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What are rank and spline parameters?

I So–called “non–parametric” methods are actually based on
parameters.

I And these parameters can be sensible ones, which can be defined
in words to non–mathematicians.

I Rank parameters (the “Kendall family”) are defined in terms of
ranks (or ridits).

I Sensible rank parameters include Kendall’s τa, Somers’D,
percentiles, and percentile slopes, differences and ratios, and are
estimated using the package somersd[2][3].

I Unrestricted spline parameters (the “Schoenberg family”) are
defined in terms of splines (piecewise polynomials).

I Sensible spline parameters include the values of the spline at a
list of reference points, or differences betwen these reference
values, and are estimated using the package bspline[5].
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Comprehensive solutions versus easy–to–use front–ends

I The packages somersd and bspline are “grand unified
solutions” for estimating their whole respective families of
parameters.

I Grand unified solutions have the advantage that the advanced
user can learn (or even write) a single package, and can then
estimate any parameter in the family.

I For instance, somersd can estimate Kendall’s τa, percentile
differences, and Theil–Sen percentile slopes, as well as the
numerous aliases of Somers’ D.

I Similarly, bspline can be used to estimate parameters for
polynomials and splines with seasonal knots.

I However, most users, most of the time, want to do specific and
basic tasks in a hurry.

I So, for these users, I have written rcentile as an easy–to–use
front–end for somersd, and polyspline as an easy–to–use
front–end for bspline.
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rcentile: an easy–to–use front–end for somersd

I The package rcentile inputs a numeric variable and a list of
percents, and outputs a matrix of confidence intervals for
percentiles.

I These confidence intervals may be adjusted for clustered
sampling and/or sampling–probability weights.

I They are calculated by inverting a confidence interval for a mean
sign of pairwise differences, also known as a sign test statistic.

I This mean sign can be defined as a special case of Somers’ D,
closely related to the Gini inequality index.

I rcentile works by calling the module sccendif of the
package scsomersd, which, in turn, works by calling the
package expgen, and the module cendif[3] of the package
somersd.
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rcentile versus centile versus qreg

I Unlike centile, rcentile can produce confidence intervals
adjusted for clustered sampling and sampling–probability
weights.

I And, unlike qreg, rcentile does not produce symmetric
confidence intervals, computed using a standard error for a
percentile.

I Instead, rcentile produces asymmetric confidence intervals,
using a standard error for a mean sign, or for the Fisher
z–transformed or arcsine–transformed mean sign.

I The Central Limit Theorem usually works faster for mean signs
(or other versions of Somers’ D) than for percentiles[1].

I And, in the case of non–median percentiles (corresponding to
non–null mean signs), the Central Limit Theorem might work
even faster for z–transformed or arcsine–transformed mean signs.
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Example: Car weights in the auto data

In this example, we will estimate percentiles of car weights, assuming
that we are sampling car firms from a population of car firms, instead
of sampling car models from a population of car models:

. sysuse auto, clear;
(1978 Automobile Data)

. gene firm=word(make,1);

. lab var firm "Firm";

. describe firm;

storage display value
variable name type format label variable label
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
firm str7 %9s Firm

The generated string variable firm specifies the clusters of car
models that we have sampled.
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Percentiles of car weights output by rcentile

We then use rcentile to report the percentiles, from percentile
12.5 to percentile 87.5, with 12.5% increments, assuming that our
sample is the 23 car firms represented:

. rcentile weight, centile(12.5(12.5)87.5) cluster(firm) tdist;
Percentile(s) for variable: weight
Mean sign transformation: Fisher’s z
Valid observations: 74
Number of clusters (firm) = 23
Degrees of freedom: 22
95% confidence interval(s) for percentile(s)

Percent Centile Minimum Maximum
12.5 2050 1830 2280

25 2240 2070 2750
37.5 2670 2200 3260

50 3190 2640 3400
62.5 3350 2930 3670

75 3600 3310 3880
87.5 3900 3600 4130

Note that the confidence intervals are calculated using the default
Fisher’s z–transform for the mean sign. This is probably a good
transformation for non–median percentiles, although the identity
might be better for medians.
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Saving and plotting the confidence limits
The confidence intervals are also saved in the matrix r(cimat),
which can be saved to a resultsset in memory using the xsvmat
package, and plotted using eclplot:
. xsvmat, from(r(cimat)) name(col) norestore;

. describe;

Contains data
obs: 7
vars: 4
size: 112

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
storage display value

variable name type format label variable label
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Percent float %9.0g
Centile float %9.0g
Minimum float %9.0g
Maximum float %9.0g
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Sorted by:

Note: dataset has changed since last saved

. eclplot Centile Minimum Maximum Percent,
> xlab(12.5(12.5)87.5)
> ytitle("Percentile of Weight (US pounds)")
> plotregion(margin(l=5 r=5))
> xsize(5) ysize(5);
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Robust confidence intervals for percentiles of car weight

I The percentiles are now
plotted against the
corresponding
percentages, using
eclplot.

I The confidence intervals
are wider than the ones
from centile, because
of clustering.

I They are also
asymmetric, unlike the
ones from qreg.
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polyspline: an easy–to–use front–end for bspline

I The package polyspline inputs a numeric X–variable and a
list of reference points on the X–axis, and outputs a list of
generated reference splines, one per reference point.

I These reference splines can be included in the list of covariates
for an estimation command.

I The corresponding parameters will then be polynomial (or other
spline) levels (or effects).

I The levels will be values of the polynomial or spline at the
reference points, and the effects will be differences between
those values and the value at a base reference point.

I The reference splines therefore work for continuous factors as
identifier (or dummy) variables work for discrete factors.

I polyspline works by calling the module flexcurv[4] of
the package bspline, with sensible default options.
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I The levels will be values of the polynomial or spline at the
reference points, and the effects will be differences between
those values and the value at a base reference point.

I The reference splines therefore work for continuous factors as
identifier (or dummy) variables work for discrete factors.

I polyspline works by calling the module flexcurv[4] of
the package bspline, with sensible default options.
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So what does polyspline add (or subtract)?

I polyspline only computes positive–degree reference splines
(e.g. linear, quadratic, cubic, quartic or quintic).

I So it does not compute zero–degree splines (also known as
right–continuous step functions), which are not even continuous,
and which require increased documentation, causing confusion
for casual users.

I In default, polyspline computes reference splines for a
polynomial, with degree one less than the number of reference
points.

I A polynomial is just a spline with no internal knots.
I However, if the user specifies a lower–degree spline (using the
power() option), then the required internal knots are
automatically interpolated between the reference points.

I This is done in such a way that the reference splines can still be
computed, even if the reference points are irregularly spaced.

Easy–to–use packages for estimating rank and spline parameters Frame 11 of 23



So what does polyspline add (or subtract)?

I polyspline only computes positive–degree reference splines
(e.g. linear, quadratic, cubic, quartic or quintic).

I So it does not compute zero–degree splines (also known as
right–continuous step functions), which are not even continuous,
and which require increased documentation, causing confusion
for casual users.

I In default, polyspline computes reference splines for a
polynomial, with degree one less than the number of reference
points.

I A polynomial is just a spline with no internal knots.
I However, if the user specifies a lower–degree spline (using the
power() option), then the required internal knots are
automatically interpolated between the reference points.

I This is done in such a way that the reference splines can still be
computed, even if the reference points are irregularly spaced.

Easy–to–use packages for estimating rank and spline parameters Frame 11 of 23



So what does polyspline add (or subtract)?

I polyspline only computes positive–degree reference splines
(e.g. linear, quadratic, cubic, quartic or quintic).

I So it does not compute zero–degree splines (also known as
right–continuous step functions), which are not even continuous,
and which require increased documentation, causing confusion
for casual users.

I In default, polyspline computes reference splines for a
polynomial, with degree one less than the number of reference
points.

I A polynomial is just a spline with no internal knots.
I However, if the user specifies a lower–degree spline (using the
power() option), then the required internal knots are
automatically interpolated between the reference points.

I This is done in such a way that the reference splines can still be
computed, even if the reference points are irregularly spaced.

Easy–to–use packages for estimating rank and spline parameters Frame 11 of 23



So what does polyspline add (or subtract)?

I polyspline only computes positive–degree reference splines
(e.g. linear, quadratic, cubic, quartic or quintic).

I So it does not compute zero–degree splines (also known as
right–continuous step functions), which are not even continuous,
and which require increased documentation, causing confusion
for casual users.

I In default, polyspline computes reference splines for a
polynomial, with degree one less than the number of reference
points.

I A polynomial is just a spline with no internal knots.
I However, if the user specifies a lower–degree spline (using the
power() option), then the required internal knots are
automatically interpolated between the reference points.

I This is done in such a way that the reference splines can still be
computed, even if the reference points are irregularly spaced.

Easy–to–use packages for estimating rank and spline parameters Frame 11 of 23



So what does polyspline add (or subtract)?

I polyspline only computes positive–degree reference splines
(e.g. linear, quadratic, cubic, quartic or quintic).

I So it does not compute zero–degree splines (also known as
right–continuous step functions), which are not even continuous,
and which require increased documentation, causing confusion
for casual users.

I In default, polyspline computes reference splines for a
polynomial, with degree one less than the number of reference
points.

I A polynomial is just a spline with no internal knots.
I However, if the user specifies a lower–degree spline (using the
power() option), then the required internal knots are
automatically interpolated between the reference points.

I This is done in such a way that the reference splines can still be
computed, even if the reference points are irregularly spaced.

Easy–to–use packages for estimating rank and spline parameters Frame 11 of 23



So what does polyspline add (or subtract)?

I polyspline only computes positive–degree reference splines
(e.g. linear, quadratic, cubic, quartic or quintic).

I So it does not compute zero–degree splines (also known as
right–continuous step functions), which are not even continuous,
and which require increased documentation, causing confusion
for casual users.

I In default, polyspline computes reference splines for a
polynomial, with degree one less than the number of reference
points.

I A polynomial is just a spline with no internal knots.
I However, if the user specifies a lower–degree spline (using the
power() option), then the required internal knots are
automatically interpolated between the reference points.

I This is done in such a way that the reference splines can still be
computed, even if the reference points are irregularly spaced.

Easy–to–use packages for estimating rank and spline parameters Frame 11 of 23



So what does polyspline add (or subtract)?

I polyspline only computes positive–degree reference splines
(e.g. linear, quadratic, cubic, quartic or quintic).

I So it does not compute zero–degree splines (also known as
right–continuous step functions), which are not even continuous,
and which require increased documentation, causing confusion
for casual users.

I In default, polyspline computes reference splines for a
polynomial, with degree one less than the number of reference
points.

I A polynomial is just a spline with no internal knots.
I However, if the user specifies a lower–degree spline (using the
power() option), then the required internal knots are
automatically interpolated between the reference points.

I This is done in such a way that the reference splines can still be
computed, even if the reference points are irregularly spaced.

Easy–to–use packages for estimating rank and spline parameters Frame 11 of 23



Example: Mileage and car weights in the auto data (again)

In the auto data, we use polyspline to generate a basis for a
quadratic polynomial in weight:

. polyspline weight, refpts(2000 3000 4500) gene(qs_);
3 reference splines generated of degree: 2

. desc qs_*;

storage display value
variable name type format label variable label
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
qs_1 float %8.4f Spline at 2,000
qs_2 float %8.4f Spline at 3,000
qs_3 float %8.4f Spline at 4,500

polyspline counts the reference points, and assumes that a
quadratic is required, as the user has not specified otherwise. Note
that the reference points are not regularly spaced.
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Fitting a quadratic model with a reference–spline basis

We then fit a quadratic model of mpg with respect to weight, using
regress with the noconst option:

. regress mpg qs_*, robust noconst;

Linear regression Number of obs = 74
F( 3, 71) = 1204.74
Prob > F = 0.0000
R-squared = 0.9778
Root MSE = 3.3587

------------------------------------------------------------------------------
| Robust

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

qs_1 | 28.16455 1.024978 27.48 0.000 26.12081 30.2083
qs_2 | 20.62851 .4079148 50.57 0.000 19.81515 21.44187
qs_3 | 14.29091 .9442261 15.14 0.000 12.40817 16.17364

------------------------------------------------------------------------------

The parameters are expected values of mpg at the 3 irregularly–spaced
reference weights. These may be more informative than the usual
parameters for a quadratic, expressed in miles per gallon per US
pound, or in miles per gallon per squared US pound. However. . .
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Listing the parameters of a quadratic model with a reference–spline basis

. . .as usual, the parameters can be listed more informatively, using the
package parmest, with the label, list() and format()
options:

. parmest, label list(parm label estimate min* max*)
> format(estimate min* max* %8.2f);

+---------------------------------------------------+
| parm label estimate min95 max95 |
|---------------------------------------------------|

1. | qs_1 Spline at 2,000 28.16 26.12 30.21 |
2. | qs_2 Spline at 3,000 20.63 19.82 21.44 |
3. | qs_3 Spline at 4,500 14.29 12.41 16.17 |

+---------------------------------------------------+

We can now see which expected value of mpg belongs to which of the
3 irregularly–spaced reference weights. And they are neatly formatted
to 2 decimal places.
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Plotting the predicted values with the reference–spline parmeters

I And it is even more
informative to append
the parmest resultsset
to the main dataset, and
plot the parameters and
other predicted values.

I This is done using
eclplot, with a
baddplot() option to
add the line.

I Unsurprisingly, the line
passes through the
parameter estimates.
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An alternative incomplete basis for the same quadratic model

Alternatively, we can use polyspline with a base() option to
generate an alternative incomplete basis of reference splines for the
same quadratic model, with a base weight of 2000 US pounds:

. polyspline weight, refpts(2000 3000 4500) base(2000) gene(bqs_);
3 reference splines generated of degree: 2

. desc bqs_*;

storage display value
variable name type format label variable label
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
bqs_1 byte %8.4f Spline at 2,000
bqs_2 float %8.4f Spline at 3,000
bqs_3 float %8.4f Spline at 4,500

Again, polyspline counts the reference points, and assumes that a
quadratic is required. However, the spline at the base weight of 2000
US pounds has been set to zero, and compressed to a byte variable to
save space.
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Fitting the same quadratic model with the alternative incomplete basis
Again, we fit the quadratic model using regress, this time without
the noconst option:

. regress mpg bqs_*, robust;
note: bqs_1 omitted because of collinearity

Linear regression Number of obs = 74
F( 2, 71) = 57.15
Prob > F = 0.0000
R-squared = 0.6722
Root MSE = 3.3587

------------------------------------------------------------------------------
| Robust

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

bqs_1 | 0 (omitted)
bqs_2 | -7.536052 1.011027 -7.45 0.000 -9.551982 -5.520122
bqs_3 | -13.87364 1.319137 -10.52 0.000 -16.50392 -11.24336
_cons | 28.16456 1.024978 27.48 0.000 26.12081 30.20831

------------------------------------------------------------------------------

This time, there is a parameter _cons, the first reference–spline
parameter has been omitted and set to zero, and the other
reference–spline parameters are negative, representing differences in
mileage, compared to the base mileage.
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Listing the parameters for the alternative incomplete basis

And, again, these parameters are more informative when listed using
parmest:

. parmest, label list(parm label estimate min* max* p)
> format(estimate min* max* %8.2f p %-8.2g);

+------------------------------------------------------------------+
| parm label estimate min95 max95 p |
|------------------------------------------------------------------|

1. | o.bqs_1 Spline at 2,000 0.00 0.00 0.00 . |
2. | bqs_2 Spline at 3,000 -7.54 -9.55 -5.52 1.7e-10 |
3. | bqs_3 Spline at 4,500 -13.87 -16.50 -11.24 4.0e-16 |
4. | _cons Constant 28.16 26.12 30.21 1.4e-39 |

+------------------------------------------------------------------+

We see that the omitted parameter belongs to the base reference
weight of 2000 US pounds, whose expected mileage is the constant
term. The other parameters are the differences in mileage, predicted
by the quadratic model, for reference weights of 3000 and 4500 US
pounds, respectively. Their confidence limits and P–values show
these quadratic effects to be significantly negative.
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A linear spline basis for the same 3 reference weights

polyspline can also fit non–polynomial splines, with lower degree
than the default. For these 3 reference weights, we can use the option
power(1) to generate a basis of 3 linear reference splines:

. polyspline weight, refpts(2000 3000 4500) power(1) gene(ls_);
3 reference splines generated of degree: 1

. desc ls_*;

storage display value
variable name type format label variable label
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
ls_1 float %8.4f Spline at 2,000
ls_2 float %8.4f Spline at 3,000
ls_3 float %8.4f Spline at 4,500

This time, no base reference weight has been specified. So. . .
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Fitting a linear spline model for the same 3 reference weights

. . .when we fit the linear spline model, using regress with the
noconst option, the parameters are the expected values of mileage,
under the linear spline model, at the same 3 reference weights:

. regress mpg ls_*, robust noconst;

Linear regression Number of obs = 74
F( 3, 71) = 1192.80
Prob > F = 0.0000
R-squared = 0.9778
Root MSE = 3.3545

------------------------------------------------------------------------------
| Robust

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

ls_1 | 28.24616 1.063046 26.57 0.000 26.12651 30.36581
ls_2 | 19.94222 .6206224 32.13 0.000 18.70473 21.1797
ls_3 | 14.08828 .8485617 16.60 0.000 12.39629 15.78026

------------------------------------------------------------------------------

Unsurprisingly, the 3 reference mileages are similar to (but not
exactly the same as) the ones estimated using the quadratic model. . .
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Listing the linear–spline parameters for the same 3 reference weights

. . .and this is made clearer when these reference mileages are listed
using parmest:

. parmest, label list(parm label estimate min* max*)
> format(estimate min* max* %8.2f);

+---------------------------------------------------+
| parm label estimate min95 max95 |
|---------------------------------------------------|

1. | ls_1 Spline at 2,000 28.25 26.13 30.37 |
2. | ls_2 Spline at 3,000 19.94 18.70 21.18 |
3. | ls_3 Spline at 4,500 14.09 12.40 15.78 |

+---------------------------------------------------+

Again, we can now see which reference mileage belongs to which
reference weight. However, it might be even more informative to see
the predicted mileages at non–reference weights, too.
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Plotting the predicted values with the reference–spline parameters

I And here they are, thanks
once again to the
baddplot() option of
eclplot.

I We see that the spline is
mostly linear, except for a
single knot.

I polyspline has placed
this knot at a “sensible”
position, in this case at
the middle one of the 3
irregularly–spaced
reference weights.
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This presentation, and the do–file producing the examples in the
auto data, can be downloaded from the conference website at
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The packages used in this presentation can be downloaded from SSC,
using the ssc command.
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