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Why and what?

Why do we need to be able to work with the Multivariate Normal Distribution?
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• The normal distribution has significant importance in statistics.

• Much real world data either is, or is assumed to be, normally distributed.

• Whilst the central limit theorem tells us the mean of many random variables drawn independently from the same
distribution will be approximately normally distributed.

• Today however a considerable amount of statistical analysis performed is not univariate, but multivariate in nature.

• Consequently the generalisation of the normal distribution to higher dimensions; the multivariate normal
distribution, is of increasing importance.



Why and what?

Definition
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• Consider a 𝑚-dimensional random variable 𝑋. If 𝑋 has a (non-degenerate) MVN distribution with location parameter
(mean vector) 𝛍 ∈ ℝ𝑚 and positive definite covariance matrix Σ ∈ ℝ𝑚×𝑚 , denoted 𝑋 ~ 𝑁𝑚 𝛍, Σ , then its
distribution has density 𝑓𝑋 𝐱 for 𝐱 = 𝑥1, … , 𝑥𝑚 ∈ ℝ𝑚 given by:

𝑓𝑋 𝐱 = 𝜙𝑚 𝛍, Σ =
1

Σ 2𝜋 𝑚
exp −

1

2
𝐱 − 𝛍 ⊤Σ−1 𝐱 − 𝛍 ∈ ℝ,

where Σ = det Σ .

• In this instance we have:

𝔼 𝑋 = 𝛍,
Var 𝑋 = Σ,

ℙ 𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 ∶ 𝑖 = 1,… ,𝑚 = 𝑃 𝐚, 𝐛, 𝛍, Σ =  
𝑎1

𝑏1

… 
𝑎𝑚

𝑏𝑚

𝜙𝑚 𝛍, Σ 𝑑𝐱 .



The multivariate normal distribution in Stata

What’s available?
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• drawnorm allows random samples to be drawn from the multivariate normal distribution.

• binormal allows the computation of cumulative bivariate normal probabilities.

• mvnp allows the computation of cumulative multivariate normal probabilities through simulation using the GHK simulator.

. set obs 1000

. matrix R = (1, .25 \ .25, 1)

. drawnorm v1 v2, corr(R) seed(13131313)

. matrix C = cholesky(R)

. ge x_b = binormal(v1,v2,.25)

. mdraws, neq(2) dr(500) prefix(p)

. egen x_s = mvnp(v1 v2), dr(500) chol(C) prefix(p) adoonly

. su x_b x_s

Variable |       Obs Mean    Std. Dev.       Min        Max

-------------+--------------------------------------------------------

x_b |      1000    .2911515     .238888   6.76e-06   .9953722

x_s |      1000    .2911539    .2388902   6.76e-06   .9953699



The multivariate normal distribution in Stata

The new commands
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• Utilise Mata and one of the new efficient algorithms that has been developed to quickly compute probabilities over any 
range of integration.

• Additionally, there’s currently no easy means to compute equi-coordinate quantiles which have a range of applications:

𝑝 =  
−∞

𝑞

… 
−∞

𝑞

𝜙𝑚 𝛍, Σ 𝑑𝛉,

so use interval bisection to search for 𝑞, employing the former algorithm for probabilities to evaluate the RHS.

• Final commands named mvnormalden, mvnormal, invmvnormal and rmvnormal, with all four using Mata.

• mvnormal in particular makes use of a recently developed Quasi-Monte Carlo Randomised Lattice algorithm for
performing the required integration.

• All four are easy to use with little user input required.



The multivariate normal distribution in Stata

Talk outline
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• Discuss the transformations and algorithm that allows the distribution function to be worked with efficiently.

• Detail how this code can then be used to compute equi-coordinate quantiles.

• Compare the performance of mvnormal to mvnp.

• Demonstrate how mvnormal can be used to determine the operating characteristics of a group sequential clinical trial.



Working with the distribution function

Transforming the integral
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• First we use a Cholesky decomposition transformation: 𝛉 = 𝐶𝐲, where 𝐶𝐶⊤ = Σ:

𝑃 𝐚, 𝐛, 𝟎, Σ =
1

Σ 2𝜋 𝑚
 
𝑎1

𝑏1

… 
𝑎𝑚

𝑏𝑚

𝑒−
1
2𝛉

⊤Σ−1𝛉𝑑𝛉,

, , , =
1

2𝜋 𝑚
 
𝑎1
′

𝑏1
′

𝑒−𝑦1
2/2 

𝑎𝑚
′

𝑏𝑚
′

𝑒−𝑦𝑚
2 /2𝑑𝐲.

• Next transform each of the 𝑦𝑖’s separately using 𝑦𝑖 = Φ−1 𝑧𝑖 :

𝑃 𝐚, 𝐛, 𝟎, Σ =  
𝑑1

𝑒1

… 
𝑑𝑚 𝑧1,…,𝑧𝑚−1

𝑒𝑚 𝑧1,…,𝑧𝑚−1

𝑑𝐳.

• Turn the problem in to a constant limit form using 𝑧𝑖 = 𝑑𝑖 + 𝑤𝑖 𝑒𝑖 − 𝑑𝑖 :

𝑃 𝐚, 𝐛, 𝟎, Σ = 𝑒1 − 𝑑1  
0

1

𝑒2 − 𝑑2 … 
0

1

𝑒𝑚 − 𝑑𝑚  
0

1

𝑑𝐰.



Working with the distribution function

Quasi Monte Carlo Randomised Lattice Algorithm
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• Specify a number of shifts of the Monte Carlo algorithm 𝑀, a number of samples for each shift 𝑁, and a Monte Carlo
confidence factor 𝛼 . Set 𝐼 = 𝑉 = 0 , 𝐝 = 𝑑1, … , 𝑑𝑚 = 𝐞 = 𝑒1, … , 𝑒𝑚 = 0,… , 0 and 𝐲 = 𝑦1, … , 𝑦𝑚−1 =

0,… , 0 . Compute the Cholesky factor 𝐶 = 𝑐𝑖𝑗 .

• For 𝑖 = 1,… ,𝑀:
• Set 𝐼𝑖 = 0 and generate uniform random 𝚫 = Δ1, … , Δ𝑚−1 ∈ 0,1 𝑚−1.
• For 𝑗 = 1,… , 𝑁:

• Set 𝐰 = 2 ×mod 𝑗 𝐩 + 𝚫, 1 − 1 , where 𝐩 is a vector of the first 𝑚 − 1 prime numbers.

• Set 𝑑1 = Φ 𝑎1/𝑐11 , 𝑒1 = Φ 𝑏1/𝑐11 and 𝑓1 = 𝑒1 − 𝑑1.
• For 𝑘 = 2,… ,𝑚:

• Set 𝑦𝑘−1 = Φ−1 𝑑𝑘−1 + 𝑤𝑘−1 𝑒𝑘−1 − 𝑑𝑘−1 , 𝑑𝑘 = Φ 𝑎𝑖 −  𝑗=1
𝑖−1 𝑐𝑖𝑗𝑦𝑗 /𝑐𝑖𝑖 , 𝑒𝑘 = Φ  𝑏𝑖 −



Equi-coordinate quantiles 

Computing equi-coordinate quantiles
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• Recall the definition of an equi-coordinate quantile:

𝑝 = 𝑓 𝑞 =  
−∞

𝑞

… 
−∞

𝑞

Φ𝑚 𝛍, Σ 𝑑𝛉.

• We can compute 𝑞 for any 𝑝 efficiently using the algorithm discussed previously to evaluate the RHS for any 𝑞, and
modified interval bisection to search for the correct 𝑞.

• Optimize does not work well because of the small errors present when you evaluate the RHS.

• Choose a maximum number of interactions 𝑖max, and a tolerance 𝜖.
• Initialise 𝑎 = −106, 𝑏 = 106 and 𝑖 = 1. Compute 𝑓 𝑎 and 𝑓 𝑏 .
• While 𝑖 ≤ 𝑖max:

• Set 𝑐 = 𝑎 − 𝑏 − 𝑎 / 𝑓 𝑏 − 𝑓 𝑎 𝑓 𝑎 and compute 𝑓 𝑐 .

• If 𝑓 𝑐 = 0 or 𝑏 − 𝑎 /2 < 𝜖 break. Else:
• If 𝑓 𝑎 , 𝑓 𝑐 < 0 or 𝑓 𝑎 , 𝑓 𝑐 > 0 set 𝑎 = 𝑐 and 𝑓 𝑎 = 𝑓 𝑐 . Else set 𝑏 = 𝑐 and 𝑓(𝑏) = 𝑓(𝑐).

• Set 𝑖 = 𝑖 + 1.
• Return 𝑞 = 𝑐.



Syntax

mvnormal
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mvnormal, LOWer(numlist miss) UPPer(numlist miss) MEan(numlist) Sigma(string) [SHIfts(integer 12) ///                    

SAMples(integer 1000) ALPha(real 3)]

invmvnormal, p(real) MEan(numlist) Sigma(string) [Tail(string) SHIfts(integer 12) SAMples(integer 1000) ///

ALPha(real 3) Itermax(integer 1000000) TOLerance(real 0.000001)]

𝛍 Σ𝐚 𝐛

𝛼

𝑀

𝑁



Syntax

invmvnormal
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mvnormal, LOWer(numlist miss) UPPer(numlist miss) MEan(numlist) Sigma(string) [SHIfts(integer 12) ///                    

SAMples(integer 1000) ALPha(real 3)]

invmvnormal, p(real) MEan(numlist) Sigma(string) [Tail(string) SHIfts(integer 12) SAMples(integer 1000) ///

ALPha(real 3) Itermax(integer 1000000) TOLerance(real 0.000001)]

𝑀 𝑁

𝑖max 𝜖

𝑝 𝛍 Σ

𝛼



Syntax

invmvnormal
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mvnormal, LOWer(numlist miss) UPPer(numlist miss) MEan(numlist) Sigma(string) [SHIfts(integer 12) ///                    

SAMples(integer 1000) ALPha(real 3)]

invmvnormal, p(real) MEan(numlist) Sigma(string) [Tail(string) SHIfts(integer 12) SAMples(integer 1000) ///

ALPha(real 3) Itermax(integer 1000000) TOLerance(real 0.000001)]

𝑀 𝑁

𝑖max 𝜖

𝑝 𝛍 Σ

𝛼

lower, upper, or both



Performance Comparison

Set-up
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• Compare the average time required to compute a single particular integral, and the associated average absolute error
by mvnp for different numbers of draws and across different dimensions, in comparison to mvnormal.

• Take the case Σ𝑖𝑖 = 1, Σ𝑖𝑗 = 0.5 for 𝑖 ≠ 𝑗, with 𝜇𝑖 = 0 for all 𝑖.

• First determine the 95% both tailed quantile about 𝟎 using invmvnormal, then assess how close the value returned
by mvnp and mvnormal is to 0.95 on average, across 100 replicates.

• Do this for the 3, 5, 7 and 10 dimensional problems, with draws set to 5 (default), 10, 25, 50, 75, 100 and 200.

• Caveats:

• This is the case when you desire the value to only one integral.
• mvnormal will soon be changed to become more efficient through variable re-ordering methods and

parallelisation.



Performance Comparison

Using invmvnormal and mvnormal
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• First initialise the covariance matrix Sigma, then pass this and the other required characteristics to invmvnormal:

. mat Sigma = 0.5*I(3) + J(3, 3, 0.5)

. invmvnormal, p(0.95) mean(0, 0, 0) sigma(Sigma) tail(both)

Quantile = 2.3487841

Error = 1.257e-08

Flag = 0

fQuantile = 9.794e-06

Iterations = 185

• We can verify further the accuracy of this quantile value using mvnormal:

. mvnormal, lower(-2.3487841, -2.3487841, -2.3487841) upper(2.3487841, 2.3487841, 2.3487841) sigma(Sigma) mean(0, 0, 0)

Integral = .94999214

Error = .00006841



Performance Comparison

Mean Computation Time
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Number of Draws
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Dim = 3, mvnp

Dim = 5, mvnp

Dim = 7, mvnp

Dim = 10, mvnp

Dim = 3, mvnormal

Dim = 5, mvnormal

Dim = 7, mvnormal

Dim = 10, mvnormal



Performance Comparison

Mean Absolute Error
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Key

Dim = 3, mvnp

Dim = 5, mvnp

Dim = 7, mvnp

Dim = 10, mvnp

Dim = 3, mvnormal

Dim = 5, mvnormal

Dim = 7, mvnormal

Dim = 10, mvnormalM
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Number of Draws



Performance Comparison

Relative Performance
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Dimension
Draws = 5 Draws = 50 Draws = 75 Draws = 150

Rel. Mean Error Rel. Time Req. Rel. Mean Error Rel. Time Req. Rel. Mean Error Rel. Time Req. Rel. Mean Error Rel. Time Req.

3 156.5 1.55 147.0 9.53 147.6 15.11 147.0 34.52

5 62.0 0.94 51.0 7.18 50.3 11.71 50.5 29.15

7 47.8 0.97 32.8 8.18 32.7 13.81 32.5 35.53

10 33.5 0.95 17.6 8.97 16.3 15.40 16.7 44.37



Group sequential clinical trial design

Triangular Test
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• Suppose we wish to design a group sequential clinical trial to compare the performance of two drugs, 𝐴 and 𝐵, and 
ultimately to test the following hypotheses:

𝐻0 ∶ 𝜇𝐵 − 𝜇𝐴 ≤ 0, 𝐻1 ∶ 𝜇𝐵 − 𝜇𝐴 > 0.

• We plan to recruit 𝑛 patients to each drug in each of a maximum of 𝐿 stages, and desire a type-I error of 𝛼 when 𝜇𝐵 −
𝜇𝐴 = 0 and a type-II error of 𝛽 when 𝜇𝐵 − 𝜇𝐴 = 𝛿.

• We utilise the following standardised test statistics at each analysis:

𝑍𝑙 =  𝜇𝐵 −  𝜇𝐴 𝐼𝑙
1/2

,

and wish to determine early stopping efficacy and futility boundaries; 𝑒𝑙 and 𝑓𝑙, 𝑙 = 1, … , 𝐿 in order to give the required      
operating characteristics.

• Additionally, information is linked to sample size by 𝑛 = 2𝜎2𝐼1 where 𝜎2 is the variance of the patient responses on 
treatment 𝐴 or 𝐵.



Group sequential clinical trial design

Triangular Test
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• Whitehead and Stratton (1983) demonstrated this could be approximately achieved by taking:

𝑓𝑙 = 𝐼𝑙
−1/2

−
2

 𝛿
log

1

2𝛼
+ 0.583

𝐼𝐿
𝐿

+
3  𝛿

4

𝑙

𝐿
𝐼𝐿 ,

𝑒𝑙 = 𝐼𝑙
−1/2 2

 𝛿
log

1

2𝛼
− 0.583

𝐼𝐿
𝐿

+
 𝛿

4

𝑙

𝐿
𝐼𝐿 ,

 𝛿 =
2Φ−1 1 − 𝛼

Φ−1 1 − 𝛼 + Φ−1 1 − 𝛽
𝛿.

• Desiring 𝑓𝐿 = 𝑒𝐿 to ensure a decision is made at the final analysis, we have:

𝐼𝐿 =
4 × 0.5832

𝐿
+ 8 log

1

2𝛼

1/2

−
2 × 0.583

𝐿1/2
1

 𝛿2
.



Group sequential clinical trial design

Computing the Designs Performance
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• We can compute the expected sample size or power at any true treatment effect 𝜃 = 𝜇𝐵 − 𝜇𝐴 using multivariate
integration and the following facts:

𝔼 𝑍𝑙 = 𝜃𝐼𝑙
1/2

, 𝑙 = 1, . . , 𝐿,

Cov 𝑍𝑙1 , 𝑍𝑙2 = 𝐼𝑙1/𝐼𝑙2
1/2

, 1 ≤ 𝑙1 ≤ 𝑙2 ≤ 𝐿.

• For example, define 𝑃𝑓𝑙 𝜃 and 𝑃𝑒𝑙 𝜃 to be the probabilities we stop for futility or efficacy at stage 𝑙 respectively. Then 

for example:

𝑃𝑓3 𝜃 =  
𝑓1

𝑒1

 
𝑓2

𝑒2

 
−∞

𝑓3

Φ 𝛉, Cov 𝐙 𝑑𝚽 , , , for 𝛉 = 𝜃,… , 𝜃 ⊤, 𝐙 = 𝑍1, … , 𝑍3
⊤.

• Then we have:

𝔼 𝑁|𝜃 =  

𝑙=1

𝐿

2𝑛 𝑃𝑓𝑙 𝜃 + 𝑃𝑒𝑙 𝜃 and Power 𝜃 =  

𝑙=1

𝐿

𝑃𝑒𝑙 𝜃 .



Group sequential clinical trial design

Power and expected sample size
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𝑍𝑙

𝑙

True treatment effect
Fixed Sample Design Triangular Test

𝔼 𝑁|𝜃 Power 𝜃 𝔼 𝑁|𝜃 Power 𝜃

𝜃 = 0 620 0.050 401.6 0.051

𝜃 = 𝛿 620 0.808 469.3 0.801

• As an example, determine the design for 𝐿 = 3, 𝛿 = 0.2, 𝛼 = 0.05, 𝛽 = 0.2, 𝜎 = 1.



Conclusion

Complete and simple to use
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• Created four easy to use commands that allow you to work with the multivariate normal distribution.

• Performance of these commands is seen to be very good.

• Complementary to mvnp with the relative efficiency dependent on the number of required integrals.

• Similarly, we have created commands for working with the multivariate 𝑡 distribution.

• Moving forward, we would like to add functionality to allow alternate specialist algorithms to be used.



Conclusion

Questions?
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