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Bayesian analysis using Stata

Introduction

What is Bayesian analysis?

Bayesian analysis is a statistical paradigm that answers research
questions about unknown parameters using probability statements.
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Bayesian analysis using Stata

Introduction

What is Bayesian analysis?

What is the probability that a person accused of a crime is
guilty?

What is the probability that treatment A is more cost effective
than treatment B for a specific health care provider?

What is the probability that the odds ratio is between 0.3 and
0.5?

What is the probability that three out of five quiz questions
will be answered correctly by students?
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Bayesian analysis using Stata

Introduction

Why Bayesian analysis?

You may be interested in Bayesian analysis if

you have some prior information available from previous
studies that you would like to incorporate in your analysis. For
example, in a study of preterm birthweights, it would be
sensible to incorporate the prior information that the
probability of a mean birthweight above 15 pounds is
negligible. Or,

your research problem may require you to answer a question:
What is the probability that my parameter of interest belongs
to a specific range? For example, what is the probability that
an odds ratio is between 0.2 and 0.5? Or,

you want to assign a probability to your research hypothesis.
For example, what is the probability that a person accused of
a crime is guilty?

And more.
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Bayesian analysis using Stata

Introduction

Bayesian analysis: assumptions

Observed data sample D is fixed and model parameters θ are
random.

D is viewed as a result of a one-time experiment.

A parameter is summarized by an entire distribution of values
instead of one fixed value as in classical frequentist analysis.

Yulia Marchenko (StataCorp) September 11, 2015 7



Bayesian analysis using Stata

Introduction

Bayesian analysis: assumptions

There is some prior (before seeing the data!) knowledge about
θ formulated as a prior distribution p(θ).

After data D are observed, the information about θ is
updated based on the likelihood f (D|θ).

Information is updated by using the Bayes rule to form a
posterior distribution p(θ|D):

p(θ|D) =
f (D|θ)p(θ)

p(D)

where p(D) is the marginal distribution of the data D.
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Introduction

Bayesian analysis: inference

Estimating a posterior distribution p(θ|D) is at the heart of
Bayesian analysis.

Various summaries of this distribution are used for inference.

Point estimates: posterior means, modes, medians,
percentiles.

Interval estimates: credible intervals (CrI)—(fixed) ranges to
which a parameter is known to belong with a pre-specified
probability.

Monte-Carlo standard error (MCSE)—represents precision
about posterior mean estimates.

Hypothesis testing—assign probability to any hypothesis of
interest

Model comparison: model posterior probabilities, Bayes factors
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Introduction

Bayesian analysis: challenges

Potential subjectivity in specifying prior information—
noninformative priors or sensitivity analysis to various choices
of informative priors.

Computationally demanding—involves intractable integrals
that can only be computed using intensive numerical methods
such as Markov chain Monte Carlo (MCMC).
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Introduction

Motivating example: Beta-binomial model

Research problem

Prevalence of a rare infectious disease in a small city (Hoff
2009)

A sample of 20 subjects is checked for infection

Parameter θ is the proportion of infected individuals in the city

Outcome y is the # of infected individuals in the sample
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Bayesian analysis using Stata

Introduction

Motivating example: Beta-binomial model

Model

Likelihood, f (y |θ): Binomial

Prior, p(θ): Infection rate ranged between 0.05 and 0.20, with
an average prevalence of 0.10, in other similar cities

Bayesian model:

y |θ ∼ Binomial(20, θ)

θ ∼ Beta(2, 20)

Posterior: θ|y ∼ Beta(2 + y , 20+ 20− y)
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Introduction

Motivating example: Beta-binomial model

Observed data

We sample individuals and observe none who have an
infection, y = 0

Posterior: θ|y ∼ Beta(2, 40)

Prior mean: E (θ) = 2/(2+20) = 0.09

Posterior mean: E (θ|y) = 2/(2+40) = 0.048

Posterior probability: P(θ < 0.10) = 0.93
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Introduction

Motivating example: Beta-binomial model
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Prior and posterior distributions of θ
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Fit beta-binomial model using bayesmh (variable y has one
observation equal to 0)

MCMC method: adaptive Metropolis-Hastings (MH)

. set seed 14

. bayesmh y, likelihood(binlogit(20), noglmtransform) ///
> prior({y:_cons}, beta(2,20))

Model summary

Likelihood:

y ~ binomial({y:_cons},20)

Prior:
{y:_cons} ~ beta(2,20)

Bayesian binomial regression MCMC iterations = 12,500

Random-walk Metropolis-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 1
Acceptance rate = .4205

Log marginal likelihood = -1.1714402 Efficiency = .1401

Equal-tailed
y Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons .0466517 .0316076 .000844 .0391639 .0058112 .1260038



Bayesian analysis using Stata

Introduction

Motivating example: Beta-binomial model

Compute posterior probability

. bayestest interval {y:_cons}, upper(0.1)

Interval tests MCMC sample size = 10,000

prob1 : {y:_cons} < 0.1

Mean Std. Dev. MCSE

prob1 .9299 0.25533 .006074
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Stata’s Bayesian suite

Commands

Command Description

Estimation
bayesmh Bayesian regression using MH
bayesmh evaluators User-written Bayesian models using MH

Postestimation
bayesgraph Graphical convergence diagnostics

bayesstats ess Effective sample sizes and more
bayesstats summary Summary statistics
bayesstats ic Information criteria and Bayes factors

bayestest model Model posterior probabilities
bayestest interval Interval hypothesis testing

Yulia Marchenko (StataCorp) September 11, 2015 17



Bayesian analysis using Stata

Stata’s Bayesian suite

Commands

Models

10 built-in likelihoods: normal, logit, ologit, Poisson, . . .

18 built-in priors: normal, gamma, Wishart, Zellner’s g , . . .

Continuous, binary, ordinal, and count outcomes

Univariate, multivariate, and multiple-equation models

Linear, nonlinear, and canonical generalized nonlinear models

Continuous univariate, multivariate, and discrete priors

User-defined models

MCMC methods

Adaptive MH

Adaptive MH with Gibbs updates—hybrid

Full Gibbs sampling for some models

Yulia Marchenko (StataCorp) September 11, 2015 18



Bayesian analysis using Stata

Stata’s Bayesian suite

Commands

Built-in models

bayesmh . . . , likelihood() prior() . . .

User-defined models

bayesmh . . . , {evaluator() | llevaluator() prior()} . . .

Postestimation features are the same whether you use a built-in
model or program your own!
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Stata’s Bayesian suite

Graphical user interface (GUI)

Perform Bayesian analysis by using the command line

Or, use a powerful point-and-click interface

You can access the GUI by typing

. db bayesmh

or from the Statistics menu

(NEXT SLIDE)
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Bayesian analysis using Stata

Examples

Beta-binomial model (revisited)

Recall the beta-binomial model from the motivating example.

Let’s store the estimation results for future comparison.

estimates store requires first saving bayesmh’s MCMC
data.
Use option saving() during estimation or on replay:

. bayesmh, saving(betabin)
note: file betabin.dta saved

. estimates store betabin
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Check MCMC convergence

. bayesgraph diagnostics {y:_cons}
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Bayesian analysis using Stata

Examples

Beta-binomial model (revisited)

Check MCMC sampling efficiency

. bayesstats ess {y:_cons}

Efficiency summaries MCMC sample size = 10,000

y ESS Corr. time Efficiency

_cons 1400.87 7.14 0.1401
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Examples

Beta-binomial model (revisited)

Test an interval hypothesis

. bayestest interval {y:_cons}, upper(0.1)

Interval tests MCMC sample size = 10,000

prob1 : {y:_cons} < 0.1

Mean Std. Dev. MCSE

prob1 .9299 0.25533 .006074
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Examples

Power priors

Motivating example used a beta prior for θ

Sensitivity analysis to the choice of the priors is very
important in Bayesian analysis

Consider an alternative prior—a power prior
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Examples

Power priors

Based on similar historical data y0

Idea: raise the likelihood function of the historical data to the
power α0, where 0 ≤ α0 ≤ 1.

α0 quantifies the uncertainty in y0 by controlling the
heaviness of the tails of the prior distribution.

α0 = 0 means no information from the historical data and
α0 = 1 means that the historical data have as much weight as
the observed data.
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Examples

Power priors

Suppose that in another similar city, a random sample of 15
subjects was selected and 1 subject had a disease.

Let’s consider a competing power prior:

p(θ) ∼ {BinomialPMF(15, 1, θ)}α0

Let α0 = 0.5.
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Examples

Power priors

bayesmh does not have built-in power priors but we can use
prior()’s suboption density() to specify our own prior.

. set seed 14

. bayesmh y, likelihood(binlogit(20), noglmtransform) ///
> prior({y:_cons}, density(sqrt(binomialp(15,1,{y:_cons})))) ///
> saving(powerbin)

Model summary

Likelihood:
y ~ binomial({y:_cons},20)

Prior:
{y:_cons} ~ density(sqrt(binomialp(15,1,{y:_cons})))
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Examples

Power priors

Bayesian binomial regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 1

Acceptance rate = .4294
Log marginal likelihood = -3.4630512 Efficiency = .1228

Equal-tailed

y Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons .0501507 .0392846 .001121 .0401686 .0040134 .1521774

file powerbin.dta not found; file saved

. estimates store powerbin
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Examples

Model comparison

Compute model posterior probabilities

. bayestest model powerbin betabin

Bayesian model tests

log(ML) P(M) P(M|y)

powerbin -3.4631 0.5000 0.0918

betabin -1.1714 0.5000 0.9082

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.
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Examples

Model comparison

Compute the Bayes factor—the ratio of the marginal
likelihoods of the two models calculated using the same data.

. bayesstats ic powerbin betabin

Bayesian information criteria

DIC log(ML) log(BF)

powerbin 2.129576 -3.463051 .
betabin 1.956201 -1.17144 2.291611

Note: Marginal likelihood (ML) is computed

using Laplace-Metropolis approximation.
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Examples

User-defined models: Hurdle model

In addition to the many built-in models, you can also program
your own models.

Program log likelihood and use one of the built-in priors:
. bayesmh . . . , llevaluator(llprogname) prior() . . .

Or, program the log posterior:
. bayesmh . . . , evaluator(lpprogname) . . .
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Examples

User-defined models: Hurdle model

One of the questions we received shortly after releasing
bayesmh is “How do I fit Bayesian hurdle models?”

A hurdle model (Cragg model) is used to model a bounded
dependent variable. It combines a selection model that
determines the boundary points of the dependent variable with
an outcome model that determines its nonbounded values.

Hurdle models are not currently among the built-in bayesmh

models.

But, we can program them using bayesmh’s used-defined
evaluators.

Below I provide two types of log-likelihood evaluators: one
using Stata’s command churdle (new in Stata 14) to
compute the log likelihood and the other programming the log
likelihood from scratch.
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Examples

User-defined models: Hurdle model using churdle

We consider a subset of the fitness data from [R] churdle.

We consider a simple linear hurdle model.

We model the decision to exercise or not as a function of an
individual’s average commute to work.

Once a decision to exercise is made, we model the number of
hours an individual exercises per day as a function of age.

. webuse fitness

. set seed 17653

. sample 10
(17,848 observations deleted)
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Examples

User-defined models: Hurdle model using churdle

We use churdle to compute the log-likelihood values at each
MCMC iteration.

. program mychurdle1

1. version 14.0
2. args llf

3. tempname b
4. mat `b´ = ($MH_b, $MH_p)

5. cap churdle linear $MH_y1 $MH_y1x1 if $MH_touse, ///
> select($MH_y2x1) ll(0) from(`b´) iterate(0)

6. if _rc {

7. if (_rc==1) { // handle break key
8. exit _rc

9. }
10. scalar `llf´ = .
11. }

12. else {
13. scalar `llf´ = e(ll)

14. }
15. end
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Examples

User-defined models: Hurdle model using churdle

. set seed 14

. gen byte hours0 = (hours==0)

. bayesmh (hours age) (hours0 commute), ///

> llevaluator(mychurdle1, parameters({lnsig})) ///
> prior({hours:} {hours0:} {lnsig}, flat) dots

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaa. done
Simulation 10000 .........1000.........2000.........3000.........4000.........5

> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
hours hours0 ~ mychurdle1(xb_hours,xb_hours0,{lnsig})

Priors:
{hours:age _cons} ~ 1 (flat) (1)

{hours0:commute _cons} ~ 1 (flat) (2)
{lnsig} ~ 1 (flat)

(1) Parameters are elements of the linear form xb_hours.

(2) Parameters are elements of the linear form xb_hours0.
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Examples

User-defined models: Hurdle model using churdle

Bayesian regression MCMC iterations = 12,500

Random-walk Metropolis-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000
Number of obs = 1,983

Acceptance rate = .2752
Efficiency: min = .04197

avg = .06659
Log marginal likelihood = -2772.4136 max = .08861

Equal-tailed

Mean Std. Dev. MCSE Median [95% Cred. Interval]

hours
age .0051872 .0027702 .000093 .0052248 -.0002073 .0104675

_cons 1.163384 .1219417 .005135 1.16685 .9203519 1.388663

hours0

commute -.0716184 .1496757 .005623 -.0758964 -.3733355 .2181717
_cons .1454332 .084041 .003066 .1451574 -.0222543 .3128047

lnsig .1341657 .034162 .001668 .1336526 .0634106 .2021694

This model took 25 minutes
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Examples

User-defined models: Hurdle model programmed from scratch

The corresponding log likelihood programmed from scratch

. program mychurdle2

1. version 14.0
2. args lnf xb xg lnsig

3. tempname sig
4. scalar `sig´ = exp(`lnsig´)
5. tempvar lnfj

6. qui gen double `lnfj´ = normal(`xg´) if $MH_touse
7. qui replace `lnfj´ = log(1 - `lnfj´) if $MH_y1 <= 0 & $MH_touse

8. qui replace `lnfj´ = log(`lnfj´) - log(normal(`xb´/`sig´)) ///
> + log(normalden($MH_y1,`xb´,`sig´)) ///

> if $MH_y1 > 0 & $MH_touse
9. summarize `lnfj´ if $MH_touse, meanonly

10. if r(N) < $MH_n {

11. scalar `lnf´ = .
12. exit

13. }
14. scalar `lnf´ = r(sum)
15. end
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Examples

User-defined models: Hurdle model programmed from scratch

. set seed 14

. bayesmh (hours age) (hours0 commute), ///

> llevaluator(mychurdle2, parameters({lnsig}) ) ///
> prior({hours:} {hours0:} {lnsig}, flat) dots

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaa. done

Simulation 10000 .........1000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
hours hours0 ~ mychurdle2(xb_hours,xb_hours0,{lnsig})

Priors:

{hours:age _cons} ~ 1 (flat) (1)
{hours0:commute _cons} ~ 1 (flat) (2)

{lnsig} ~ 1 (flat)

(1) Parameters are elements of the linear form xb_hours.

(2) Parameters are elements of the linear form xb_hours0.
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Examples

User-defined models: Hurdle model programmed from scratch

Bayesian regression MCMC iterations = 12,500

Random-walk Metropolis-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000
Number of obs = 1,983

Acceptance rate = .2752
Efficiency: min = .04197

avg = .06659
Log marginal likelihood = -2772.4136 max = .08861

Equal-tailed

Mean Std. Dev. MCSE Median [95% Cred. Interval]

hours
age .0051872 .0027702 .000093 .0052248 -.0002073 .0104675

_cons 1.163384 .1219417 .005135 1.16685 .9203519 1.388663

hours0

commute -.0716184 .1496757 .005623 -.0758964 -.3733355 .2181717
_cons .1454332 .084041 .003066 .1451574 -.0222543 .3128047

lnsig .1341657 .034162 .001668 .1336526 .0634106 .2021694

This model took only 20 seconds!
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Summary

Bayesian analysis is a powerful tool that allows you to
incorporate prior information about model parameters into
your analysis.

It provides intuitive and direct interpretations of results by
using probability statements about parameters.

It provides a way to assign an actual probability to any
hypothesis of interest.
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Summary

Use bayesmh for estimation: choose one of the built-in
models or program your own.

Use postestimation features for checking MCMC convergence,
estimating functions of model parameters, and performing
hypothesis testing and model comparison.

Work interactively using the command line or use the
point-and-click interface.

Check out the “More examples” section and the [BAYES]
Bayesian analysis manual for more examples and details
about Bayesian analysis.
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Forthcoming

More computationally efficient handling of multilevel
(“random-effects”) models—option reffects() for two-level
models and option block(, reffects) for models with more
than two levels.

For example, Bayesian IRT 1PL models with more than
32,000 subjects are now feasible:

. bayesmh y i.item, noconstant reffects(id) likelihood(logit) ///
> prior({y:i.id}, normal(0, {var})) ///

> prior({y:i.item}, normal(0, 10)) ///
> prior({var}, igamma(0.01,0.01)) ///
> block({y:i.item}, reffects) ///

> block({var})
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Forthcoming

Straightforward specification of unstructured covariances
between random-effects parameters—prior distribution
mvnormal() is now row-column conformable.

For example,

. bayesmh . . . , . . . prior({y:i.id i.id#c.x}, mvnormal(2,{b0},{b1},{Sigma,matrix}))

models the unstructured covariance between random
intercepts and random coefficients for x associated with the
levels of id.

Yulia Marchenko (StataCorp) September 11, 2015 46



Bayesian analysis using Stata

References

Carlin, B. P., A. E. Gelfand, and A. F. M. Smith. 1992.
Hierarchical Bayesian analysis of changepoint problems. Journal of
the Royal Statistical Society, Series C 41: 389–405.

Diggle, P. J., P. J. Heagerty, K.-Y. Liang, and S. L. Zeger. 2002.
Analysis of Longitudinal Data. 2nd ed. Oxford: Oxford University
Press.

Gelfand, A. E., S. E. Hills, A. Racine-Poon, and A. F. M. Smith.
1990. Illustration of Bayesian inference in normal data models
using Gibbs sampling. Journal of the American Statistical

Association 85: 972–985.

Hoff, P. D. 2009. A First Course in Bayesian Statistical Methods.
New York: Springer.

Turner, R. M., R. Z. Omar, M. Yang, H. Goldstein, and S. G.
Thompson. 2000. A multilevel model framework for meta-analysis
of clinical trials with binary outcomes. Statistics in Medicine 19:
3417–3432.

Yulia Marchenko (StataCorp) September 11, 2015 47



Bayesian analysis using Stata

More examples (extra)

Normal linear regression

Data: weight measurements of 48 pigs on 9 successive weeks
(e.g., Diggle et al. (2002)).

Ignore the grouping structure of the data for now

Likelihood model:

weightij = β0 + β1weekij + ǫij

ǫij ∼ Normal(0,σ2)

where i = 1, . . . , 9 and j = 1, . . . , 48.

Noninformative prior distributions:

βi ∼ Normal(0,100), i = 0, 1

σ2 ∼ InvGamma(0.001, 0.001)
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More examples (extra)

Normal linear regression: MH sampling

. webuse pig

(Longitudinal analysis of pig weights)

. set seed 14

. bayesmh weight week, likelihood(normal({var})) ///
> prior({weight:}, normal(0,100)) ///

> prior({var}, igamma(0.001,0.001))

Burn-in ...
Simulation ...

Model summary

Likelihood:
weight ~ normal(xb_weight,{var})

Priors:

{weight:week _cons} ~ normal(0,100) (1)
{var} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_weight.
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More examples (extra)

Normal linear regression: MH sampling

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000

Number of obs = 432
Acceptance rate = .2291

Efficiency: min = .0692
avg = .08122

Log marginal likelihood = -1270.6848 max = .09538

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.214291 .0787262 .002549 6.214297 6.055505 6.364085

_cons 19.32917 .4468276 .015889 19.31526 18.47262 20.22465

var 19.50327 1.33882 .050894 19.44994 17.09487 22.30596
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More examples (extra)

Normal linear regression: Gibbs sampling

. set seed 14

. bayesmh weight week, likelihood(normal({var})) ///

> prior({weight:}, normal(0,100)) ///
> prior({var}, igamma(0.001,0.001)) ///

> block({weight:}, gibbs) ///
> block({var}, gibbs) nomodelsummary

Burn-in ...
Simulation ...

Bayesian normal regression MCMC iterations = 12,500

Gibbs sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 432
Acceptance rate = 1
Efficiency: min = 1

avg = 1
Log marginal likelihood = -1270.6434 max = 1

Equal-tailed

Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.216249 .0816994 .000817 6.216445 6.053813 6.377687

_cons 19.31436 .4619975 .004539 19.31138 18.41486 20.22794

var 19.3699 1.329478 .013295 19.31951 16.93417 22.17573
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More examples (extra)

Random-intercept model

Measurements within a pig are correlated—introduce a
random intercept

Likelihood model:

weightij = β0 + u0j + β1weekij + ǫij

ǫij ∼ Normal(0,σ2)

u0j ∼ Normal(0,σ2
0)

where i = 1, . . . , 9 and j = 1, . . . , 48.

Prior distributions:

βi ∼ Normal(0,100), i = 0, 1

σ2 ∼ InvGamma(0.001, 0.001)

σ2
0 ∼ InvGamma(0.001, 0.001)
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Bayesian analysis using Stata

More examples (extra)

Random-intercept model

Alternative model formulation

Let τ0j = β0 + u0j

Alternative likelihood model formulation:

weightij = τ0j + β1weekij + ǫij

ǫij ∼ Normal(0,σ2)

τ0j ∼ Normal(β0,σ
2
0)
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Bayesian analysis using Stata

More examples (extra)

Random-intercept model

Default MH sampling

. webuse pig
(Longitudinal analysis of pig weights)

. fvset base none id

. set seed 14

. bayesmh weight week i.id, likelihood(normal({var})) noconstant ///

> prior({weight:i.id}, normal({weight:cons},{var_0})) ///
> prior({weight:week}, normal(0,100)) ///

> prior({weight:cons}, normal(0,100)) ///
> prior({var}, igamma(0.001,0.001)) ///
> prior({var_0}, igamma(0.001,0.001)) ///

> noshow({weight:i.id})
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Bayesian analysis using Stata

More examples (extra)

Random-intercept model

Model summary

Burn-in ...
Simulation ...

Model summary

Likelihood:
weight ~ normal(xb_weight,{var})

Priors:

{weight:week} ~ normal(0,100) (1)
{weight:i.id} ~ normal({weight:cons},{var_0}) (1)

{var} ~ igamma(0.001,0.001)

Hyperpriors:
{weight:cons} ~ normal(0,100)

{var_0} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_weight.
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Bayesian analysis using Stata

More examples (extra)

Random-intercept model

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000

Number of obs = 432
Acceptance rate = .2341

Efficiency: min = .001963
avg = .005539

Log marginal likelihood = -1338.2346 max = .01159

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.257469 .0273198 .002538 6.256309 6.205179 6.309333

var 8.895206 .6146577 .138715 8.844657 7.799991 10.25156

weight

cons 13.75363 .4025422 .060251 13.75297 13.01862 14.56459

var_0 12.36591 .35361 .054957 12.36093 11.66033 13.05275

Note: There is a high autocorrelation after 500 lags.
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Bayesian analysis using Stata

More examples (extra)

Random-intercept model

Default MH sampling is very inefficient in this example

Improve MCMC efficiency by blocking of parameters

Use block()’s suboption split to block random-effects
parameters—very important with many random effects

. set seed 14

. bayesmh weight week i.id, likelihood(normal({var})) noconstant ///

> prior({weight:i.id}, normal({weight:cons},{var_0})) ///
> prior({weight:week}, normal(0,100)) ///
> prior({weight:cons}, normal(0,100)) ///

> prior({var}, igamma(0.001,0.001)) ///
> prior({var_0}, igamma(0.001,0.001)) ///

> block({var}) block({var_0}) ///
> block({weight:week}) block({weight:cons}) ///

> block({weight:i.id}, split) ///
> nomodelsummary notable
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Bayesian analysis using Stata

More examples (extra)

Random-intercept model

Blocking improved MCMC efficiency

Burn-in ...

Simulation ...

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 432
Acceptance rate = .4447

Efficiency: min = .02386
avg = .1491

Log marginal likelihood = -1052.2375 max = .1953
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Bayesian analysis using Stata

More examples (extra)

Random-intercept model

Estimates are more similar to the frequentist results (see
[ME] mixed)

. bayesstats summary {weight:week cons} {var_0} {var}

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.203559 .0382251 .002475 6.20247 6.132607 6.279994

cons 19.353 .6176088 .019352 19.3461 18.15131 20.57819

var_0 15.88671 3.595539 .094179 15.32318 10.62316 24.33477

var 4.427113 .3264523 .007969 4.404244 3.835123 5.102618

Yulia Marchenko (StataCorp) September 11, 2015 59



Bayesian analysis using Stata

More examples (extra)

Random-intercept model: option reffects()–forthcoming

Including random effects as a factor variable is not feasible
with tens of thousands of random effects.

Option split is very time consuming.

Forthcoming option reffects() is an alternative.

Replace i.id in the model formulation with option
reffects(id) and remove block(weight:i.id, split)

. set seed 14

. bayesmh weight week, likelihood(normal({var})) noconstant reffects(id) ///
> prior({weight:i.id}, normal({weight:cons},{var_0})) ///

> prior({weight:week}, normal(0,100)) ///
> prior({weight:cons}, normal(0,100)) ///
> prior({var}, igamma(0.001,0.001)) ///

> prior({var_0}, igamma(0.001,0.001)) ///
> block({var}) block({var_0}) ///

> block({weight:week}) block({weight:cons}) ///
> nomodelsummary notable
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Bayesian analysis using Stata

More examples (extra)

Random-intercept model: option reffects()–forthcoming

MCMC sampling efficiencies are slightly smaller

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 432

Acceptance rate = .3788
Efficiency: min = .01923

avg = .0944
Log marginal likelihood = -1077.2283 max = .1566
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Bayesian analysis using Stata

More examples (extra)

Random-intercept model: option reffects()–forthcoming

Estimates are similar to previous estimates

. bayesstats summary {weight:week cons} {var_0} {var}

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight

week 6.215106 .0378704 .002731 6.214882 6.139693 6.290642
cons 19.25063 .6306763 .02307 19.24458 18.00894 20.48578

var_0 16.00539 3.739944 .104932 15.44782 10.336 24.8429
var 4.432357 .3225202 .00815 4.416106 3.836758 5.100198
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Bayesian analysis using Stata

More examples (extra)

Random-intercept model: Gibbs sampling

We can use Gibbs sampling for some of the parameters to
further improve MCMC sampling
Average MCMC sampling efficiency increased from 9% to 30%

. set seed 14

. bayesmh weight week, likelihood(normal({var})) noconstant reffects(id) ///
> prior({weight:i.id}, normal({weight:cons},{var_0})) ///

> prior({weight:week}, normal(0,100)) ///
> prior({weight:cons}, normal(0,100)) ///

> prior({var}, igamma(0.001,0.001)) ///
> prior({var_0}, igamma(0.001,0.001)) ///

> block({var}, gibbs) block({var_0}, gibbs) ///
> block({weight:week}, gibbs) block({weight:cons}, gibbs) ///
> nomodelsummary notable

Burn-in ...

Simulation ...

Bayesian normal regression MCMC iterations = 12,500
Metropolis-Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000

Number of obs = 432
Acceptance rate = .8235

Efficiency: min = .02439
avg = .2851

Log marginal likelihood = -1077.0036 max = .6009
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Bayesian analysis using Stata

More examples (extra)

Random-intercept model: Gibbs sampling

. bayesstats summary {weight:week cons} {var_0} {var}

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed

Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight

week 6.216461 .0383844 .002458 6.217039 6.139121 6.291271
cons 19.24988 .6046734 .015102 19.24786 18.06586 20.46588

var_0 15.78329 3.541348 .045683 15.32768 10.28163 24.15133
var 4.423026 .3241646 .005444 4.409645 3.824604 5.100363
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Bayesian analysis using Stata

More examples (extra)

Random-coefficient model: independent covariance

Pig-specific slopes—random coefficient on week

Likelihood model:

weightij = β0 + u0j + (β1 + u1j)weekij + ǫij

ǫij ∼ Normal(0,σ2)

u0j ∼ Normal(0,σ2
0)

u1j ∼ Normal(0,σ2
1)

where i = 1, . . . , 9 and j = 1, . . . , 48.
Prior distributions:

βi ∼ Normal(0,100), i = 0, 1

σ2 ∼ InvGamma(0.001, 0.001)

σ2
0 ∼ InvGamma(0.001, 0.001)

σ2
1 ∼ InvGamma(0.001, 0.001)
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Bayesian analysis using Stata

More examples (extra)

Random-coefficient model: independent covariance

Alternative model formulation

Let τ0j = β0 + u0j and τ1j = β1 + u1j

Alternative likelihood model formulation:

weightij = τ0j + τijweekij + ǫij

ǫij ∼ Normal(0,σ2)

τ0j ∼ Normal(β0,σ
2
0)

τ1j ∼ Normal(β1,σ
2
1)
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Bayesian analysis using Stata

More examples (extra)

Random-coefficient model: independent covariance

Option reffects() supports only (two-level)
random-intercept models

Must use the factor-variable specification

But can replace time-consuming splitting with the
forthcoming suboption reffects in a block()
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Bayesian analysis using Stata

More examples (extra)

Random-coefficient model: independent covariance

. webuse pig
(Longitudinal analysis of pig weights)

. fvset base none id

. set seed 14

. bayesmh weight i.id i.id#c.week, likelihood(normal({var})) noconstant ///

> prior({weight:i.id}, normal({weight:cons},{var_0})) ///
> prior({weight:i.id#c.week}, normal({weight:week},{var_1})) ///
> prior({weight:week}, normal(0,100)) ///

> prior({weight:cons}, normal(0,100)) ///
> prior({var}, igamma(0.001,0.001)) ///

> prior({var_0}, igamma(0.001,0.001)) ///
> prior({var_1}, igamma(0.001,0.001)) ///
> block({weight:i.id}, reffects) ///

> block({weight:i.id#c.week}, reffects) ///
> block({var}, gibbs) block({var_0}, gibbs) block({var_1}, gibbs) ///

> block({weight:week}, gibbs) block({weight:cons}, gibbs) ///
> burnin(10000) noshow({weight:i.id i.id#c.week}) dots
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Bayesian analysis using Stata

More examples (extra)

Random-coefficient model: independent covariance

Model summary

Burn-in 10000 aaaaaaaaa1000aa.......2000.........3000.........4000.........5000
> .........6000.........7000.........8000.........9000.........10000 done
Simulation 10000 .........1000.........2000.........3000.........4000.........5

> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{var})

Priors:
{weight:i.id} ~ normal({weight:cons},{var_0}) (1)

{weight:i.id#c.week} ~ normal({weight:week},{var_1}) (1)
{var} ~ igamma(0.001,0.001)

Hyperpriors:

{weight:week cons} ~ normal(0,100)
{var_0 var_1} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_weight.
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Bayesian analysis using Stata

More examples (extra)

Random-coefficient model: independent covariance

. bayesstats summary {weight:week cons} {var_0} {var_1} {var}

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.206141 .0934325 .002277 6.206412 6.02124 6.388147

cons 19.33658 .4127152 .013154 19.33267 18.52088 20.14833

var_0 7.192013 1.73689 .080111 6.972026 4.541918 11.22479

var_1 .391377 .0897799 .00281 .3801791 .2507229 .5967875
var 1.616059 .1252948 .004119 1.608114 1.389298 1.881644
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Bayesian analysis using Stata

More examples (extra)

Random-coefficient model: unstructured covariance

Relax the assumption of independence between random
intercepts and random coefficients

Likelihood model:

weightij = τ0j + τijweekij + ǫij

ǫij ∼ Normal(0,σ2)
(

τ0j
τ1j

)

∼ MVN

{(

β0
β1

)

,Σ =

(

σ2
0 σ01

σ01 σ2
1

)}

where i = 1, . . . , 9 and j = 1, . . . , 48.

Prior distributions:

βi ∼ Normal(0,100), i = 0, 1

σ2 ∼ InvGamma(0.001, 0.001)

Σ ∼ InvWishart(3, I (2))
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Forthcoming specification of the mvnormal() prior for
specifying an unstructured covariance for multiple sets of
random effects

. set seed 14

. bayesmh weight i.id i.id#c.week, likelihood(normal({var})) noconstant ///

> prior({weight:i.id i.id#c.week}, ///
> mvnormal(2,{weight:cons},{weight:week},{Sigma, matrix})) ///
> prior({weight:week cons}, normal(0,100)) ///

> prior({var}, igamma(0.001,0.001)) ///
> prior({Sigma,m}, iwishart(2,3,I(2))) ///

> block({weight:i.id}, reffects) ///
> block({weight:i.id#c.week}, reffects) ///

> block({var}, gibbs) ///
> block({Sigma,m}, gibbs) ///
> burnin(10000) nomodelsummary notable dots

Burn-in ...

Simulation ...

Bayesian normal regression MCMC iterations = 20,000
Metropolis-Hastings and Gibbs sampling Burn-in = 10,000

MCMC sample size = 10,000

Number of obs = 432
Acceptance rate = .5005

Efficiency: min = .005916
avg = .01594

Log marginal likelihood = -924.64857 max = .1389



Bayesian analysis using Stata

More examples (extra)

Random-coefficient model: unstructured covariance

. bayesstats summary {weight:week cons} {Sigma} {var}

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight

week 6.212649 .0965009 .003403 6.214282 6.016377 6.390494
cons 19.33385 .4098845 .017624 19.32329 18.51801 20.15016

Sigma_1_1 6.938195 1.637985 .076558 6.735893 4.42667 10.71507
Sigma_2_1 -.0926991 .2678663 .009932 -.0843172 -.656516 .4238284

Sigma_2_2 .3997822 .0893766 .002398 .3879609 .2610762 .6069753
var 1.612773 .1277831 .004689 1.607633 1.385116 1.881754
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Bayesian analysis using Stata

More examples (extra)

Meta analysis

Meta analysis is a statistical analysis that involves
summarizing results from similar but independent studies.

Consider data from nine clinical trials that examined the effect
of taking diuretics during pregnancy on the risk of
preeclampsia (Tanner et al. 2000).

Data contain estimates of treatment effects expressed as log
odds-ratios (lnOR) and their respective variances (var).

Negative lnOR values indicate that taking diuretics lowers the
risk of preeclampsia.
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Bayesian analysis using Stata

More examples (extra)

Meta analysis

Likelihood model:

yi ∼ Normal(µi , vari )

µi ∼ Normal(θ, τ2)

where i = 1, . . . , 9.

Prior distributions:

θ ∼ Normal(0,10000)

τ2 ∼ InvGamma(0.0001, 0.0001)
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Bayesian analysis using Stata

More examples (extra)

Meta analysis

. use meta

(Meta analysis of clinical trials studying diuretics and pre-eclampsia)

. set seed 14

. fvset base none trial

. bayesmh lnOR i.trial, noconstant likelihood(normal(var)) ///
> prior({lnOR:i.trial}, normal({theta},{tau2})) ///

> prior({theta}, normal(0,10000)) ///
> prior({tau2}, igamma(0.0001,0.0001)) ///
> block({lnOR:i.trial}, split) ///

> block({theta}, gibbs) ///
> block({tau2}, gibbs)

Burn-in ...
Simulation ...

Model summary

Likelihood:

lnOR ~ normal(xb_lnOR,var)

Prior:
{lnOR:i.trial} ~ normal({theta},{tau2}) (1)

Hyperpriors:

{theta} ~ normal(0,10000)
{tau2} ~ igamma(0.0001,0.0001)

(1) Parameters are elements of the linear form xb_lnOR.
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Bayesian normal regression MCMC iterations = 12,500

Metropolis-Hastings and Gibbs sampling Burn-in = 2,500
MCMC sample size = 10,000
Number of obs = 9

Acceptance rate = .6353
Efficiency: min = .01537

avg = .0647
Log marginal likelihood = 8.2435069 max = .1798

Equal-tailed

Mean Std. Dev. MCSE Median [95% Cred. Interval]

lnOR
trial

1 -.2074594 .3233577 .014264 -.2390982 -.7840912 .4732284

2 -.7422326 .3059792 .014353 -.7277104 -1.352696 -.2290158
3 -.8101728 .3579343 .019156 -.7938089 -1.557279 -.2024199

4 -.8860118 .4367827 .027156 -.8529495 -1.824588 -.1811792
5 -1.032694 .3685822 .029732 -1.046375 -1.738105 -.3787439

6 -.3225829 .0969534 .003571 -.3241207 -.5102041 -.1320317
7 -.3476522 .2873013 .008138 -.3712284 -.8994376 .2624625
8 -.0831874 .5189861 .019312 -.1686125 -.9203838 1.128532

9 -.0531772 .268729 .016447 -.0631959 -.5078684 .5056795

theta -.499449 .2307223 .005441 -.4849543 -.9790357 -.0413009
tau2 .3385446 .4122769 .016601 .2325792 .0003896 1.332994

Note: Adaptation tolerance is not met in at least one of the blocks.



Bayesian analysis using Stata

More examples (extra)

Meta analysis

Test whether taking diuretics reduces the risk of preeclampsia

. bayestest interval {theta}, upper(0)

Interval tests MCMC sample size = 10,000

prob1 : {theta} < 0

Mean Std. Dev. MCSE

prob1 .9825 0.13113 .0017971
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Bayesian analysis using Stata

More examples (extra)

Meta analysis

Plot posterior distributions of trial-specific effects

. bayesgraph histogram {lnOR:i.trial}, ///
> byparm(legend(off) noxrescale noyrescale ///

> title(Posterior distributions of trial effects)) ///
> normal addplot(pci 0 -0.51 4 -0.51, lcolor(red))
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Bayesian analysis using Stata

More examples (extra)

Nonlinear Poisson model: Change-point analysis

British coal mining disaster dataset from 1851 to 1962
(Carlin, Gelfand, and Smith 1992)

Outcome count: number of disasters involving 10 or more
deaths

There was a fairly abrupt decrease in the rate of disasters
around 1887–1895.

Estimate the date, change point cp, when the rate of disasters
changed.
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Bayesian analysis using Stata

More examples (extra)

Nonlinear Poisson model: Change-point analysis

Likelihood model:

countsi ∼ Poisson(µ1), if yeari < cp

countsi ∼ Poisson(µ2), if yeari ≥ cp

where i = 1, . . . , 112.

Prior distributions:

µ1 ∼ 1

µ2 ∼ 1

cp ∼ Uniform(1851, 1962)
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Bayesian analysis using Stata

More examples (extra)

Nonlinear Poisson model: Change-point analysis

. webuse coal

(British coal-mining disaster data, 1851-1962)

. set seed 14

. bayesmh count = ({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp})), ///
> likelihood(poisson, noglmtransform) ///

> prior({mu1} {mu2}, flat) ///
> prior({cp}, uniform(1851,1962)) ///

> initial({mu1} 1 {mu2} 1 {cp} 1906) ///
> title(Change-point analysis)

Burn-in ...
Simulation ...

Model summary

Likelihood:

count ~ poisson({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp}))

Priors:
{mu1 mu2} ~ 1 (flat)

{cp} ~ uniform(1851,1962)
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Bayesian analysis using Stata

More examples (extra)

Nonlinear Poisson model: Change-point analysis

Estimate the ratio between the two means

After 1890, the mean number of disasters decreased by a
factor of about 3.4 with a 95% credible range of [2.47, 4.55].

Change-point analysis MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 112

Acceptance rate = .228
Efficiency: min = .03747

avg = .06763

Log marginal likelihood = -173.29271 max = .1193

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mu1 3.118753 .3001234 .015504 3.110907 2.545246 3.72073

cp 1890.362 2.4808 .071835 1890.553 1886.065 1896.365
mu2 .9550596 .1209208 .005628 .9560248 .7311639 1.219045
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Bayesian analysis using Stata

More examples (extra)

Nonlinear Poisson model: Estimating ratio of means

. bayesstats summary (ratio:{mu1}/{mu2})

Posterior summary statistics MCMC sample size = 10,000

ratio : {mu1}/{mu2}

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

ratio 3.316399 .5179103 .027848 3.270496 2.404047 4.414975
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Bayesian analysis using Stata

More examples (extra)

Bioequivalence in a crossover trial

Crossover design is a repeated-measures design in which
patients crossover from one treatment to another during the
course of the study.

Crossover designs are widely used for testing the efficacy of
new drugs.

Consider a two-treatment, two-period crossover trial
comparing two Carbamazepine tablets: A—new and
B—standard (Gelfand et al. 1990).

10 subjects were randomized to two treatment sequences: AB
and BA.

Outcome: logarithms of maxima of concentration-time curves.
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Bayesian analysis using Stata

More examples (extra)

Bioequivalence in a crossover trial

Likelihood model:

yi(jk) = µ+(−1)j−1φ

2
+(−1)k−1 π

2
+di + ǫi(jk) = µi(jk)+ ǫi(jk)

ǫi(jk) ∼ Normal(0, σ2)

di ∼ Normal(0, τ2)

where i = 1, . . . , 10, j = 1, 2 is the treatment group
(sequence), and k = 1, 2 is the period.
Prior distributions:

µ, φ, π ∼ Normal(0, 106)
σ2 ∼ InvGamma(0.001, 0.001)

τ2 ∼ InvGamma(0.001, 0.001)
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Bayesian analysis using Stata

More examples (extra)

Bioequivalence in a crossover trial

. webuse bioequiv
(Bioequivalent study of Carbamazepine tablets)

. set seed 14

. fvset base none id

. bayesmh y = ({mu}+(-1)^(treat-1)*{phi}/2+(-1)^(period-1)*{pi}/2+{y:i.id}), ///

> likelihood(normal({var})) ///
> prior({y:i.id}, normal(0,{tau2})) ///

> prior({tau2}, igamma(0.001,0.001)) ///
> prior({var}, igamma(0.001,0.001)) ///
> prior({mu} {phi} {pi}, normal(0,1e6)) ///

> block({y:i.id}, reffects) ///
> block({tau2}, gibbs) ///

> block({var}, gibbs) ///
> adaptation(every(200) maxiter(50)) burnin(10000) ///
> noshow({y:i.id})
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Bayesian analysis using Stata

More examples (extra)

Bioequivalence in a crossover trial

Model summary

Likelihood:
y ~ normal(<expr1>,{var})

Priors:

{var} ~ igamma(0.001,0.001)
{y:i.id} ~ normal(0,{tau2})

{mu phi pi} ~ normal(0,1e6)

Hyperprior:
{tau2} ~ igamma(0.001,0.001)

Expression:
expr1 : {mu}+(-1)^(treat-1)*{phi}/2+(-1)^(period-1)*{pi}/2+({y:1bn.id}*1bn.i

d+{y:2.id}*2.id+{y:3.id}*3.id+{y:4.id}*4.id+{y:5.id}*5.id+{y:6.id}*6
.id+{y:7.id}*7.id+{y:8.id}*8.id+{y:9.id}*9.id+{y:10.id}*10.id)
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Bayesian analysis using Stata

More examples (extra)

Bioequivalence in a crossover trial

Bayesian normal regression MCMC iterations = 20,000
Metropolis-Hastings and Gibbs sampling Burn-in = 10,000

MCMC sample size = 10,000

Number of obs = 20
Acceptance rate = .5959

Efficiency: min = .01359
avg = .03528

Log marginal likelihood = -8.6538165 max = .0511

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mu 1.444575 .0492361 .004224 1.444955 1.350906 1.54269
phi -.0092691 .0537334 .00255 -.0087842 -.1126505 .0939082

pi -.1768478 .0517259 .002288 -.1785769 -.2839622 -.0668874
var .0136361 .0090926 .000637 .0109485 .004295 .0377165

tau2 .02173 .0175663 .000811 .017856 .0023005 .0647257
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Bayesian analysis using Stata

More examples (extra)

Bioequivalence in a crossover trial

θ = exp(φ) is commonly used as a measure of bioequivalence.

Bioequivalence is declared whenever θ lies in the interval
(0.8, 1.2) with a high posterior probability.

. bayesstats summary (equiv:exp({phi})>0.8 & exp({phi})<1.2)

Posterior summary statistics MCMC sample size = 10,000

equiv : exp({phi})>0.8 & exp({phi})<1.2

Equal-tailed

Mean Std. Dev. MCSE Median [95% Cred. Interval]

equiv .9937 .0791261 .003951 1 1 1
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