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What is Somers’ D?

I We assume that pairs of (X,Y)–pairs (Xi,Yi) and (Xj,Yj) are
sampled from a population of (X,Y)–pairs, under a specified
sampling scheme.

I Kendall’s τa is defined (symmetrically) as the expectation

τXY = E[sign(Xi − Xj)sign(Yi − Yj)],

or as the difference between the probabilities of concordance
and discordance between the two (X,Y)–pairs.

I Somers’ D is defined (asymmetrically) as the ratio

D(Y|X) = τXY/τXX,

or as the difference between the two corresponding conditional
probabilities, given that one X–value is known to be larger than
the other X–value.

I These definitions can be extended to cases where the X–values
and/or the Y–values may be left–censored and/or right–censored.
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Somers’ D and the somersd package

I The package somersd[4] can be downloaded from SSC, and
estimates Somers’ D or Kendall’s τa.

I These rank parameters can be interval–estimated under a wide
range of sampling schemes, with or without censorship.

I The cluster() option allows for sampling clusters from a
population of clusters.

I Sampling–probability weights are enabled by pweights,
allowing us to estimate target–population parameters from a
sampled population by direct standardization.

I The wstrata() and bstrata() options allow for restriction
to comparisons within or between strata.

I And the parameter estimates are saved as Stata estimation
results, using delta–jackknife variances and a choice of
Normalizing and/or variance–stabilizing transformations.
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A useful feature of Somers’ D

I Somers’ D has the useful feature that a larger Somers’ D cannot
be secondary to a smaller Somers’ D in the same direction.

I That is to say, if a positive Somers’ D between X and Y is
secondary to a positive Somers’ D between X and W, then, from
the argument of Newson (1987)[5], we must have the inequality

D(Y|X) ≤ D(W|X).

I So, if a confidence interval for D(Y|X)− D(W|X) contains only
positive values, then a positive association of X with Y cannot be
caused by a positive association of X with W.

I Such a confidence interval can be produced using lincom or
nlcom after somersd.

I This is especially useful if Y is an outcome, X is an exposure,
and W is a positive predictor of X.
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Example: Propensity scores

I In particular, W may be a propensity score[1], predicting X
from a list of multiple confounders V1, . . . ,VK .

I In the 21st–century Rubin method[6], the propensity score is a
predictor from a regression model in the exposure, which we find
in the joint distribution of the exposure and the confounders.

I We then add in the outcome data, and use the propensity score to
estimate a propensity–adjusted exposure effect on the outcome.

I This adjusted exposure effect is typically interpreted as an
exposure effect in a fantasy target population, with real–world
marginal exposure and propensity distributions, but no
exposure–propensity association.

I This is usually done using propensity weighting, propensity
matching, or propensity stratification, in regression models of Y
with respect to X. However. . .
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Propensity scores and Somers’ D

I . . . a possible alternative candidate for the adjusted exposure
effect is a propensity–weighted Somers’ D(Y|X).

I This uses sampling–probability weights, generated from the
exposure X and the propensity score W, so that subjects with
high exposure and low propensity, or low exposure and high
propensity, are weighted upwards to remove the association
between W and X.

I Before we add in the outcome data, we might want to be sure
that our propensity weights are indeed removing this association.

I If the propensity–weighted D(W|X) is close to zero, then we
might be confident that a larger propensity–weighted D(Y|X)
cannot be secondary to it.

I And, if the propensity–weighted D(W|X) is not close to zero,
then we have diagnosed a problem with non–overlap, because
there are not enough high–exposure low–propensity and
low–exposure high–propensity subjects for us to weight
upwards.
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Problem: Not everybody understands Somers’ D

I Somers’ D is expressed on a sensible scale from -1 to 1, as it is a
difference between probabilities.

I However, an audience accustomed to other association measures,
arising from specific models, may be culture–shocked when
presented with arguments using Somers’ D.

I Fortunately, under a range of familiar models, there is a
one–to–one mapping between Somers’ D and the association
measure defined by the model.

I And, even better, these mappings are nearly linear (or at least
log–linear), at least for Somers’ D values between -0.5 and 0.5.

I This makes Somers’ D a common currency for comparing
associations measured using different models.

I We will now examine the currency conversions involved under
four familiar example models.
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Example 1: Binary X, binary Y

I In our first (trivial) example, we assume that the variables X and
Y are both binary, with possible values 0 and 1.

I Somers’ D(Y|X) is then simply the difference between
proportions

D(Y|X) = Pr(Y = 1|X = 1)− Pr(Y = 1|X = 0).

I So, the “scientific” rank parameter, measuring the strength of
associations, is also the “practically–useful” regression
parameter, measuring how much good we can do by intervening
to change X.
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Somers’ D plotted against the difference between proportions

I We plot Somers’ D on the
vertical axis against the
difference between
proportions on the
horizontal axis.

I Note that the axes are
labelled at multiples of
1/12, including ±1/2,
±1/3 and ±1/4.

I The reason for this will
become clear in
subsequent examples.
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Example 2: Binary X, Normal Y , equal variances

I In this example, we assume that the variable X is binary, and that
Y has Normal distributions conditionally on each X–value, with
respective means µ0 and µ1, and a common standard deviation
(SD) σ.

I Somers’ D(Y|X) is then given by

D(Y|X) = 2Φ

(
δ√
2

)
− 1,

where Φ(·) is the standard Normal distribution function, and
δ = (µ1 − µ0)/σ is the mean difference, expressed in units of
the common SD.

I This relationship is not linear, but sigmoid.
I However, it implies that δ is approximately ±0.954 SDs when

Somers’ D is ±0.5, and approximately linear in between.
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Somers’ D plotted against the difference between means (in SDs)

I This time, the curve is
sigmoid, as Somers’ D is
bounded between -1 and
1.

I However, there is a range
of near–linearity between
Somers’ D values of -0.5
and 0.5.

I At these values, the mean
differences are -0.954 and
+0.954 SDs, respectively.
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Alternative parameterization: The interquartile odds ratio
I Alternatively, under the same model, we might reverse the roles

of X and Y , making X a binary disease–case status variable, Y a
continuous logistic disease predictor, and [D(Y|X) + 1]/2 the
area under the receiver–operating characteristic (ROC) curve[2].

I The interesting model parameter may then be the interquartile
odds ratio (IQOR) between the 75th and 25th percentiles of the
control distribution of Y , given by

IQOR = exp
{
δ
[
Φ−1(0.75)− Φ−1(0.25)

]}
,

where δ is still the mean case–control difference (in SDs).
I This time, the curve is nearly log–linear between Somers’ D

values of -0.5 and 0.5.
I And, at these values, the IQORs are approximately 0.276 and

3.621, respectively.
I So, the IQORs corresponding to intermediate Somers’ D values

can be approximated well by weighted geometric means,
interpolated log–linearly between 0.276 and 3.621.
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Somers’ D plotted against the interquartile odds ratio (IQOR)

I Note that the IQOR (on
the horizontal axis) is
plotted on a binary log
scale.

I However, after this
transformation, there is
again a range of
near–linearity between
Somers’ D values of -0.5
and 0.5.

I And, at these values, the
IQORs are 0.276 and
3.621, respectively.
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Example 3: Binary X, continuous lifetime Y , constant hazard ratio

I This time, Y is a positive–valued continuous lifetime variable,
with a constant hazard ratio R between the subpopulations
identified by X = 1 and X = 0 (as in a Cox regression).

I In the absence of censorship, Somers’ D(Y|X) is then given by

D(Y|X) = (1− R)/(1 + R).

I So, the Somers’ D values corresponding to hazard ratios of 3, 2,
1, 1/2 and 1/3 are -1/2, -1/3, 0, 1/3 and 1/2, respectively.

I This relationship is decreasing, and nearly log–linear for
Somers’ D between -0.5 and 0.5.

I Note that the hazard ratio (unlike Somers’ D) is still the same in
the presence of censorship.
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I So, the Somers’ D values corresponding to hazard ratios of 3, 2,
1, 1/2 and 1/3 are -1/2, -1/3, 0, 1/3 and 1/2, respectively.

I This relationship is decreasing, and nearly log–linear for
Somers’ D between -0.5 and 0.5.

I Note that the hazard ratio (unlike Somers’ D) is still the same in
the presence of censorship.
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Somers’ D plotted against the hazard ratio

I Again, the horizontal axis
is on a binary log scale.

I The curve is decreasing,
but nearly log–linear for
Somers’ D between -0.5
and 0.5.

I The respective hazard
ratios, corresponding to
these limits, are 3 and 1/3.

I This log–linearity range
includes the typical
smoking–related hazard
ratio of 2, corresponding
to an uncensored
Somers’ D of -1/3.
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Example 4: Bivariate Normal X and Y

I This time, X and Y have a bivariate Normal joint distribution,
with means µX and µY , SDs σX and σY , and a Pearson
correlation coefficient ρ.

I Somers’ D(Y|X) is then equal to Kendall’s tau-a, and is related to
the Pearson correlation by Greiner’s relation,

D(Y|X) = τXY =
2
π

arcsin(ρ).

I So, the Somers’ D values of 0, ±1/3, ±1/2, and ±1 correspond
to Pearson correlations of 0, ±1/2, ±

√
1/2, and ±1,

respectively.
I This relationship, again, is nearly linear (with slope 2/π) for

Somers’ D between -0.5 and 0.5.
I Note that Greiner’s relation still holds if X and/or Y is derived

using a Normalizing transformation.
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Somers’ D plotted against the Pearson correlation coefficient

I The curve is nearly linear
(with slope 2/π) for
Somers’ D values
between -0.5 and 0.5.

I The dashed lines on the
vertical axis denote the
Somers’ D values of 0,
±1/3, ±1/2, and ±1.

I The dashed lines on the
horizontal axis give the
corresponding Pearson ρ
values of 0, ±1/2,
±
√

1/2, and ±1.
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Summary: Somers’ D as a common currency between associations

I Somers’ D defines a hierarchy between monotonic associations,
stating (scientifically) which ones may not be secondary to which
others, without committing ourselves to a particular model.

I However, a lot of statistically–minded scientists prefer to
measure associations using model parameters, and answer
practical questions about how much good they can do.

I Fortunately, under a range of familiar models, Somers’ D is
monotonic in the more familiar model parameter, and nearly
linear (or log–linear) for Somers’ D values between -0.5 and 0.5.

I So, given a Somers’ D between -0.5 and 0.5, we can interpolate
linearly (or log–linearly) to limit the range of proportion/mean
differences, odds/hazard ratios, or Pearson correlations, which
may be secondary to an association with that Somers’ D.

I A more equation–intensive version of this story can be found in
the “Miscellaneous documents” section of the author’s
website[3].
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This presentation, and the do–file producing the examples, can be
downloaded from the conference website at
http://ideas.repec.org/s/boc/usug15.html

The packages described and used in this presentation can be
downloaded from SSC, using the ssc command.
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