Bayesian analysis using Stata

Yulia Marchenko

Director of Biostatistics StataCorp LP

2015 UK Stata Users Group meeting

Outline

1 Introduction

- What is Bayesian analysis?
- Why Bayesian analysis?
- Components of Bayesian analsyis
- Motivating example: Beta-binomial model
- 2 Stata's Bayesian suite
 - Commands
 - Graphical user interface (GUI)
- 3 Examples
 - Beta-binomial model (revisited)
 - Power priors
 - Model comparison
 - User-defined models: Hurdle model

4 Summary

5 Forthcoming

Outline

- 7 More examples (extra)
 - Normal linear regression
 - Random-intercept model
 - Random-coefficient model
 - Meta analysis
 - Nonlinear Poisson model: Change-point analysis
 - Bioequivalence in a crossover trial

Introduction

What is Bayesian analysis?

Bayesian analysis is a statistical paradigm that answers research questions about unknown parameters using probability statements.

What is Bayesian analysis?

- What is the probability that a person accused of a crime is guilty?
- What is the probability that treatment A is more cost effective than treatment B for a specific health care provider?
- What is the probability that the odds ratio is between 0.3 and 0.5?
- What is the probability that three out of five quiz questions will be answered correctly by students?

Bayesian analysis using Stata Introduction

You may be interested in Bayesian analysis if

- you have some prior information available from previous studies that you would like to incorporate in your analysis. For example, in a study of preterm birthweights, it would be sensible to incorporate the prior information that the probability of a mean birthweight above 15 pounds is negligible. Or,
- your research problem may require you to answer a question: What is the probability that my parameter of interest belongs to a specific range? For example, what is the probability that an odds ratio is between 0.2 and 0.5? Or,
- you want to assign a probability to your research hypothesis.
 For example, what is the probability that a person accused of a crime is guilty?
- And more.

ਤਾਗਾਗ 🗹

Bayesian analysis: assumptions

- Observed data sample D is fixed and model parameters θ are random.
- D is viewed as a result of a one-time experiment.
- A parameter is summarized by an entire distribution of values instead of one fixed value as in classical frequentist analysis.

- There is some prior (before seeing the data!) knowledge about θ formulated as a **prior distribution** $p(\theta)$.
- After data D are observed, the information about θ is updated based on the **likelihood** $f(D|\theta)$.
- Information is updated by using the Bayes rule to form a posterior distribution p(θ|D):

$$p(\theta|D) = rac{f(D|\theta)p(\theta)}{p(D)}$$

where p(D) is the marginal distribution of the data D.

Bayesian analysis using Stata Introduction Bayesian analysis: inference

- Estimating a posterior distribution $p(\theta|D)$ is at the heart of Bayesian analysis.
- Various summaries of this distribution are used for inference.
- Point estimates: posterior means, modes, medians, percentiles.
- Interval estimates: credible intervals (CrI)—(fixed) ranges to which a parameter is known to belong with a pre-specified probability.
- Monte-Carlo standard error (MCSE)—represents precision about posterior mean estimates.
- Hypothesis testing—assign probability to any hypothesis of interest
- Model comparison: model posterior probabilities, Bayes factors

stata 14

- Potential subjectivity in specifying prior information noninformative priors or sensitivity analysis to various choices of informative priors.
- Computationally demanding—involves intractable integrals that can only be computed using intensive numerical methods such as Markov chain Monte Carlo (MCMC).

Motivating example: Beta-binomial model

Research problem

- Prevalence of a rare infectious disease in a small city (Hoff 2009)
- A sample of 20 subjects is checked for infection
- Parameter θ is the proportion of infected individuals in the city
- Outcome y is the # of infected individuals in the sample

Motivating example: Beta-binomial model

Model

- Likelihood, $f(y|\theta)$: Binomial
- Prior, $p(\theta)$: Infection rate ranged between 0.05 and 0.20, with an average prevalence of 0.10, in other similar cities
- Bayesian model:

$$egin{array}{rcl} y| heta &\sim {
m Binomial}(20, heta) \ heta &\sim {
m Beta}(2,20) \end{array}$$

• Posterior:
$$\theta | y \sim \text{Beta}(2 + y, 20 + 20 - y)$$

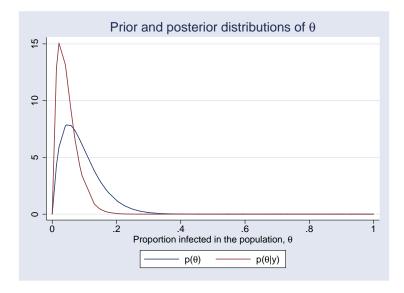
Motivating example: Beta-binomial model

Observed data

- We sample individuals and observe none who have an infection, y = 0
- Posterior: $\theta | y \sim \text{Beta}(2, 40)$
- Prior mean: $E(\theta) = 2/(2+20) = 0.09$
- Posterior mean: $E(\theta|y) = 2/(2+40) = 0.048$
- Posterior probability: $P(\theta < 0.10) = 0.93$

Introduction

Motivating example: Beta-binomial model



ਤਾਗਾਗ 🚺

- Fit beta-binomial model using bayesmh (variable y has one observation equal to 0)
- MCMC method: adaptive Metropolis-Hastings (MH)

```
. set seed 14
. bayesmh y, likelihood(binlogit(20), noglmtransform) ///
> prior({y:_cons}, beta(2,20))
```

Model summary

```
Likelihood:
  y ~ binomial({y:_cons},20)
Prior:
  {y:_cons} ~ beta(2,20)
```

Bayesian binomial regression	MCMC iterations	=	12,500
Random-walk Metropolis-Hastings sampling	Burn-in	=	2,500
	MCMC sample size	=	10,000
	Number of obs	=	1
	Acceptance rate	=	.4205
Log marginal likelihood = -1.1714402	Efficiency	=	.1401

у	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
_cons	.0466517	.0316076	.000844	.0391639	.0058112	.1260038

Introduction

Motivating example: Beta-binomial model

• Compute posterior probability

. bayestest interval {y:_cons}, upper(0.1)
Interval tests MCMC sample size = 10,000
prob1 : {y:_cons} < 0.1</pre>

	Mean	Std. Dev.	MCSE
prob1	.9299	0.25533	.006074

Command	Description
Estimation	
bayesmh	Bayesian regression using MH
bayesmh evaluators	User-written Bayesian models using MH
Postestimation	
bayesgraph	Graphical convergence diagnostics
bayesstats ess	Effective sample sizes and more
bayesstats summary	Summary statistics
bayesstats ic	Information criteria and Bayes factors
bayestest model	Model posterior probabilities
bayestest interval	Interval hypothesis testing
	डावाव 🕽

Models

- 10 built-in likelihoods: normal, logit, ologit, Poisson, ...
- 18 built-in priors: normal, gamma, Wishart, Zellner's g, ...
- Continuous, binary, ordinal, and count outcomes
- Univariate, multivariate, and multiple-equation models
- Linear, nonlinear, and canonical generalized nonlinear models
- Continuous univariate, multivariate, and discrete priors
- User-defined models

MCMC methods

- Adaptive MH
- Adaptive MH with Gibbs updates-hybrid
- Full Gibbs sampling for some models

stata 14

Built-in models

```
bayesmh ..., likelihood() prior() ...
```

User-defined models

```
bayesmh ..., {evaluator() | llevaluator() prior()} ...
```

Postestimation features are the same whether you use a built-in model or program your own!

- Perform Bayesian analysis by using the command line
- Or, use a powerful point-and-click interface
- You can access the GUI by typing
 - . db bayesmh

or from the Statistics menu

(NEXT SLIDE)

Model		
Model		
Dependent variable: Indepe	ident variables:	
у 🗸	~	
Sup	press constant terms	
ikelihood model		
Continuous	Bernoulli trials:	
> Normal regression	20 Create	
> Lognormal regression > Exponential regression	Offset variable:	
Discrete	Onset valiable.	_
> Probit regression		\sim
> Logistic regression	Do not transform linear predictor	
> Binomial regression with logit > Ordered probit regression	Do not transform linear predictor	
> Ordered logistic regression		
> Poisson regression		
Generic		
> Observation-level log likelihoo	d	
Priors of model parameters		
Priors of model parameters Prior 1	Create	
	Lauran and La	
	Create	
	Lauran and La	
	Edit	

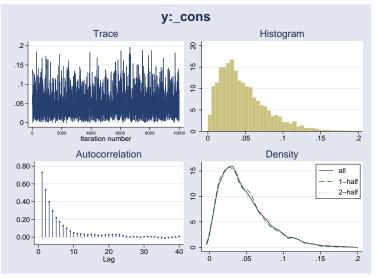
Prior 1		×
Parameters specification: {ycons} {ycons}		~
Choose a prior distribution:		
Univariate continuous > Normal distribution	Shape a:	1
> Lognormal distribution	2	Create
> Uniform distribution > Gamma distribution	Shape b:	
> Inverse gamma distribution	20	Create
> Exponential distribution		
> Beta distribution		
> Chi-squared distribution		
> Jeffreys prior for variance of normal distribution		
Multivariate continuous		
> Multivariate normal distribution		
> Multivariate normal distribution with zero mean		
> Zellner's g-prior		
> Zellner's g-prior with zero mean		
> Wishart distribution		
> Inverse Wishart distribution		
> Jeffreys prior for covariance of multivariate normal		
Discrete		
> Bernoulli distribution		
> Discrete index distribution		
> Poisson distribution		
Generic		
> Flat prior (with a density of 1)		
> Generic density		
> Generic log density		
	_	
00	OK	Cancel

- Recall the beta-binomial model from the motivating example.
- Let's store the estimation results for future comparison.
- estimates store requires first saving bayesmh's MCMC data.
- Use option saving() during estimation or on replay:

. bayesmh, saving(betabin) note: file betabin.dta saved . estimates store betabin

• Check MCMC convergence

. bayesgraph diagnostics {y:_cons}



Examples

Beta-binomial model (revisited)

• Check MCMC sampling efficiency

. bayesstats ess {y:_cons}

Efficiency summaries MCMC sample size = 10,000

у	ESS	Corr. time	Efficiency
_cons	1400.87	7.14	0.1401

• Test an interval hypothesis

. bayestest interval {y:_cons}, upper(0.1)
Interval tests MCMC sample size = 10,000
prob1 : {y:_cons} < 0.1</pre>

	Mean	Std. Dev.	MCSE
prob1	.9299	0.25533	.006074

Power priors

- Motivating example used a beta prior for $\boldsymbol{\theta}$
- Sensitivity analysis to the choice of the priors is very important in Bayesian analysis
- Consider an alternative prior—a power prior

-Power priors

- Based on similar historical data y₀
- Idea: raise the likelihood function of the historical data to the power α_0 , where $0 \le \alpha_0 \le 1$.
- α₀ quantifies the uncertainty in y₀ by controlling the heaviness of the tails of the prior distribution.
- $\alpha_0 = 0$ means no information from the historical data and $\alpha_0 = 1$ means that the historical data have as much weight as the observed data.

Power priors

- Suppose that in another similar city, a random sample of 15 subjects was selected and 1 subject had a disease.
- Let's consider a competing power prior:

 $p(\theta) \sim \{\text{BinomialPMF}(15, 1, \theta)\}^{\alpha_0}$

• Let $\alpha_0 = 0.5$.


```
Bayesian analysis using Stata

Examples

<u>Power priors</u>
```

 bayesmh does not have built-in power priors but we can use prior()'s suboption density() to specify our own prior.

```
. set seed 14
. bayesmh y, likelihood(binlogit(20), noglmtransform) ///
> prior({y:_cons}, density(sqrt(binomialp(15,1,{y:_cons})))) ///
> saving(powerbin)
```

```
Model summary
```

```
Likelihood:
  y ~ binomial({y:_cons},20)
Prior:
  {y:_cons} ~ density(sqrt(binomialp(15,1,{y:_cons})))
```


Power priors

Bayesian binomial regression	MCMC iterations	=	12,500
Random-walk Metropolis-Hastings sampling	Burn-in	=	2,500
	MCMC sample size	=	10,000
	Number of obs	=	1
	Acceptance rate	=	.4294
Log marginal likelihood = -3.4630512	Efficiency	=	.1228

 у	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
_cons	.0501507	.0392846	.001121	.0401686	.0040134	.1521774

file powerbin.dta not found; file saved

. estimates store powerbin

Model comparison

• Compute model posterior probabilities

. bayestest model powerbin betabin

Bayesian model tests

	log(ML)	P(M)	P(M y)
powerbin	-3.4631	0.5000	0.0918
betabin	-1.1714	0.5000	0.9082

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

<u>Model comparison</u>

• Compute the Bayes factor—the ratio of the marginal likelihoods of the two models calculated using the same data.

. bayesstats ic powerbin betabin Bayesian information criteria

	DIC	log(ML)	log(BF)
powerbin	2.129576	-3.463051	
betabin	1.956201	-1.17144	2.291611

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

User-defined models: Hurdle model

- In addition to the many built-in models, you can also program your own models.
- Program log likelihood and use one of the built-in priors:
 bayesmh ..., llevaluator(*llprogname*) prior() ...
- Or, program the log posterior:
 - . bayesmh ..., evaluator(*lpprogname*) ...

Bayesian analysis using Stata

Examples

User-defined models: Hurdle model

- One of the questions we received shortly after releasing bayesmh is "How do I fit Bayesian hurdle models?"
- A hurdle model (Cragg model) is used to model a bounded dependent variable. It combines a selection model that determines the boundary points of the dependent variable with an outcome model that determines its nonbounded values.
- Hurdle models are not currently among the built-in bayesmh models.
- But, we can program them using bayesmh's used-defined evaluators.
- Below I provide two types of log-likelihood evaluators: one using Stata's command churdle (new in Stata 14) to compute the log likelihood and the other programming the log likelihood from scratch.

stata 14

- We consider a subset of the fitness data from **[R] churdle**.
- We consider a simple linear hurdle model.
- We model the decision to exercise or not as a function of an individual's average commute to work.
- Once a decision to exercise is made, we model the number of hours an individual exercises per day as a function of age.

```
webuse fitness
set seed 17653
sample 10
(17,848 observations deleted)
```


• We use churdle to compute the log-likelihood values at each MCMC iteration.

•	program	mychurdle1
	1.	version 14.0
	2.	args llf
	3.	tempname b
	4.	mat `b´ = (\$MH_b, \$MH_p)
	5.	<pre>cap churdle linear \$MH_y1 \$MH_y1x1 if \$MH_touse, ///</pre>
>		<pre>select(\$MH_y2x1) ll(0) from(`b´) iterate(0)</pre>
	6.	if _rc {
	7.	if (_rc==1) { // handle break key
	8.	exit _rc
	9.	}
1	0.	scalar `llf´ = .
1	1.	}
1	2.	else {
1	3.	<pre>scalar `llf = e(ll)</pre>
1	4.	}
1	5. end	

User-defined models: Hurdle model using churdle

```
. set seed 14
```

```
. gen byte hours0 = (hours==0)
```

- . bayesmh (hours age) (hours0 commute), ///
- > llevaluator(mychurdle1, parameters({lnsig})) ///
- > prior({hours:} {hours0:} {lnsig}, flat) dots

```
Burn-in 2500 aaaaaaaaa1000aaaaaaaa2000aaaa. done
Simulation 10000 .......1000......2000.......3000......4000......5
> 000.......6000......7000......8000......9000......10000 done
Model summary
```

```
Likelihood:

hours hours0 ~ mychurdle1(xb_hours,xb_hours0,{lnsig})

Priors:

{hours:age _cons} ~ 1 (flat) (1)

{hours0:commute _cons} ~ 1 (flat) (2)

{lnsig} ~ 1 (flat)
```

- (1) Parameters are elements of the linear form xb_hours.
- (2) Parameters are elements of the linear form xb_hours0.

stata 14

Examples

User-defined models: Hurdle model using churdle

Bayesian regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	1,983
	Acceptance rate =	.2752
	Efficiency: min =	.04197
	avg =	.06659
Log marginal likelihood = -2772.4136	max =	.08861

					Equal-	
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
hours						
age	.0051872	.0027702	.000093	.0052248	0002073	.0104675
_cons	1.163384	.1219417	.005135	1.16685	.9203519	1.388663
hours0						
commute	0716184	.1496757	.005623	0758964	3733355	.2181717
_cons	.1454332	.084041	.003066	.1451574	0222543	.3128047
lnsig	.1341657	.034162	.001668	.1336526	.0634106	.2021694

• This model took 25 minutes

• The corresponding log likelihood programmed from scratch

```
. program mychurdle2
  1.
            version 14.0
  2.
             args lnf xb xg lnsig
  3.
            tempname sig
  4.
             scalar `sig' = exp(`lnsig')
  5.
            tempvar lnfj
  6.
             qui gen double `lnfj' = normal(`xg') if $MH_touse
  7.
             qui replace lnfj' = log(1 - lnfj') if MH_y1 <= 0 \& MH_touse
  8.
             qui replace `lnfj´ = log(`lnfj´) - log(normal(`xb´/`sig´)) ///
                                + log(normalden($MH_y1,`xb´,`sig`))
                                                                           111
>
>
                                  if MH v1 > 0 \& MH touse
  9.
             summarize `lnfj´ if $MH_touse, meanonly
 10.
             if r(N) < MH n {
                 scalar `lnf' = .
 11.
 12.
                 exit
 13.
             }
             scalar \ lnf = r(sum)
 14.
 15. end
```

ਤਾਗਾਗ 14

Examples

User-defined models: Hurdle model programmed from scratch

```
. set seed 14
. bayesmh (hours age) (hours0 commute), ///
> llevaluator(mychurdle2, parameters({lnsig}) ) ///
> prior({hours:} {hours0:} {lnsig}, flat) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaa2000aaaa. done
Simulation 10000 ......1000......2000......3000......4000.....5
> 000.......6000......7000......8000.....9000.....10000 done
Model summary
Likelihood:
hours hours0 - mychurdle2(xb_hours,xb_hours0,{lnsig})
```

Priors:

```
{hours:age _cons} ~ 1 (flat) (1)
{hours0:commute _cons} ~ 1 (flat) (2)
{lnsig} ~ 1 (flat)
```

(1) Parameters are elements of the linear form xb_hours.

(2) Parameters are elements of the linear form xb_hours0.

stata 14

Examples

User-defined models: Hurdle model programmed from scratch

	0
Random-walk Metropolis-Hastings sampling Burn-in = 2,50	•
MCMC sample size = 10,00	0
Number of obs = 1,98	3
Acceptance rate = .275	2
Efficiency: min = .0419	7
avg = .0665	9
Log marginal likelihood = -2772.4136 max = .0886	1

	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
hours	0054070	0007700		0050040	0000072	0101075
age _cons	.0051872 1.163384	.0027702 .1219417	.000093 .005135	.0052248 1.16685	0002073 .9203519	.0104675 1.388663
hours0						
commute _cons	0716184 .1454332	.1496757 .084041	.005623 .003066	0758964 .1451574	3733355 0222543	.2181717 .3128047
lnsig	.1341657	.034162	.001668	.1336526	.0634106	.2021694

• This model took only 20 seconds!

- Bayesian analysis is a powerful tool that allows you to incorporate prior information about model parameters into your analysis.
- It provides intuitive and direct interpretations of results by using probability statements about parameters.
- It provides a way to assign an actual probability to any hypothesis of interest.

- Use bayesmh for estimation: choose one of the built-in models or program your own.
- Use postestimation features for checking MCMC convergence, estimating functions of model parameters, and performing hypothesis testing and model comparison.
- Work interactively using the command line or use the point-and-click interface.
- Check out the "More examples" section and the **[BAYES] Bayesian analysis** manual for more examples and details about Bayesian analysis.

Forthcoming

- More computationally efficient handling of multilevel ("random-effects") models—option reffects() for two-level models and option block(, reffects) for models with more than two levels.
- For example, Bayesian IRT 1PL models with more than 32,000 subjects are now feasible:

. bayesm	<pre>mh y i.item, noconstant reffects(id) likelihood(logit)</pre>	///
>	<pre>prior({y:i.id}, normal(0, {var}))</pre>	111
>	<pre>prior({y:i.item}, normal(0, 10))</pre>	///
>	<pre>prior({var}, igamma(0.01,0.01))</pre>	///
>	<pre>block({y:i.item}, reffects)</pre>	///
>	<pre>block({var})</pre>	

- Straightforward specification of unstructured covariances between random-effects parameters—prior distribution mvnormal() is now row-column conformable.
- For example,

. bayesmh ..., ... prior({y:i.id i.id#c.x}, mvnormal(2,{b0},{b1},{Sigma,matrix}))

models the unstructured covariance between random intercepts and random coefficients for ${\bf x}$ associated with the levels of id.

Carlin, B. P., A. E. Gelfand, and A. F. M. Smith. 1992. Hierarchical Bayesian analysis of changepoint problems. *Journal of the Royal Statistical Society, Series C* 41: 389–405.

Diggle, P. J., P. J. Heagerty, K.-Y. Liang, and S. L. Zeger. 2002. *Analysis of Longitudinal Data*. 2nd ed. Oxford: Oxford University Press.

Gelfand, A. E., S. E. Hills, A. Racine-Poon, and A. F. M. Smith. 1990. Illustration of Bayesian inference in normal data models using Gibbs sampling. *Journal of the American Statistical Association* 85: 972–985.

Hoff, P. D. 2009. *A First Course in Bayesian Statistical Methods*. New York: Springer.

Turner, R. M., R. Z. Omar, M. Yang, H. Goldstein, and S. G. Thompson. 2000. A multilevel model framework for meta-analysis of clinical trials with binary outcomes. *Statistics in Medicine* 19: 3417–3432.

- Data: weight measurements of 48 pigs on 9 successive weeks (e.g., Diggle et al. (2002)).
- Ignore the grouping structure of the data for now
- Likelihood model:

where i = 1, ..., 9 and j = 1, ..., 48.

• Noninformative prior distributions:

$$\beta_i \sim \text{Normal}(0,100), i = 0, 1$$

 $\sigma^2 \sim \text{InvGamma}(0.001, 0.001)$

stata 14

Normal linear regression: MH sampling

```
. webuse pig
(Longitudinal analysis of pig weights)
. set seed 14
. bayesmh weight week, likelihood(normal({var}))
                                                         111
                       prior({weight:}, normal(0,100)) ///
>
                       prior({var}, igamma(0.001,0.001))
>
Burn-in ...
Simulation ...
Model summarv
Likelihood:
  weight ~ normal(xb_weight,{var})
Priors:
  {weight:week _cons} ~ normal(0,100)
                {var} ~ igamma(0.001,0.001)
```

(1) Parameters are elements of the linear form xb_weight.

(1)

Normal linear regression: MH sampling

Bayesian normal regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	432
	Acceptance rate =	.2291
	Efficiency: min =	.0692
	avg =	.08122
Log marginal likelihood = -1270.6848	max =	.09538

	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
weight	6 014004	0707060	000540	6 014007	0.055505	0.004005
week _cons	6.214291 19.32917	.0787262 .4468276	.002549 .015889	6.214297 19.31526	6.055505 18.47262	6.364085 20.22465
var	19.50327	1.33882	.050894	19.44994	17.09487	22.30596

More examples (extra)

Normal linear regression: Gibbs sampling

```
. set seed 14
. bayesmh weight week, likelihood(normal({var}))
                                                             111
                       prior({weight:}, normal(0,100))
                                                             111
>
>
                       prior({var}, igamma(0.001,0.001)) ///
                       block({weight:}, gibbs)
                                                             111
>
                       block({var}.
                                       gibbs) nomodelsummarv
>
Burn-in ...
Simulation ....
Bayesian normal regression
                                                 MCMC iterations =
                                                                        12,500
Gibbs sampling
                                                 Burn-in
                                                                         2,500
                                                                  =
                                                 MCMC sample size =
                                                                        10,000
                                                 Number of obs
                                                                           432
                                                                  =
                                                 Acceptance rate =
                                                                             1
                                                 Efficiency:
                                                              min =
                                                                             1
                                                                             1
                                                              avg =
Log marginal likelihood = -1270.6434
                                                                             1
                                                              max =
```

		Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
weight	week _cons	6.216249 19.31436	.0816994 .4619975	.000817 .004539	6.216445 19.31138	6.053813 18.41486	6.377687 20.22794
	var	19.3699	1.329478	.013295	19.31951	16.93417	22.1757 3 Tata 🚺
Yulia Marchenko (StataCorp)			September 1	1, 2015		51	

Bayesian analysis using Stata More examples (extra) Random-intercept model

- Measurements within a pig are correlated—introduce a random intercept
- Likelihood model:

where
$$i = 1, ..., 9$$
 and $j = 1, ..., 48$.

Prior distributions:

$$eta_i \sim ext{Normal}(0,100), i = 0, 1$$

 $\sigma^2 \sim ext{InvGamma}(0.001, 0.001)$
 $\sigma_0^2 \sim ext{InvGamma}(0.001, 0.001)$

More examples (extra)

Random-intercept model

Alternative model formulation

• Let
$$\tau_{0j} = \beta_0 + u_{0j}$$

• Alternative likelihood model formulation:

Default MH sampling

```
. webuse pig
(Longitudinal analysis of pig weights)
. fyset base none id
. set seed 14
. bayesmh weight week i.id, likelihood(normal({var})) noconstant ///
    prior({weight:i.id}, normal({weight:cons},{var_0}))
                                                                  111
>
                                                                  111
    prior({weight:week},
                          normal(0,100))
>
    prior({weight:cons},
                          normal(0,100))
                                                                  111
>
    prior({var},
                          igamma(0.001,0.001))
                                                                  111
>
    prior({var 0}.
                          igamma(0.001,0.001))
                                                                  111
>
    noshow({weight:i.id})
>
```


Model summary

```
Burn-in ...
Simulation ...
Model summary
```

```
Likelihood:

weight ~ normal(xb_weight,{var})

Priors:

{weight:week} ~ normal(0,100) (1)

{weight:i.id} ~ normal({weight:cons},{var_0}) (1)

{var} ~ igamma(0.001,0.001)

Hyperpriors:

{weight:cons} ~ normal(0,100)

{var_0} ~ igamma(0.001,0.001)
```

(1) Parameters are elements of the linear form xb_weight.

More examples (extra)

Random-intercept model

Bayesian normal regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings samp	ling Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	432
	Acceptance rate =	.2341
	Efficiency: min =	.001963
	avg =	.005539
Log marginal likelihood = -1338.2346	max =	.01159

		Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
weight	week	6.257469	.0273198	.002538	6.256309	6.205179	6.309333
	var	8.895206	.6146577	.138715	8.844657	7.799991	10.25156
weight	cons	13.75363	.4025422	.060251	13.75297	13.01862	14.56459
	var_0	12.36591	.35361	.054957	12.36093	11.66033	13.05275

Note: There is a high autocorrelation after 500 lags.

- Default MH sampling is very inefficient in this example
- Improve MCMC efficiency by blocking of parameters
- Use block()'s suboption split to block random-effects parameters—very important with many random effects

```
set seed 14
 bayesmh weight week i.id, likelihood(normal({var})) noconstant ///
    prior({weight:i.id}, normal({weight:cons}, {var_0}))
                                                                  111
>
    prior({weight:week}, normal(0,100))
                                                                  111
>
>
    prior({weight:cons}, normal(0.100))
                                                                  111
    prior({var},
                        igamma(0.001,0.001))
                                                                  111
>
    prior({var_0},
                        igamma(0.001,0.001))
>
                                                                  111
    block({var}) block({var 0})
                                                                  111
>
    block({weight:week}) block({weight:cons})
                                                                  111
>
    block({weight:i.id}, split)
                                                                  111
>
    nomodelsummarv notable
>
```

stata 14

Random-intercept model

Blocking improved MCMC efficiency

Burn-in ... Simulation Bayesian normal regression MCMC iterations = 12,500 Random-walk Metropolis-Hastings sampling Burn-in 2,500 = MCMC sample size = 10,000 Number of obs 432 = Acceptance rate = .4447 Efficiency: min = .02386 .1491 avg = Log marginal likelihood = -1052.2375 max = .1953

• Estimates are more similar to the frequentist results (see [ME] mixed)

. bayesstats summary {weight:week cons} {var_0} {var}

Posterior summary statistics

MCMC sample size = 10,000

	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
weight week cons	6.203559 19.353	.0382251 .6176088	.002475 .019352	6.20247 19.3461	6.132607 18.15131	6.279994 20.57819
var_0 var	15.88671 4.427113	3.595539 .3264523	.094179 .007969	15.32318 4.404244	10.62316 3.835123	24.33477 5.102618

Random-intercept model: option reffects()-forthcoming

- Including random effects as a factor variable is not feasible with tens of thousands of random effects.
- Option split is very time consuming.
- Forthcoming option reffects() is an alternative.
- Replace i.id in the model formulation with option reffects(id) and remove block(weight:i.id, split)

```
set seed 14
 bayesmh weight week, likelihood(normal({var})) noconstant reffects(id) ///
    prior({weight:i.id}, normal({weight:cons}, {var_0}))
                                                                111
>
    prior({weight:week}, normal(0,100))
                                                                111
>
    prior({weight:cons}, normal(0,100))
                                                                111
>
    prior({var}, igamma(0.001,0.001))
                                                                111
>
    prior({var_0},
                     igamma(0.001,0.001))
                                                                111
>
>
    block({var}) block({var 0})
                                                                111
>
    block({weight:week}) block({weight:cons})
                                                                111
    nomodelsummary notable
>
```

stata 14

Random-intercept model: option reffects()-forthcoming

• MCMC sampling efficiencies are slightly smaller

Bayesian normal regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	432
	Acceptance rate =	.3788
	Efficiency: min =	.01923
	avg =	.0944
Log marginal likelihood = -1077.2283	max =	.1566

Random-intercept model: option reffects()-forthcoming

• Estimates are similar to previous estimates

. bayesstats summary {weight:week cons} {var_0} {var}
Posterior summary statistics MCMC sample size = 10,000

		Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
weight	week	6.215106	.0378704	.002731	6.214882	6.139693	6.290642
	cons	19.25063	.6306763	.02307	19.24458	18.00894	20.48578
v	var_0	16.00539	3.739944	.104932	15.44782	10.336	24.8429
	var	4.432357	.3225202	.00815	4.416106	3.836758	5.100198

More examples (extra)

Random-intercept model: Gibbs sampling

- We can use Gibbs sampling for some of the parameters to further improve MCMC sampling
- Average MCMC sampling efficiency increased from 9% to 30%

```
. set seed 14
 bayesmh weight week, likelihood(normal({var})) noconstant reffects(id) ///
    prior({weight:i.id}, normal({weight:cons}, {var_0}))
                                                                  111
>
    prior({weight:week}, normal(0.100))
                                                                  111
>
    prior({weight:cons}, normal(0,100))
                                                                  111
>
    prior({var}, igamma(0.001,0.001))
                                                                  111
>
>
    prior({var_0}, igamma(0.001,0.001))
                                                                  111
    block({var}, gibbs) block({var 0}, gibbs)
                                                                  111
>
    block({weight:week}, gibbs) block({weight:cons}, gibbs)
                                                                  111
>
    nomodelsummarv notable
>
Burn-in ...
Simulation ....
Bayesian normal regression
                                                 MCMC iterations =
                                                                         12,500
Metropolis-Hastings and Gibbs sampling
                                                 Burn-in
                                                                          2,500
                                                 MCMC sample size =
                                                                         10,000
                                                 Number of obs
                                                                            432
                                                 Acceptance rate =
                                                                          .8235
                                                 Efficiency:
                                                              min =
                                                                         .02439
                                                                          .2851
                                                              avg =
```

Log marginal likelihood = -1077.0036

ਤਾਗਾਗ 🚺

max =

Random-intercept model: Gibbs sampling

. bayesstats summary {weight:week cons} {var_0} {var}

Posterior summary statistics

MCMC sample size = 10,000

		Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	tailed Interval]
weight	week	6.216461	.0383844	.002458	6.217039	6.139121	6.291271
	cons	19.24988	.6046734	.015102	19.24786	18.06586	20.46588
	var_0	15.78329	3.541348	.045683	15.32768	10.28163	24.15133
	var	4.423026	.3241646	.005444	4.409645	3.824604	5.100363

More examples (extra)

Random-coefficient model: independent covariance

- Pig-specific slopes—random coefficient on week
- Likelihood model:

$$\begin{split} \text{weight}_{ij} &= \beta_0 + u_{0j} + (\beta_1 + u_{1j}) \text{week}_{ij} + \epsilon_{ij} \\ \epsilon_{ij} &\sim \text{Normal}(0, \sigma^2) \\ u_{0j} &\sim \text{Normal}(0, \sigma^2_0) \\ u_{1j} &\sim \text{Normal}(0, \sigma^2_1) \end{split}$$

where
$$i = 1, ..., 9$$
 and $j = 1, ..., 48$.
• Prior distributions:

$$eta_i \sim ext{Normal}(0,100), i = 0, 1$$

 $\sigma^2 \sim ext{InvGamma}(0.001, 0.001)$
 $\sigma_0^2 \sim ext{InvGamma}(0.001, 0.001)$
 $\sigma_1^2 \sim ext{InvGamma}(0.001, 0.001)$

More examples (extra)

Random-coefficient model: independent covariance

Alternative model formulation

• Let
$$\tau_{0j} = \beta_0 + u_{0j}$$
 and $\tau_{1j} = \beta_1 + u_{1j}$

• Alternative likelihood model formulation:

$$\begin{split} \text{weight}_{ij} &= \tau_{0j} + \tau_{ij} \text{week}_{ij} + \epsilon_{ij} \\ \epsilon_{ij} &\sim \text{Normal}(0, \sigma^2) \\ \tau_{0j} &\sim \text{Normal}(\beta_0, \sigma_0^2) \\ \tau_{1j} &\sim \text{Normal}(\beta_1, \sigma_1^2) \end{split}$$

Random-coefficient model: independent covariance

- Option reffects() supports only (two-level) random-intercept models
- Must use the factor-variable specification
- But can replace time-consuming splitting with the forthcoming suboption reffects in a block()

Random-coefficient model: independent covariance

```
. webuse pig
(Longitudinal analysis of pig weights)
. fyset base none id
. set seed 14
. bavesmh weight i.id i.id#c.week. likelihood(normal({var})) noconstant ///
    prior({weight:i.id},
                                 normal({weight:cons}, {var_0}))
>
                                                                          111
>
    prior({weight:i.id#c.week}, normal({weight:week}, {var_1}))
                                                                          111
>
    prior({weight:week},
                                 normal(0,100))
                                                                          111
    prior({weight:cons},
                                 normal(0,100))
                                                                          111
>
    prior({var}.
                                 igamma(0.001.0.001))
                                                                          111
>
    prior({var_0},
                                 igamma(0.001,0.001))
>
                                                                          111
    prior({var_1},
                                 igamma(0.001,0.001))
>
                                                                          111
>
    block({weight:i.id}.
                                reffects)
                                                                          111
    block({weight:i.id#c.week}, reffects)
                                                                          111
>
>
    block({var}, gibbs) block({var_0}, gibbs) block({var_1}, gibbs)
                                                                          111
    block({weight:week}, gibbs) block({weight:cons}, gibbs)
                                                                          111
>
```

> burnin(10000) noshow({weight:i.id i.id#c.week}) dots

Random-coefficient model: independent covariance

Model summary

 Burn-in 10000 aaaaaaaaa1000aa.....2000......3000.....4000......5000

 >6000......7000......8000......9000.....10000 done

 Simulation 100001000......2000......3000......4000.......5

 > 000.......6000......7000.......8000......9000......10000 done

 Model summary

```
Likelihood:

weight ~ normal(xb_weight,{var})

Priors:

{weight:i.id} ~ normal({weight:cons},{var_0}) (1)

{weight:i.id#c.week} ~ normal({weight:week},{var_1}) (1)

{var} ~ igamma(0.001,0.001)

Hyperpriors:

{weight:week cons} ~ normal(0,100)

{var_0 var_1} ~ igamma(0.001,0.001)
```

(1) Parameters are elements of the linear form xb_weight.

Random-coefficient model: independent covariance

. bayesstats summary {weight:week cons} {var_0} {var_1} {var} Posterior summary statistics MCMC sample size = 10,000

	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
weight week cons	6.206141 19.33658	.0934325 .4127152	.002277 .013154	6.206412 19.33267	6.02124 18.52088	6.388147 20.14833
var_0 var_1 var	7.192013 .391377 1.616059	1.73689 .0897799 .1252948	.080111 .00281 .004119	6.972026 .3801791 1.608114	4.541918 .2507229 1.389298	11.22479 .5967875 1.881644

Bayesian analysis using Stata More examples (extra)

Random-coefficient model: unstructured covariance

- Relax the assumption of independence between random intercepts and random coefficients
- Likelihood model:

$$\begin{array}{lll} \text{weight}_{ij} &=& \tau_{0j} + \tau_{ij} \texttt{week}_{ij} + \epsilon_{ij} \\ \epsilon_{ij} &\sim& \text{Normal}(0, \sigma^2) \\ \begin{pmatrix} \tau_{0j} \\ \tau_{1j} \end{pmatrix} &\sim& \text{MVN} \left\{ \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}, \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{01} & \sigma_1^2 \end{pmatrix} \right\} \end{array}$$

where $i = 1, \ldots, 9$ and $j = 1, \ldots, 48$. Prior distributions:

• Prior distributions:

$$\begin{array}{rcl} \beta_i & \sim & \operatorname{Normal}(0,100), \ i = 0,1 \\ \sigma^2 & \sim & \operatorname{InvGamma}(0.001,0.001) \\ \Sigma & \sim & \operatorname{InvWishart}(3,l(2)) \end{array}$$

stata 14

 Forthcoming specification of the mvnormal() prior for specifying an unstructured covariance for multiple sets of random effects

```
. set seed 14
. bayesmh weight i.id i.id#c.week, likelihood(normal({var})) noconstant ///
   prior({weight:i.id i.id#c.week}.
                                                                       111
>
     mvnormal(2,{weight:cons},{weight:week},{Sigma, matrix}))
                                                                      111
>
    prior({weight:week cons}, normal(0,100))
                                                                       111
>
   prior({var},
                             igamma(0.001,0.001))
                                                                       111
>
>
   prior({Sigma,m},
                      iwishart(2,3,I(2))
                                                                       111
   block({weight:i.id}, reffects)
                                                                       111
>
   block({weight:i.id#c.week}, reffects)
                                                                       111
>
> block({var},
                               gibbs)
                                                                       111
> block({Sigma.m}.
                               gibbs)
                                                                       111
    burnin(10000) nomodelsummarv notable dots
>
Burn-in ...
Simulation ....
```

Simulation ...

Bayesian normal regression Metropolis-Hastings and Gibbs sampling

MCMC iterations	s =	20,000
Burn-in	=	10,000
MCMC sample siz	ze =	10,000
Number of obs	=	432
Acceptance rate	е =	.5005
Efficiency: m:	in =	.005916
a	vg =	.01594
ma	ax =	.1389

Log marginal likelihood = -924.64857

Random-coefficient model: unstructured covariance

. bayesstats summary {weight:week cons} {Sigma} {var}

Posterior summary statistics

MCMC sample size = 10,000

	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
weight week cons	6.212649 19.33385	.0965009 .4098845	.003403 .017624	6.214282 19.32329	6.016377 18.51801	6.390494 20.15016
Sigma_1_1 Sigma_2_1 Sigma_2_2 var	6.938195 0926991 .3997822 1.612773	1.637985 .2678663 .0893766 .1277831	.076558 .009932 .002398 .004689	6.735893 0843172 .3879609 1.607633	4.42667 656516 .2610762 1.385116	10.71507 .4238284 .6069753 1.881754

- Meta analysis is a statistical analysis that involves summarizing results from similar but independent studies.
- Consider data from nine clinical trials that examined the effect of taking diuretics during pregnancy on the risk of preeclampsia (Tanner et al. 2000).
- Data contain estimates of treatment effects expressed as log odds-ratios (lnOR) and their respective variances (var).
- Negative lnOR values indicate that taking diuretics lowers the risk of preeclampsia.

• Likelihood model:

$$y_i \sim \text{Normal}(\mu_i, \mathbf{var}_i)$$

 $\mu_i \sim \text{Normal}(\theta, \tau^2)$

where i = 1, ..., 9.

• Prior distributions:

$$\theta \sim \text{Normal}(0,10000)$$

 $\tau^2 \sim \text{InvGamma}(0.0001, 0.0001)$


```
Bayesian analysis using Stata

More examples (extra)

Meta analysis
```

```
. use meta
(Meta analysis of clinical trials studying diuretics and pre-eclampsia)
. set seed 14
. fyset base none trial
. bayesmh lnOR i.trial. noconstant likelihood(normal(var))
                                                              111
                                                              111
>
          prior({lnOR:i.trial}, normal({theta}, {tau2}))
                                                              111
          prior({theta}.
                              normal(0,10000))
>
                                                              111
>
          prior({tau2},
                               igamma(0.0001,0.0001))
          block({lnOR:i.trial}, split)
                                                              111
>
>
          block({theta}.
                                gibbs)
                                                              111
>
          block({tau2},
                                gibbs)
Burn-in ...
Simulation ...
Model summarv
Likelihood:
  lnOR ~ normal(xb lnOR.var)
Prior:
  {lnOR:i.trial} ~ normal({theta},{tau2})
```

Hyperpriors:

```
{theta} ~ normal(0,10000)
{tau2} ~ igamma(0.0001,0.0001)
```

(1) Parameters are elements of the linear form xb_lnOR.

(1)

MCMC iteratio	ns	=	12,500
Burn-in		=	2,500
MCMC sample s	size	=	10,000
Number of obs	5	=	9
Acceptance ra	te	=	.6353
Efficiency:	min	=	.01537
	avg	=	.0647
	max	=	.1798

Log marginal likelihood = 8.2435069

Metropolis-Hastings and Gibbs sampling

Bayesian normal regression

		Mean	Std. Dev.	MCSE	Median	-	tailed Interval]
lnOR							
	trial						
	1	2074594	.3233577	.014264	2390982	7840912	.4732284
	2	7422326	.3059792	.014353	7277104	-1.352696	2290158
	3	8101728	.3579343	.019156	7938089	-1.557279	2024199
	4	8860118	.4367827	.027156	8529495	-1.824588	1811792
	5	-1.032694	.3685822	.029732	-1.046375	-1.738105	3787439
	6	3225829	.0969534	.003571	3241207	5102041	1320317
	7	3476522	.2873013	.008138	3712284	8994376	.2624625
	8	0831874	.5189861	.019312	1686125	9203838	1.128532
	9	0531772	.268729	.016447	0631959	5078684	.5056795
	theta	499449	.2307223	.005441	4849543	9790357	0413009
	tau2	.3385446	.4122769	.016601	.2325792	.0003896	1.332994

Note: Adaptation tolerance is not met in at least one of the blocks.

• Test whether taking diuretics reduces the risk of preeclampsia

. bayestest interval {theta}, upper(0)
Interval tests MCMC sample size = 10,000
prob1 : {theta} < 0</pre>

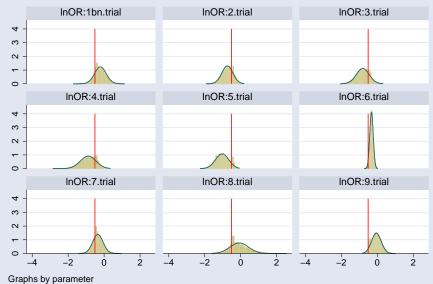
	Mean	Std. Dev.	MCSE
prob1	.9825	0.13113	.0017971

└─More examples (extra) └─Meta analysis

• Plot posterior distributions of trial-specific effects

. bayesgraph histogram {lnOR:i.trial}, ///
> byparm(legend(off) noxrescale noyrescale ////
> title(Posterior distributions of trial effects)) ///
normal addplot(pci 0 -0.51 4 -0.51, lcolor(red))

Posterior distributions of trial effects



Nonlinear Poisson model: Change-point analysis

- British coal mining disaster dataset from 1851 to 1962 (Carlin, Gelfand, and Smith 1992)
- Outcome count: number of disasters involving 10 or more deaths
- There was a fairly abrupt decrease in the rate of disasters around 1887–1895.
- Estimate the date, change point *cp*, when the rate of disasters changed.

• Likelihood model:

 $\operatorname{counts}_i \sim \operatorname{Poisson}(\mu_1), \text{ if } \operatorname{year}_i < cp$ $\operatorname{counts}_i \sim \operatorname{Poisson}(\mu_2), \text{ if } \operatorname{year}_i \geq cp$

where i = 1, ..., 112.

• Prior distributions:

$$\mu_1 \sim 1$$

 $\mu_2 \sim 1$
 $cp \sim$ Uniform(1851, 1962)

ਤਾਗਾਗ 🚺

Bayesian analysis using Stata

More examples (extra)

Nonlinear Poisson model: Change-point analysis

```
. webuse coal
(British coal-mining disaster data, 1851-1962)
. set seed 14
. bayesmh count = ({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp})), ///
      likelihood(poisson, noglmtransform)
                                            111
>
      prior({mu1} {mu2}, flat)
                                              111
>
                        uniform(1851,1962)) ///
>
     prior({cp},
      initial({mu1} 1 {mu2} 1 {cp} 1906)
>
                                             111
     title(Change-point analysis)
>
Burn-in ...
Simulation ...
Model summarv
Likelihood:
  count ~ poisson({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp}))
Priors:
  {mu1 mu2} ~ 1 (flat)
       {cp} ~ uniform(1851,1962)
```

ਤਾਗਾਗ 14

- Estimate the ratio between the two means
- After 1890, the mean number of disasters decreased by a factor of about 3.4 with a 95% credible range of [2.47, 4.55].

Change-point analysis	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	112
	Acceptance rate =	.228
	Efficiency: min =	.03747
	avg =	.06763
Log marginal likelihood = -173.29271	max =	.1193

	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
mu1	3.118753	.3001234	.015504	3.110907	2.545246	3.72073
cp	1890.362	2.4808	.071835	1890.553	1886.065	1896.365
mu2	.9550596	.1209208	.005628	.9560248	.7311639	1.219045

Nonlinear Poisson model: Estimating ratio of means

. bayesstats summary (ratio:{mu1}/{mu2})
Posterior summary statistics MCMC sample size = 10,000
ratio : {mu1}/{mu2}

	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
ratio	3.316399	.5179103	.027848	3.270496	2.404047	4.414975

- Crossover design is a repeated-measures design in which patients crossover from one treatment to another during the course of the study.
- Crossover designs are widely used for testing the efficacy of new drugs.
- Consider a two-treatment, two-period crossover trial comparing two Carbamazepine tablets: A—new and B—standard (Gelfand et al. 1990).
- 10 subjects were randomized to two treatment sequences: AB and BA.
- Outcome: logarithms of maxima of concentration-time curves.

Bayesian analysis using Stata

More examples (extra)

Bioequivalence in a crossover trial

• Likelihood model:

$$y_{i(jk)} = \mu + (-1)^{j-1} \frac{\phi}{2} + (-1)^{k-1} \frac{\pi}{2} + d_i + \epsilon_{i(jk)} = \mu_{i(jk)} + \epsilon_{i(jk)}$$
$$\epsilon_{i(jk)} \sim \text{Normal}(0, \sigma^2)$$
$$d_i \sim \text{Normal}(0, \tau^2)$$

where i = 1, ..., 10, j = 1, 2 is the treatment group (sequence), and k = 1, 2 is the period.

• Prior distributions:

$$egin{aligned} \mu,\,\phi,\,\pi &\sim & ext{Normal(0,10^6)} \ \sigma^2 &\sim & ext{InvGamma(0.001,0.001)} \ au^2 &\sim & ext{InvGamma(0.001,0.001)} \end{aligned}$$

stata 14

Bayesian analysis using Stata

More examples (extra)

Bioequivalence in a crossover trial

```
. webuse bioequiv
(Bioequivalent study of Carbamazepine tablets)
. set seed 14
. fyset base none id
. bayesmh y = ({mu}+(-1)^(treat-1)*{phi}/2+(-1)^(period-1)*{pi}/2+{y:i.id}), ///
   likelihood(normal({var}))
                                                    111
>
   prior({y:i.id},
                    normal(0,{tau2}))
                                                    111
>
   prior({tau2},
                       igamma(0.001,0.001))
>
                                                    111
                         igamma(0.001,0.001))
>
   prior({var}.
                                                   111
>
   prior({mu} {phi} {pi}, normal(0,1e6))
                                                    111
   block({y:i.id}, reffects)
                                                    111
>
   block({tau2}.
                   gibbs)
                                                    111
>
   block({var},
                   gibbs)
                                                    111
>
   adaptation(every(200) maxiter(50)) burnin(10000) ///
>
```

```
> noshow({y:i.id})
```


Bioequivalence in a crossover trial

Model summary

```
Likelihood:

y ~ normal(<expr1>,{var})

Priors:

{var} ~ igamma(0.001,0.001)

{y:i.id} ~ normal(0,{tau2})

{mu phi pi} ~ normal(0,1e6)

Hyperprior:

{tau2} ~ igamma(0.001,0.001)

Expression:

expr1 : {mu}+(-1)^(treat-1)*{phi}/2+(-1)^(period-1)*{pi}/2+({y:1bn.id}*1bn.i

d+{y:2.id}*2.id+{y:3.id}*3.id+{y:4.id}*4.id+{y:5.id}*5.id+{y:6.id}*6

.id+{y:7.id}*7.id4{y:8.id}*8.id+{y:9.id}*9.id+{y:10.id}*10.id
```


Bioequivalence in a crossover trial

Bayesian normal regression Metropolis-Hastings and Gibbs sampling	MCMC iterations = Burn-in =	20,000
	MCMC sample size =	10,000
	Number of obs =	20
	Acceptance rate =	.5959
	Efficiency: min =	.01359
	avg =	.03528
Log marginal likelihood = -8.6538165	max =	.0511

					Equal-	tailed
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
mu	1.444575	.0492361	.004224	1.444955	1.350906	1.54269
phi	0092691	.0537334	.00255	0087842	1126505	.0939082
pi	1768478	.0517259	.002288	1785769	2839622	0668874
var	.0136361	.0090926	.000637	.0109485	.004295	.0377165
tau2	.02173	.0175663	.000811	.017856	.0023005	.0647257

ਤਾਗਾਰ 🚺

- $\theta = \exp(\phi)$ is commonly used as a measure of bioequivalence.
- Bioequivalence is declared whenever θ lies in the interval (0.8, 1.2) with a high posterior probability.

```
. bayesstats summary (equiv:exp({phi})>0.8 & exp({phi})<1.2)
Posterior summary statistics MCMC sample size = 10,000
equiv : exp({phi})>0.8 & exp({phi})<1.2</pre>
```

	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
equiv	.9937	.0791261	.003951	1	1	1