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Background

I Simulation studies are conducted to assess the
performance of current and novel statistical models in
pre-defined scenarios

I Guidelines for the reporting of simulation studies in
medical research have been published (Burton et al.,
2006)

I Many simulation studies involving survival data use the
exponential or Weibull models

I Often in clinical trials and population based studies, at
least one turning point in the baseline hazard function is
observed
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Motivating dataset

I webuse brcancer

I 686 women diagnosed with breast cancer in Germany

I 246 were randomised to receive hormonal therapy and
440 to receive a placebo

I Outcome of interest is recurrence-free survival, with 299
patients experiencing the event

Analysis

I Weibull proportional hazards model

I Flexible parametric model with 5 degrees of freedom

I Treatment included in both models
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Fitted survival functions
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Fitted hazard functions
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Simulating survival times

Bender et al. (2005) provided a simple and efficient method to
simulate survival times from standard parametric distributions

h(t|X ) = h0(t) exp(Xβ), H(t|X ) = H0(t) exp(Xβ)

S(t|X ) = exp[−H(t|X )], F (t|X ) = 1− exp[−H(t|X )]
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If we let T be the simulated survival time

F (T |X ) = 1− exp[−H(T |X )] = u, where u ∼ U(0, 1)

and
S(T |X ) = 1− u (or equivalently = u)

This can then simply be re-arranged and solved for T

T = H−1
0 [− log(u) exp(−Xβ)]
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For example in Stata

. //simulate 1000 survival times

. set obs 1000
obs was 0, now 1000

. //set seed for reproducibility

. set seed 398894

. //get uniform draws, representing centiles

. gen u = runiform()

. //geenrated a binary treatment group indicator

. gen treatment = runiform()>0.5

. //Weibull baseline parameters

. local lambda = 0.1

. local gamma = 1.2

. //treatment effect

. local loghr = 0.7

. //simulate survival times from Weibull PH model

. gen stimes = (-log(u)/(`lambda´*exp(`loghr´*treatment)))^(1/`gamma´)
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survsim (from SSC)

survsim newvarname1 [newvarname2 ] [, options ]

I distribution(exp|gomp|weib)

I lambda(#), gamma(#)

I covariates(varname # [varname #] ...)

I tde(varname # [varname #] ...)

I maxtime(#)

. survsim stime event, dist(weib) lambda(0.1)

> gamma(1.2) cov(treatment 0.7)
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Recent use of survival simulation

I Paul Lambert and I recently proposed a general
parametric framework for survival analysis, implemented
in stgenreg (Crowther and Lambert, 2013b, 2014)

I Reviews raised questions about benefits/pitfalls compared
to the Cox model

I We set out to compare the efficiency of the Kaplan-Meier
estimate of survival with a parametric function using
splines, when data is sparse in the right tail
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Core of simulation program

. //simulate from a Weibull distribution

. survsim stime died, lambda(0.2) gamma(1.3) maxt(5)

. //censoring times

. gen cens = runiform()*6

. replace died = 0 if cens<stime

. replace stime = cens if cens<stime

. stset stime, f(died=1)

. //KM estimate

. sts gen s1 = s sells = se(lls) lb = lb(s) ub = ub(s)

. //Fit parametric model

. stgenreg, loghaz([xb]) xb(#rcs(df(3)))

. //Get predicted survival at 4 and 5 years

. range t45 4 5 2

. predict surv, survival timevar(t45) ci
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Results

Table : Bias and mean squared error of log(− log(S(t))) at 4 and
5 years.

Time Kaplan-Meier Parametric model

4 years
Bias -0.0019 -0.0038

MSE 0.1251 0.1100

5 years
Bias 0.0066 0.0063

MSE 0.1565 0.1481

Median # events = 101
Median # events in final year = 5
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Benefits of the Bender et al. (2005) approach

I Extremely easy to implement

I Quite often we simulate survival times and then apply
Cox models − > baseline hazard from which we simulate
is irrelevent

I What if we wish to simulate from a more complex and
biologically plausible underlying hazard function?

I There is a growing interest in parametric survival models
(Royston and Lambert, 2011; Crowther and Lambert,
2014)
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Limitations with simulating survival times from

standard distributions with proportional hazards

T = H−1
0 [− log(u) exp(−Xβ)]

I Must be able to integrate the hazard function in order to
calculate the cumulative hazard function

I We then must be able to invert the cumulative hazard
function to obtain the simulated survival time
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Simulating from a more complex baseline hazard

function

We can use a mixture of parametric distributions

S0(t) = pS01(t) + (1− p)S02(t) (1)

For example a 2-component mixture Weibull

S0(t) = p exp(−λ1tγ1) + (1− p) exp(−λ2tγ2) (2)

with 0 ≤ p ≤ 1, and λ1, λ2, γ1, γ2 > 0
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Incorporating proportional hazards gives us a survival function

S(t) = [p exp(−λ1tγ1) + (1− p) exp(−λ2tγ2)]exp(Xβ) (3)

This model is implemented in the stmix command from SSC.
Attempting to apply the inversion method, gives

S(t) = u, where u ∼ U(0, 1) (4)

which cannot be re-arranged to directly solve for t.

To solve we can apply iterative root finding techniques, such
as Newton-Raphson iterations, or Brent’s univariate root
finder. I favour the latter, using mm root() from Ben Jann’s
moremata (Jann, 2005)
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survsim

survsim newvarname1 [newvarname2 ] [, options ]

I mixture

I distribution(exp|gomp|weib)

I lambdas(#), gammas(#)

I covariates(varname # [varname #] ...)

I maxtime(#)

. survsim stime event, mixture dist(weib)

> lambdas(0.1 0.2) gammas(1.2 0.5) p(0.3)
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Simulating survival times when the cumulative

hazard doesn’t have a closed form expression -

joint model data

h(t) = h0(t) exp [Xβ + αm(t)]

where
m(t) = β0i + β1i t

I To obtain the cumulative hazard function we require
numerical integration

I We then require root finding techniques to solve for the
simulated survival time, t
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Numerical integration
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survsim

survsim newvarname1 [newvarname2 ] [, options ]

I [log]hazard()

I [log]cumhazard()

I nodes(#)

I covariates(varname # [varname #] ...)

I tde(varname # [varname #] ...)

I tdefunction()

I centol(#)

I maxtime(#)

. survsim stime event, hazard(0.1:*1.2:*t:̂(1.1:-1))
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Simulating survival data - recap

Does H0(t) have a 
closed form 
expression? 

Can you solve for T 
analytically? 

(1) Apply method of 
Bender et. al. (2005) 

(2) Use iterative root 
finding to solve for 
simulated time, T 

(3) Numerically 
integrate to obtain 

H0(t), within iterative 
root finding to solve 

for T 

Yes Yes 

No No 

Figure : Schematic flow diagram of simulation techniques

Crowther and Lambert (2012)
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General survival simulation

Given a well-defined hazard function, h(t), this two-stage
algorithm involving

1. Numerical integration

2. Root-finding

provides a framework for general survival simulation which can
incorporate:

I Practically any user-defined baseline hazard function

I Time-varying covariates

I Time-dependent effects

I Delayed entry

I Extends to competing risks, frailty etc.
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Examples

I Fractional polynomial baseline

survsim stime event, logh(-18 :+

7.3:*log(#t):-11.5:*#t:̂(0.5):*log(#t))

I Non-proportional hazards

survsim stime event, logh(-18 :+

7.3:*log(#t):-11.5:*#t:̂(0.5):*log(#t)) cov(trt -0.7)

tde(trt 1) tdefunc(0.01:*t :+ 0.4:*log(t))
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Examples
I Joint model data (time-varying covariate)

. //Simulate 1000 survival times

. set obs 1000

. //Define the association between the biomarker and survival

. local alpha = 0.25

. //Generate the random intercept and random slopes

. gen b0 = rnormal(0,1)

. gen b1 = rnormal(1,0.5)

. survsim stime event, loghazard(-2.3:+2:*#t:-#t:^(2):+0.12:*#t:^3
> :+ `alpha´ :* (b0 :+ b1 :* #t)) maxt(5)

. //Generate observed biomarker values at times 0, 1, 2, 3 , 4 years

. gen id = _n

. expand 5

. bys id: gen meastime = _n-1

. //Remove observations after event or censoring time

. bys id: drop if meastime>=stime

. //Generate observed biomarker values incorporating measurement error

. gen response = b0 + b1*meastime + rnormal(0,0.5)
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Practical advice

I Although computation time is often minimal, it may be of
use to simulate your 1000 datasets, say, before applying
any model fits

I With the numerical integration, it is important to assess
the approximation by setting a seed and using an
increasing number of quadrature points
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Discussion
I We have described a general framework for the generation

of survival data, incorporating any combination of
complex hazard functions, time-dependent effects,
time-varying covariates, delayed entry, random effects and
covariates measured with error (Crowther and Lambert,
2013a)

I As the procedure relies on numerical integration, it is
important to establish the consistency of the simulated
survival times by setting a seed and using an increasing
number of quadrature nodes

I You can also specify a user-defined [log] cumulative
hazard function (Royston, 2012) (stsurvsim)

I Simulating from a fitted model (or observed censoring
distribution) can be particularly useful (Royston, 2012)
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