Partial effects in fixed effects models

J.M.C. Santos Silva

School of Economics, University of Surrey

Gordon C.R. Kemp

Department of Economics, University of Essex

22nd London Stata Users Group Meeting 8 September 2016

- Models for panel data are attractive because they may make it possible to account for time-invariant unobserved individual characteristics, the so-called fixed effects.
- Consistent estimation of the fixed effects is only possible if *T* is allowed to pass to infinity.
- With fixed T it is not possible to perform valid inference about quantities that require estimates of the fixed effects.
- This is particularly problematic in non-linear models where often the parameter estimates have little meaning and it is more interesting to evaluate partial effects or elasticities.

2. The linear regression model

• Consider a standard linear panel data model of the form

 $\mathbb{E}\left[y_{it}|x_{it},\alpha_{i}\right]=\alpha_{i}+\beta x_{it}, \quad i=1,\ldots,n, \quad t=1,\ldots,T.$

- β (but not α_i) can be consistently estimated with fixed T.
- β gives the partial effect of x_{it} on $\mathbb{E}[y_{it}|x_{it}, \alpha_i]$.
- What if we are interested in the semi-elasticity of E [y_{it} | x_{it}, α_i] with respect to x_{it}?
- For individual *i* this semi-elasticity is

$$\frac{\partial \ln \mathbf{E}\left[y_{it} | x_{it}, \alpha_i\right]}{\partial x_{it}} = \frac{\beta}{\alpha_i + \beta x_{it}},$$

and therefore it cannot be consistently estimated without a consistent estimate of α_i .

3. Logit regression

• Let y_{it} be a binary variable such that

$$\operatorname{E}\left[y_{it}|x_{it},\alpha_{i}\right] = \Pr\left[y_{it} = 1|x_{it},\alpha_{i}\right] = \frac{\exp\left(\alpha_{i} + \beta x_{it}\right)}{1 + \exp\left(\alpha_{i} + \beta x_{it}\right)}.$$

- It is well known that under suitable regularity conditions (Andersen, 1970, and Chamberlain, 1980) it is possible to estimate β consistently with fixed T.
- β is not particularly meaningful, at least for economists.
 - It can be seen as the partial effect of x_{it} on the log odds ratio (Cramer, 2003, p. 13, Buis, 2010).
 - It is also related to the partial effect on probabilities computed conditionally on ∑^T_{i=1} y_{it} (Cameron and Trivedi, 2005, p. 797).

 Some practitioners opt for reporting the partial effects and semi-elasticities evaluated at an arbitrary value α_i = c

$$\frac{\partial \Pr\left[y_{it}=1|x_{it}, \alpha_{i}=c\right]}{\partial x_{it}} = \beta \frac{\exp\left(\beta x_{it}+c\right)}{\left(1+\exp\left(\beta x_{it}+c\right)\right)^{2}},$$
$$\frac{\partial \ln \Pr\left[y_{it}=1|x_{it}, \alpha_{i}=c\right]}{\partial x_{it}} = \beta \frac{1}{1+\exp\left(\beta x_{it}+c\right)}$$

often setting $\alpha_i = 0$.

• These, of course, is not meaningful because the choice of where to evaluate the individual effect is completely arbitrary.

- Wooldridge (2010, p. 622-3) considers an example where labour force participation of married women depends on the number of kids less than 18, on the log of husband's income, and time dummies.
- . qui xtlogit lfp lhinc kids i.period, fe

. ereturn	displ	lay,	first
-----------	-------	------	-------

lfp	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lhinc kids	1842911 6438386	.0826019 .1247828	-2.23 -5.16	0.026 0.000	3461878 8884084	0223943 3992688
period 2 3 4 5	0928039 2247989 2479323 3563745	.0889937 .0887976 .0888953 .0888354	-1.04 -2.53 -2.79 -4.01	0.297 0.011 0.005 0.000	2672283 398839 422164 5304886	.0816205 0507587 0737006 1822604

 Setting α_i = 0, the average elasticity of Pr [y_{it} = 1 |x_{it}, α_i = 0] with respect to husband's income can be computed using margins.

. margins, eydx(lhinc)			
Average marginal effects Model VCE : OIM	Number of obs	=	5,275

Expression : Pr(lfp|fixed effect is 0), predict(pu0)
ey/dx w.r.t. : lhinc

		Delta-method				
	ey/dx	Std. Err.	z	P> z	[95% Conf.	Interval]
lhinc	1677164	.0844434	-1.99	0.047	3332225	0022103

- To illustrate how meaningless this result is, let's repeat the exercise defining husband's income in thousands of dollars.
- . gen double lhinck=log(hinc/1000)
- . qui xtlogit lfp lhinck kids i.period, fe nolog
- . ereturn display, first

lfp	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lhinck kids	1842911 6438386	.0826019 .1247828	-2.23 -5.16	0.026	3461878 8884084	0223943
period 2	0928039	.0889937	-1.04	0.297	2672283	.0816205
3	2247989	.0887976	-2.53	0.011	398839	0507587
4	2479323	.0888953	-2.79	0.005	422164	0737006
5	3563745	.0888354	-4.01	0.000	5304886	1822604

• Using again margins to estimate the average elasticity of $\Pr[y_{it} = 1 | x_{it}, \alpha_i = 0]$ with respect to husband's income we now get a different result.

```
. margins, eydx(lhinck)
Average marginal effects Number of obs = 5,275
Model VCE : OIM
```

Expression : Pr(lfp|fixed effect is 0), predict(pu0)
ey/dx w.r.t. : lhinck

		Delta-method				
	ey/dx	Std. Err.	z	P> z	[95% Conf.	Interval]
lhinck	1389368	.0645866	-2.15	0.031	2655242	0123495

- The problem, of course, is that changing the scale in which income is measured only changes the values of the fixed effects, which are not estimated.
- Therefore, $\Pr[y_{it} = 1 | x_{it}, \alpha_i = 0]$ is evaluated at exactly the same parameters, but using different regressors.
- Therefore, partial effects and elasticities evaluated at $\alpha_i = 0$ are not only meaningless, but their value will depend on how the regressors are measured.
- However, the average elasticity of $\Pr[y_{it} = 1 | x_{it}, \alpha_i]$ with respect to the husband's income can be estimated consistently.

- Let $x_{it} = \ln(X_{it})$ where X_{it} is the husband's income.
- We want to estimate the average of

$$\mathbf{e}_{it} = \frac{\partial \ln \Pr\left[y_{it} = 1 | x_{it}, \alpha_i\right]}{\partial x_{it}} = \beta \frac{1}{1 + \exp\left(\beta x_{it} + \alpha_i\right)}$$

- e_{it} obviously depends on α_i and therefore cannot be consistently estimated with fixed T.
- However, to estimate E [e_{it}] we do not actually need to compute e_{it} because

$$E\left[\mathbf{e}_{it}
ight] = \beta\left(1 - E\left[y_{it}
ight]
ight)$$

which can be consistently estimated by $\hat{\beta}(1-\bar{y})$, where $\bar{y} = \frac{1}{nT} \sum_{i=1}^{n} \sum_{i=1}^{T} y_{it}$.

• This results was first obtained by Yoshitsugu Kitazawa (2012).

In short

- When $x_{it} = \ln (X_{it})$, $E [e_{it}]$ is the average elasticity with respect to X_{it} .
- Otherwise, $E[e_{it}]$ is the average semi-elasticity with respect to x_{it} .
- If x_{it} is discrete, for small β, E [e_{it}] is approximately the percentage change of Pr (y_{it} = 1|x_{it}, α_i) resulting from a unit change in x_{it}.
- Unfortunately, the trick does not apply to the partial effects:
 - The partial effects have the form $\beta \times \text{Var}[y_{it}|x_{it}, \alpha_i]$;
 - Var [y_{it} | x_{it}, α_i] cannot be estimated without an estimate of α_i, but can be bounded;
 - It is not clear that having bounds on the partial effects is interesting.

- To perform inference about $E[e_{it}]$ we need to be able to estimate its variance.
- The computation of such variance is greatly simplified by the fact that $\hat{\beta}$ and \bar{y} are uncorrelated.
- Indeed, conditionally on the value of the regressors, changes in \bar{y} are absorbed by the fixed effects; therefore $\hat{\beta}$ is uncorrelated with \bar{y} because β is estimated by maximizing the conditional likelihood, which does not depend on α_i .

• Hence:

$$\operatorname{Var}\left[\hat{eta}\left(1-ar{y}
ight)
ight]=\operatorname{Var}\left[\hat{eta}
ight]\left(1-ar{y}
ight)^{2}+\operatorname{Var}\left[ar{y}
ight]\hat{eta}^{2}.$$

- aextlogit is a wrapper for xtlogit which estimates the fixed effects logit and reports estimates of the average (semi-) elasticity of $\Pr(y_{it} = 1 | x_{it}, \alpha_i)$, and the corresponding standard errors and t-statistics.
- Syntax is standard:

aextlogitdepvar[indepvars][if][in][iweight][, options]

<u>b</u>etas: displays the logit estimates nolog: suppress the display of the iteration log aextlogit lfp lhinc kids i.period, nolog
 note: multiple positive outcomes within groups encountered.
 note: 4,608 groups (23,040 obs) dropped because of all positive or all negative outcomes.

Conditional fixed-effects	logistic regre	ssion Numbe	er of obs	=	5275
Group variable: id		Numbe	er of group	ps =	1055
		Obs p	per group:	min =	5
				avg =	5
Log likelihood = -2003.4	184			max =	5

Average (semi) elasticities of Pr(y=1|x,u)

lfp	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lhinc kids	058623 204805	.0262806 .0397334	-2.23 -5.15	0.026 0.000	110132 282681	0071139 126929
period 2 3 4	0295209 0715085 0788673	.02831 .0282534 .0282859	-1.04 -2.53 -2.79	0.297 0.011 0.005	0850076 1268841 1343067	.0259658 0161329 0234278
5	1133627	.0282757	-4.01	0.000	1687821	0579433

Average of lfp = .68190005 (Number of obs = 28315)

 aextlogit lfp lhinck kids i.period, nolog
 note: multiple positive outcomes within groups encountered.
 note: 4,608 groups (23,040 obs) dropped because of all positive or all negative outcomes.

Conditional fi	xed-effects.	logistic	regression	Numk	per o	f obs		=	5275
Group variable	: id			Numk	per o	f grou	рз	=	1055
				Obs	per	group:	min	=	5
							avg	=	5
Log likelihood	a = -2003.41	184					max	=	5

Average (semi) elasticities of Pr(y=1|x,u)

lfp	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lhinck	058623	.0262806	-2.23	0.026	110132	0071139
kids	204805	.0397334	-5.15	0.000	282681	126929
period						
2	0295209	.02831	-1.04	0.297	0850076	.0259658
3	0715085	.0282534	-2.53	0.011	1268841	0161329
4	0788673	.0282859	-2.79	0.005	1343067	0234278
5	1133627	.0282757	-4.01	0.000	1687821	0579433

Average of lfp = .68190005 (Number of obs = 28315)

• A similar results applies to the partial effects in the exponential regression model (Poisson):

$$\mathbb{E}\left[y_{it}|x_{it},\alpha_{i}\right] = \exp\left(\alpha_{i} + \beta x_{it}\right), \quad i = 1, \ldots, n, \quad t = 1, \ldots, T.$$

$$\mathbf{E}\left[\frac{\partial \mathbf{E}\left[y_{it} | x_{it}, \alpha_{i}\right]}{\partial x_{it}}\right] = \beta \mathbf{E}\left[\exp\left(\alpha_{i} + \beta x_{it}\right)\right] = \beta \mathbf{E}\left[y_{it}\right]$$

which can be consistently estimated by $\hat{\beta}\bar{y}$.

• Maybe margins should be disabled after xtlogit and xtpoisson when the fe option is used?

References

• Andersen, E.B. (1970). "Asymptotic properties of conditional maximum likelihood estimators," *Journal of the Royal Statistical Society*, Series B, 32, 283-301.

• Buis, M.L. (2010). "Stata tip 87: Interpretation of interactions in non-linear models," *The Stata Journal*, 10, 305-308.

• Chamberlain, G. (1980). "Analysis of covariance with qualitative data," *Review of Economic Studies*, 47, 225–238.

• Cramer, J.S. (2003). *Logit Models from Economics and Other Fields*. Cambridge: CUP.

• Kitazawa, Y. (2012). "Hyperbolic transformation and average elasticity in the framework of the fixed effects logit model," *Theoretical Economics Letters*, 2, 192-199.

• Wooldridge, J.M. (2010). *Econometric Analysis of Cross Section and Panel Data*. 2nd ed. Cambridge, MA: MIT Press.