrices have been created: 

1. Inverse distance weights matrix W (row-standardi zed) 

   Dimension: 49x49 

   Distance band: 0 < d <= 10 

   Friction parameter: 1 

   Minimum distance: 0.7       

   1st quartile distance: 6.0       

   Median distance: 9.5       

   3rd quartile distance: 13.6      

   Maximum distance: 27.0      

   Largest minimum distance: 3.37      

   Smallest maximum distance: 14.51     

2. Eigenvalues matrix E 

   Dimension: 49x1 
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STEP 3. ESTIMATE THE MODEL USING "NTREATREG" TO GET THE “ATE” WITH NEIGHBORHOOD-

INTERACTIONS 

. set more off 
 

. xi: ntreatreg  crime cp inc hoval , hetero( inc hoval ) spill(W) graphic  

 

      Source |       SS       df       MS              Number of obs =      49 

-------------+------------------------------           F(  7,    41) =   15.74 

       Model |  9793.37437     7  1399.05348           Prob > F      =  0.0000 

    Residual |  3644.84518    41  88.8986629           R-squared     =  0.7288 

-------------+------------------------------           Adj R-squared =  0.6825 

       Total |  13438.2195    48  279.962907           Root MSE      =  9.4286 

--------------------------------------------------- --------------------------- 

       crime |      Coef.   Std. Err.      t    P>| t|     [95% Conf. Interval] 

-------------+------------------------------------- --------------------------- 

          cp |   9.492458   4.816401     1.97   0.0 56    -.2344611    19.21938 

         inc |  -.4968051   .3653732    -1.36   0.1 81    -1.234691     .241081 

       hoval |  -.2133293    .101395    -2.10   0.0 42    -.4181006    -.008558 

     _ws_inc |   -1.19053   .9911119    -1.20   0.2 37    -3.192121    .8110612 

   _ws_hoval |   .1440651   .2268815     0.63   0.5 29    -.3141313    .6022616 

   z_ws_inc1 |  -5.719737   2.934276    -1.95   0.0 58    -11.64563    .2061538 

 z_ws_hoval1 |   .3889889   .9016162     0.43   0.6 68    -1.431862     2.20984 

       _cons |   34.78312   8.655264     4.02   0.0 00     17.30346    52.26279 

ATE 
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. scalar ate_neigh = _b[cp]      // put ATE into a scalar 

. rename ATE_x _ATE_x_spill      // rename ATE_x as  _ATE_x_spill 

. rename ATET_x _ATET_x_spill 

. rename ATENT_x _ATENT_x_spill 

 

STEP 4. DO A TEST TO SEE IF THE COEFFICIENTS OF THE NEIGHBOURHOOD-EFFECT ARE 

JOINTLY ZERO 

4.1. if one accepts the null Ho: γβ0 = 0  =>  the neighbourhood-effect is negligible; 

4.2. if one does not accept the null  =>  the neighbourhood-effect effect is relevant. 
   

. test  z_ws_inc1 = z_ws_hoval1 = 0 

 

 ( 1)  z_ws_inc1 - z_ws_hoval1 = 0 

 ( 2)  z_ws_inc1 = 0 

 

       F(  2,    41) =    2.35 

            Prob > F =    0.1078  //  externality e ffect seems not significant 
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STEP 5. ESTIMATE THE MODEL USING "IVTREATREG" (TO GET ATE "WITHOUT" 

NEIGHBOURHOOD-INTERACTIONS) 
 

. xi: ivtreatreg crime cp inc hoval , hetero(inc ho val) model(cf-ols) graphic  

 

      Source |       SS       df       MS              Number of obs =      49 

-------------+------------------------------           F(  5,    43) =   19.84 

       Model |  9375.05895     5  1875.01179           Prob > F      =  0.0000 

    Residual |   4063.1606    43  94.4921069           R-squared     =  0.6976 

-------------+------------------------------           Adj R-squared =  0.6625 

       Total |  13438.2195    48  279.962907           Root MSE      =  9.7207 

--------------------------------------------------- --------------------------- 

       crime |      Coef.   Std. Err.      t    P>| t|     [95% Conf. Interval] 

-------------+------------------------------------- --------------------------- 

          cp |   13.59008   4.119155     3.30   0.0 02     5.283016    21.89715 

         inc |  -.8335211   .3384488    -2.46   0.0 18    -1.516068   -.1509741 

       hoval |  -.1885477   .1036879    -1.82   0.0 76    -.3976543    .0205588 

     _ws_inc |   -1.26008   1.004873    -1.25   0.2 17    -3.286599    .7664396 

   _ws_hoval |   .2021829   .2300834     0.88   0.3 84    -.2618246    .6661904 

       _cons |   46.52524   6.948544     6.70   0.0 00     32.51217    60.53832 

--------------------------------------------------- ---------------------------  

. scalar ate_no_neigh = _b[educ7] // put ATE into a  scalar 

. di ate_no_neigh 

 

ATE 
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STEP 6. SEE THE MAGNITUDE OF THE NEIGHBORHOOD-INTERACTIONS BIAS 

 

. scalar bias= ate_no_neigh - ate_neigh  // in leve l 

. di bias 

4.09  // the difference in level is around four cri mes 

. scalar bias_perc=(bias/ate_no_neigh)*100  // in p ercentage 

. di bias_perc 

30.15 // there is a 30% of bias due to neighbourhoo d interaction 
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STEP 7. COMPARE GRAPHICALLY THE DISTRIBUTION OF ATE(x), ATET(x) and ATENT(x) 

WITH AND WITHOUT NEIGHBOURHOOD-INTERACTION 

* ATE 
twoway kdensity ATE_x , ///  
|| /// 
kdensity _ATE_x_spill ,lpattern(longdash_dot) xtitl e() /// 
ytitle(Kernel density) legend(order(1 "ATE(x)" 2 "A TE_spill(x)")) /// 
title("Model `model': Comparison of ATE(x) and ATE_ spill(x)", size(medlarge))  
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* ATET 
twoway kdensity ATET_x , ///  
|| /// 
kdensity _ATET_x_spill ,lpattern(longdash_dot) xtit le() /// 
ytitle(Kernel density) legend(order(1 "ATET(x)" 2 " ATET_spill(x)")) /// 
title("Model `model': Comparison of ATE(x) and ATE_ spill(x)", size(medlarge))  
 

 
 

.0
4

.0
6

.0
8

.1
.1

2
.1

4
K

er
ne

l d
en

si
ty

5 10 15 20
x

ATET(x) ATET_spill(x)

Model : Comparison of ATE(x) and ATE_spill(x)



36 
 

* ATENT 
twoway kdensity ATENT_x , ///  
|| /// 
kdensity _ATENT_x_spill ,lpattern(longdash_dot) xti tle() /// 
ytitle(Kernel density) legend(order(1 "ATENT(x)" 2 "ATENT_spill(x)")) /// 
title("Model `model': Comparison of ATE(x) and ATE_ spill(x)", size(medlarge))  
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STEP 8. COMPARING UNCONSTRAINED (i.e., WITH SPILLOVER) VS. UNCONSTRAINED (i.e., 

WITHOUT SPILLOVER) PREDICTIONS 
 

We write a program, “_marg ”, returning the difference between the constrained and the unconstrained 

prediction, when cp =1: 

 
cap prog drop _marg 
program _marg , rclass 
qui ntreatreg crime cp inc hoval , hetero(inc hoval ) spill(W) 
* uncontrained prediction 
margins , at(cp= 1) 
mat A=r(table) 
mat B=A["b","_cons"] 
return scalar _marg1=B[1,1] 
* contrained prediction 
margins , at(cp= 1 z_ws_inc1=0 z_ws_hoval1=0) 
mat A=r(table) 
mat B=A["b","_cons"] 
return scalar _marg2=B[1,1] 
end 
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We test:                 
H0:  E(y1| with spillover) - E(y1| without spillover) = 0 

 
We can use “_marg ” to test whether predictions are different by bootstrap: 
 
 

bootstrap t=(r(_marg2)-r(_marg1)), rep(10): _marg  
 
. bootstrap t=(r(_marg2)-r(_marg1)), rep(10): _marg  
(running _marg on estimation sample) 
 
 
Bootstrap results                               Num ber of obs      =        49 
                                                Rep lications       =        10 
 
      command:  _marg 
            t:  r(_marg2)-r(_marg1) 
 
--------------------------------------------------- --------------------------- 
             |   Observed   Bootstrap                         Normal-based 
             |      Coef.   Std. Err.      z    P>| z|     [95% Conf. Interval] 
-------------+------------------------------------- --------------------------- 
           t |  -9.715185   2.203703    -4.41   0.0 00    -14.03436   -5.396007 
--------------------------------------------------- --------------------------- 
 

The average difference in prediction is around -10 and it is significant. This entails that, in 

terms of prediction, the neighbourhood effect accounts for 10 fewer burglaries.   
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===>  Conclusion: not considering “neighbourhood effects” leads to “over-

estimate” the actual effect of housing location on crime of around a 30%. 

Although, the Wald-test seems to show that the neighbourhood effect is not 

significant, if we accept the model with spillovers as the actual one, the average 

difference in prediction without and with spillovers is around -10 and it is also 

significant.  
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Limits and further developments 
 

• Extending the model to “multiple” or “continuous” treatment (i.e., w no more binary, but multi-

valued or continuous), by still holding CMI. 
 

• Identifying the model when w is endogenous (i.e., CMI does not hold), by implementing some 

GMM-IV estimation. 
 

• So far we have assumed the weighting matrix Ω to be “exogenous”. But: what happens if 

individuals strategically modify their “distance weights” to better profit of others’ treatment? In 

this case weights become endogenous. It poses severe identification problems. 
 

• Providing Monte Carlo studies to see how the model is robust under different specification-

errors in the weighting matrix Ω provided.  
 

• Going towards a semi-parametric approach  
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