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Introduction

L J©)

Why and what?

* The normal distribution has significant importance in statistics.
* Much real world data either is, or is assumed to be, normally distributed.

e Whilst the central limit theorem tells us the mean of many random variables drawn independently from the same
distribution will be approximately normally distributed.

» Today however a considerable amount of statistical analysis performed is not univariate, but multivariate in nature.

 Consequently the generalisation of the normal distribution to higher dimensions; the multivariate normal
distribution, is of increasing importance.
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Introduction

o]

Why and what?

e Consider a m-dimensional random variable X. If X has a (hon-degenerate) MVN distribution with location parameter
(mean vector) p € R™ and positive definite covariance matrix X € R™™, denoted X ~ N,,(n,X), then its
distribution has density fy(x) for x = (x4, ..., X,;;;) € R™ given by:

) = (W E) = ———exp |- (x— )T x - w)| € R
JVIZI@2m)m 2

where |Z| = det(X).

* |n this instance we have:
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The multivariate normal distribution in Stata

« drawnormallows random samples to be drawn from the multivariate normal distribution.
* binormal allows the computation of cumulative bivariate normal probabilities.
 mvnp allows the computation of cumulative multivariate normal probabilities through simulation using the GHK simulator.

set obs 1000

matrix R = (1, .25 \ .25, 1)

drawnorm v1 v2, corr(R) seed(13131313)

matrix C = cholesky (R)

ge X b = binormal (vl,v2,.25)

mdraws, neqg(2) dr(500) prefix(p)

egen x s = mvnp (vl v2), dr(500) chol(C) prefix(p) adoonly
su X b x s

Variable | Obs Mean Std. Dev. Min Max
_____________ _|_________________________________________________________
x b | 1000 .2911515 .238888 6.76e-006 .9953722

X s | 1000 .2911539 .2388902 6.76e-006 .9953699
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The multivariate normal distribution in Stata

« Utilise Mata and one of the new efficient algorithms that has been developed to quickly compute probabilities over any
range of integration.

e Additionally, there’s currently no easy means to compute equi-coordinate quantiles which have a range of applications:

p = f_c; ...f_:qu(u, 2)de,

so use interval bisection to search for g, employing the former algorithm for probabilities to evaluate the RHS.
* Final commands named mvnormalden, mvnormal, invmvnormal and rmvnormal, with all four using Mata.

e mvnormal in particular makes use of a recently developed Quasi-Monte Carlo Randomised Lattice algorithm for
performing the required integration.

e All four are easy to use with little user input required.

Michael Grayling Efficient multivariate normal distribution calculations in Stata



Introduction

Coe

The multivariate normal distribution in Stata

* Discuss the transformations and algorithm that allows the distribution function to be worked with efficiently.
e Detail how this code can then be used to compute equi-coordinate quantiles.
 Compare the performance of mvnormal to mvnp.

 Demonstrate how mvnormal can be used to determine the operating characteristics of a group sequential clinical trial.
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Working with the distribution function

* First we use a Cholesky decomposition transformation: @ = Cy, where CCT = X:

1 bl bm 1 _
P(a,b,0,%) = j j e 2% 09
VIZIQm)™ e, Jay,

!

e Ym/2dy.

b b
= ;f ' e_y%/zj
V 2m)™ Ja! A

 Next transform each of the y;’s separately using y; = ®~1(z;):

em(Z1,Zm—1)
P(a,b,0,%) = j f dz.
dq

Adm(z1,-0Zm-1)

* Turn the problem in to a constant limit form using z; = d; + w;(e; — d;):

1 1 1
P(a,b,0,3) = (e; — dy) j (s — dy) . f (em — do) j aw.
0 0 0
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Working with the distribution function

* Specify a number of shifts of the Monte Carlo algorithm M, a number of samples for each shift N, and a Monte Carlo
confidence factor a. Set I=V =0, d=(dy,..,d;,;) =e=(eq,....,e) =(0,...,0) and y= (1, e, Ym-1) =
(0, ..., 0). Compute the Cholesky factor C = {cij}.

e Fori=1,..,M:

« Set]; = 0 and generate uniform random A = (A4, ...,A,,_;) € [0,1]™" 1,

* Forj=1,.., N:
e Setw = |2 X mod(j/p+ A1) — 1|, where p is a vector of the first m — 1 prime numbers.
* Setd; = ®(a;/c11), 61 = ®(by/cy1) and f; = e — d;.
e Fork=2,.. m:

* Setyg_q = @ (dy—q + wi_1(ex—1 — di_1)), dy = @ ((ai -Yid Cij)’j)/Cii) e =& ((bi -
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Equi-coordinate quantiles

* Recall the definition of an equi-coordinate quantile:

p=f(q)= j_c; ...j_c;cbm(p.,Z)dG.

* We can compute g for any p efficiently using the algorithm discussed previously to evaluate the RHS for any ¢, and
modified interval bisection to search for the correct q.

* Optimize does not work well because of the small errors present when you evaluate the RHS.

* Choose a maximum number of interactions i,,,x, and a tolerance €.

e Initialise a = —10%, b = 10% and i = 1. Compute f(a) and f(b).

* Whilei < ijax:
e Setc=a-— [(b — a)/(f(b) — f(a))]f(a) and compute f(c).
« Iff(c)=00r(b—a)/2 < € break. Else:

 Iff(a),f(c)<O0orf(a),f(c)>0seta=candf(a)=f(c).Elsesetb =cand f(b) = f(c).

e Seti=1i+1.

Return g = c.
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mvnormal, LOWer (numlist miss) UPPer (numlist miss) MEan (numlist) Sigma(string) [SHIfts (integer 12) ///
SAMples (integer 1000) ALPha(real 3)]

N a

invmvnormal, p(real) MEan (numlist) Sigma (string) [Tail(string) SHIfts (integer 12) SAMples (integer 1000) ///
ALPha (real 3) Itermax(integer 1000000) TOLerance (real 0.000001) ]
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mvnormal, LOWer (numlist miss) UPPer (numlist miss) MEan (numlist) Sigma(string) [SHIfts (integer 12) ///
SAMples (integer 1000) ALPha(real 3)]

p m ) M N

invmvnormal, p(real) MEan (numlist) Sigma (string) [Tail(string) SHIfts (integer 12) SAMples (integer 1000) ///
ALPha (real 3) Itermax(integer 1000000) TOLerance (real 0.000001) ]

a lmax €
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mvnormal, LOWer (numlist miss) UPPer (numlist miss) MEan (numlist) Sigma(string) [SHIfts (integer 12) ///
SAMples (integer 1000) ALPha(real 3)]

lower, upper, or both
p m ) / M N

invmvnormal, p(real) MEan (numlist) Sigma (string) [Tail(string) SHIfts (integer 12) SAMples (integer 1000) ///
ALPha (real 3) Itermax(integer 1000000) TOLerance (real 0.000001) ]

a lmax €
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Performance Comparison

 Compare the average time required to compute a single particular integral, and the associated average absolute error
by mvnp for different numbers of draws and across different dimensions, in comparison to mvnormal.

* TakethecaseX; =1,%;; = 0.5 fori # j, with y; = 0 for all i.

e First determine the 95% both tailed quantile about 0 using invmvnormal, then assess how close the value returned
by mvnp and mvnormal is to 0.95 on average, across 100 replicates.

* Do this for the 3, 5, 7 and 10 dimensional problems, with draws set to 5 (default), 10, 25, 50, 75, 100 and 200.
* (Caveats:
* This is the case when you desire the value to only one integral.

e mvnormal will soon be changed to become more efficient through variable re-ordering methods and
parallelisation.
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Performance Comparison

* First initialise the covariance matrix Sigma, then pass this and the other required characteristics to invmvnormal:

. mat Sigma = 0.5*I(3) + J(3, 3, 0.5)

invmvnormal, p(0.95) mean(0, 0, 0) sigma(Sigma) tail (both)
Quantile = 2.3487841
Error = 1.257e-08
Flag = 0
fQuantile = 9.794e-06
Iterations = 185

e We can verify further the accuracy of this quantile value using mvnormal :

. mvnormal, lower(-2.3487841, -2.3487841, -2.3487841) upper(2.3487841, 2.3487841, 2.3487841) sigma(Sigma) mean (0, 0, 0)
Integral = .94999214

Error = .00006841
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Performance Comparison

] Key
Dim =3, mvnp

GEJ Dim =5, mvnp
= Dim = 7, mvnp
_5 Dim =10, mvnp
L:S" - _ ~———— Dim=3, mvnormal
3 Dim =5, mvnormal
Q
O Dim =7, mvnormal
c ©-
O Dim =10, mvnormal
=

o

T
0 50 100 150

Number of Draws
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Performance Comparison

3 Key
Dim = 3, mvnp
T —— Dim =5, mvnp
g ] —— Dim =7, mvnp
L; 'R‘ - { Dim = 10, mvnp
S . J [ ———— Dim =3, mvnormal
2 2] i _
_<c)z: “ # Jj Dim =5, mvnhormal
1
§ 1 ] 1 B - —— Dim =7, mvnormal
S & + —— Dim =10, mvnormal
ol EE——F F > ¥ s
0 50 100 150

Number of Draws
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Performance Comparison

Rel. Mean Error | Rel. Time Req. | Rel. Mean Error | Rel. Time Req. | Rel. Mean Error | Rel. Time Req. | Rel. Mean Error | Rel. Time Req.

3 156.5 1.5 147.0 9.5 147.6 15.11 147.0 34.52
5 62.0 0.94 51.0 7.18 50.3 11.71 50.5 29.15
7 47.8 0.97 32.8 8.18 32.7 13.81 32.5 35.53
10 33.5 0.95 17.6 8.97 16.3 15.40 16.7 44.37
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Group sequential clinical trial design

* Suppose we wish to design a group sequential clinical trial to compare the performance of two drugs, A and B, and
ultimately to test the following hypotheses:

Hy:pp —pg <0, Hy: pp —uy > 0.

* We plan to recruit n patients to each drug in each of a maximum of L stages, and desire a type-| error of @ when ug —
ta = 0 and a type-Il error of f when ug — uy = 6.

* We utilise the following standardised test statistics at each analysis:

A N 1/2
7, = (g — a1,

and wish to determine early stopping efficacy and futility boundaries; e; and f;, [ = 1, ..., L in order to give the required
operating characteristics.

Additionally, information is linked to sample size by n = 2021, where o2 is the variance of the patient responses on
treatment 4 or B.
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Group sequential clinical trial design

* Whitehead and Stratton (1983) demonstrated this could be approximately achieved by taking:

f =112 -—Elog L) +os83 (%L +3—S£1
L 6%\ \2a) T T L) 4L

122 1 L\ 61
e = 11/2 §]0g<ﬂ> — 0.583 (z> +ZZIL],

~ 20711 - a)
SO Il—a)+ P11 =)

4.

* Desiring f; = e to ensure a decision is made at the final analysis, we have:

o _[(axosssz 1)\ 2x0583] 1
L= 7 + 08\ 5, EYE 52
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Group sequential clinical trial design

 We can compute the expected sample size or power at any true treatment effect 8 = ug — u, using multivariate
integration and the following facts:

E(Z) =6L"%, 1=1,.,L,

cov(2,,,2,) = (/)" 1<L <l <L

* For example, define P¢;(0) and P,;(6) to be the probabilities we stop for futility or efficacy at stage [ respectively. Then
for example:

e1 rez rf3
Ps3(6) =] f f ®(0,Cov(Z))d®, for 0=(0,..,0)T,Z=(Zy,..,Z5)".
fi ’f2 co

e Then we have:

L L
E(N|6) = Z 2n[Pr1(6) + Poi(8)] and Power() = Z P.,(6).
=1 =1
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Group sequential clinical trial design

* Asan example, determine the designfor L = 3,6 = 0.2, «a = 0.05, 8 = 0.2, 0 = 1.

™~ ‘ ‘
[e] q . .
< Fixed Sample Design Triangular Test

True treatment effect
E(N|6) |Power(0) | E(N|6) |Power(0)

Zy 7 =0 620 0.050 4016  0.051
. 0=26 620 0.808 4693  0.801
< T T T T T
1 15 2 25 3
[
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Conclusion

Conclusion

* Created four easy to use commands that allow you to work with the multivariate normal distribution.
e Performance of these commands is seen to be very good.

 Complementary to mvnp with the relative efficiency dependent on the number of required integrals.
e Similarly, we have created commands for working with the multivariate t distribution.

* Moving forward, we would like to add functionality to allow alternate specialist algorithms to be used.
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Conclusion

Conclusion
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