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Motivation

• More data → more questions

need for appropriate statistical modelling techniques,
and implementations

• Growth in access to EHR

biomarkers < patients < GP practice area <
geographical regions...

• More challenges

time-dependent effects, non-linear covariate effects

We need modelling frameworks that can accommodate
a lot of different things
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Motivation

Joint longitudinal-survival models

0.0

0.2

0.4

0.6

0.8

1.0

S
urvival probability

0

50

100

150

200
B

io
m

ar
ke

r

0 2 4 6 8 10 12 14
Follow-up time

Patient 98

0.0

0.2

0.4

0.6

0.8

1.0
S

urvival probability

0

50

100

150

200

B
io

m
ar

ke
r

0 2 4 6 8 10 12 14
Follow-up time

Patient 253

Longitudinal response Longitudinal fitted values
Predicted conditional survival 95% Confidence interval

Linking via - current value, gradient, AUC, random effects...
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Motivation

Joint longitudinal-survival models - extensions

• Competing risks [1]

• Different types of outcomes [2]

• Multiple continuous outcomes [3]

• Delayed entry [4]

• Recurrent events and a terminal event [5]

• Prediction [6]

• Many others...
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Motivation

Joint longitudinal-survival models - software

• stjm in Stata [7]

• gsem in Stata, see Yulia’s talk from last year

• frailtypack in R [8]

• joineR in R [9]

• JM and JMBayes in R [10, 11]

• Many others...
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Motivation

(My) Methods development - software

• stjm - joint longitudinal-survival models

• stmixed - multilevel survival models

• stgenreg - general parametric survival models

• ...

Each new project brings a new code base to maintain...could I
make my life easier?
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The goal

A general framework for the analysis of data of all types

• Multiple outcomes of varying types

• Measurement schedule can vary across outcomes

• Any number of levels and random effects

• Sharing and linking random effects between outcomes

• Sharing functions of the expected value of other outcomes

• A reliable estimation engine

• Easily extendable by the user

• ...

I think I made my life more difficult!
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The goal

Extended multivariate generalised linear and non-linear
mixed effects models

megenreg

• Much of what megenreg can do, can be done (better)
with gsem

• Much of what megenreg can do, cannot be done with
gsem
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A general level likelihood

Straight from the Stata manual...for a one-level model with n
response variables:

p(y|x, b,β) =
n∏
i=1

pi(yi|x, b,β)

For a two-level model:

p(y|x, b,β) =
n∏
i=1

t∏
j=1

pi(yij|x, b,β)

Michael J. Crowther megenreg 7th September 2017 10 / 44



Motivation Extended GLMM models Some new models Future directions

A general level likelihood

The log likelihood is obtained by integrating out the
unobserved random effects

ll(β) = log

∫
Rr

p(y|x, b,β)φ(b|Σb) db

we assume φ() is the multivariate normal density for b, with
mean vector 0 and variance-covariance matrix Σb. We have
Σb becoming block diagonal with further levels, with a block
for each level

Michael J. Crowther megenreg 7th September 2017 11 / 44
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A general level likelihood

Alternatively, exploiting conditional independence amongst
level l − 1 units, given the random effects at higher levels,

ll(β) = log

∫
φ(b(L)|Σ(L))

∏
p(L−1)(y|x, bL,β) db(L)

where, for l = 2, . . . , L

p(l)(y|x,Bl+1,β) =

∫
φ(b(l)|Σ(l))

∏
p(l−1)(y|x,Bl,β) db(l)
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Estimation challenges

• At each level, we need to integrate out our normally
distributed random effects

• Generally this is done using Gauss-Hermite numerical
quadrature

intmethod(mvaghermite | ghermite)

• Issue with GH quadrature is it doesn’t scale up well:

- 7-point quadrature; for 1 random effect we evaluate our
function at 7-points

- 7-point quadrature; for 6 random effects, we evaluate it
at 76 = 117, 649 points
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Estimation challenges - alternatives

• An alternative is Monte Carlo integration

• Also known for its use in maximum simulated likelihood -
see the special issue in the Stata Journal Vol 6 No 2

• This is a rather brute force approach, but it’s usefulness is
in it’s simplicity

L(θ) =

∫
f(y|θ, b)φ(b)∂b =

1

m

m∑
u=1

f(y|θ, bu)

The important thing to note is m doesn’t have to change
when extra random effects are added.
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Estimation challenges - alternatives

Monte Carlo integration can be improved by:

• antithetic sampling [12]

• Halton sequences [13]

• an adaptive procedure just like adaptive GH quadrature,
resulting in an importance sampling approximation

Michael J. Crowther megenreg 7th September 2017 15 / 44



Motivation Extended GLMM models Some new models Future directions

Extensions - level-specific random effect distributions

ll(θ) = log

∫
φL(b(L)|Σ(L))

∏
p(L−1)(y|x, bL,β) db(L)

where, for l = 2, . . . , L

p(l)(y|x,Bl+1,β) =

∫
φl(b

(l))|Σ(l)
∏

p(l−1)(y|x,Bl,β) db(l)
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Extensions - level-specific random effect distributions
and integration techniques

• This formulation now allows us to specify different
distributions at each level

• Assess robustness using the t-distribution

• Issue of which integration techniques to apply at each
level
• e.g. one random effect at level 1, many at level 2, then

use AGHQ at level 3, and MCI at level 2

intmethod(mvaghermite mcarlo)

redistribution(normal t) df(3)
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Standard linear predictor

The standard linear predictor for a general level model can be
written as follows,

η = Xβ +
L∑
l=2

X lbl

where subscripts are omitted. We have X our vector of
covariates, which could vary at any level, with associated fixed
effect coefficient vector β, and X l the vector of covariates
with random effects bl at level l.
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Extended linear predictor

ηi = gi(E[yi|X, b]) =

Ri∑
r=1

Sir∏
s=1

ψirs

where gi() is the link function for the ith outcome. To
maintain generality, ψirs(t) can take many forms, including,

ψirs(t) = X

ψirs(t) = β

ψirs(t) = b

ψirs(t) = q(t)

ψirs(t) = drs(E[yj]), where j = 1, . . . , k, j 6= i
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megenreg in Stata

• Everything I’ve talked about will be available in the
megenreg package in Stata

• It is a simplified/modified version of Stata’s official gsem

• megenreg will have many extensions, such as
• Alternative models, such as spline based survival models
• Extending sharing between outcomes, motivated by joint

modelling
• User-defined likelihood functions
• Other things...
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Distributional choices

• Gaussian, Poisson, binomial, beta, negative binomial

• exponential, Weibull, Gompertz, log-normal, log-logistic,
gamma, Royston-Parmar

• Non-linear outcome models

• User-defined hazard functions

• More to add...
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1. A general level parametric survival model

The Royston-Parmar survival model uses restricted cubic
splines of log time, on the log cumulative hazard scale, i.e.,

logH(yi) = s(log(yi)|βk) + ηi

. list patient time infect age female in 1/4, noobs

patient time infect age female

1 8 1 28 0
1 16 1 28 0
2 13 0 48 1
2 23 1 48 1

. megenreg (time age female M1[patient], ///
> family(rp, failure(infect) scale(h) df(3)))
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1. A general level parametric survival model

Relax the normally dist. random effects assumption;
. megenreg (time age female M1[patient], family(rp, failure(infect) scale(h) df(3))) ///
> , redistribution(t) df(3)

Higher levels of clustering;
. megenreg (time trt M1[trial] M2[trial>patient], ...)

Random coefficients;
. megenreg (time trt M1[trial] trt#M1[trial] M2[trial>patient], ... )

Time-dependent effects;
. megenreg (stime trt trt#{log(&t)} M1[id1] M2[id1>id2], ... timevar(stime))

Non-linear covariate effects
. gen age2 = age^2
. megenreg (stime trt trt#{log(&t)} age age2 M1[id1] M2[id1>id2], ... )
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2. A general level relative survival model

Relative survival models are used widely, particularly in
population based cancer epidemiology [14]. They model the
excess mortality in a population with a particular disease,
compared to a reference population.

h(y) = h∗(y) + λ(y)

where h∗(y) is the expected mortality in the reference
population. Any of the previous models can be turned into a
relative survival model;

. megenreg (stime trt trt#log(&t) M1[id1] M2[id1>id2], ///
> family(rp, failure(died) df(3) scale(h) bhazard(bhaz)))
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3. General level joint frailty survival models

• An area of intense research in recent years is in the field
of joint frailty survival models, for the analysis of joint
recurrent event and terminal event data

• Here I focus on the two most popular approaches,
proposed by Liu et al. (2004) [15] and Mazroui et al.
(2012) [16]

• In both, we have a survival model for the recurrent event
process, and a survival model for the terminal event
process, linked through shared random effects
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3. General level joint frailty survival models

hij(y) = h0(y) exp(X1ijβ1 + bi)

λi(y) = λ0(y) exp(X1iβ2 + αbi)

where hij(y) is the hazard function for the jth event of the ith
patient, λi(y) is the hazard function for the terminal event,
and bi ∼ N(0, σ2). We can fit such a model with megenreg,
adjusting for treatment in each outcome model,

. megenreg (rectime trt M1[id1] , family(rp, failure(recevent) scale(h) df(5))) ///
> (stime trt M1[id1]@alpha , family(rp, failure(died) scale(h) df(3)))
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3. General level joint frailty survival models

hij(y) = h0(y) exp(X1ijβ1 + b1i + b2i)

λi(y) = λ0(y) exp(X1iβ2 + b2i)

where b1i ∼ N(0, σ2
1) and b2i ∼ N(0, σ2

2). We give an example
of how to fit this model with megenreg, this time illustrating
how to use different distributions for the recurrent event and
terminal event processes,

. megenreg (rectime trt M1[id1] M2[id1] , family(weibull, failure(recevent))) ///
> (stime trt M2[id1] , family(rp, failure(died) scale(h) df(3)))
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4. Generalised multivariate joint models

Multiple longitudinal biomarkers

Y1 ∼ Weib(λ, γ), Y2 ∼ N(µ2, σ
2
2), Y3 ∼ N(µ3, σ

2
3)

The linear predictor of the survival outcome can be written as
follows,

η1(t) = Xβ0+E[y2(t)|η2(t)]β1 + E[y3(t)|η3(t)]β2+
E[y2(t)|η2(t)]× E[y3(t)|η3(t)]β3

. megenreg (stime trt EV[logb]@beta1 EV[logp]@beta2 EV[logb]#EV[logp]@beta3 ,
> family(weibull, failure(died)))
> (logb {&t}@l1 {&t}#M2[id] M1[id] , family(gaussian) timevar(time))
> (logp {&t}@l2 {&t}#M4[id] M3[id] , family(gaussian) timevar(time))
> , covariance(unstructured)
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4. Generalised multivariate joint models

Competing risks

. list id logb logp time trt stime diedpbc diedother if id==3, noobs

id logb logp time trt stime diedpbc diedother

3 .3364722 2.484907 0 D-penicil 2.77078 1 0
3 .0953102 2.484907 .481875 D-penicil . . .
3 .4054651 2.484907 .996605 D-penicil . . .
3 .5877866 2.587764 2.03428 D-penicil . . .

. megenreg (stime trt EV[logb]@a1 EV[logp]@a2 , family(weibull, failure(diedpbc)))
> (stime trt EV[logb]@a3 EV[logp]@a4 , family(gompertz, failure(diedother)))
> (logb {&t}@l1 {&t}#M2[id] M1[id] , family(gaussian) timevar(time))
> (logp {&t}@l2 {&t}#M4[id] M3[id] , family(gaussian) timevar(time))
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4. Generalised multivariate joint models

Joint frailty - The extensive frailtypack in R has recently
been extended to fit a joint model of a continuous biomarker,
a recurrent event process, and a terminal event [5, 8]. We can
use megenreg,

. megenreg (canctime trt EV[logb]@a1 EV[logp]@a2 M5[id] , ... )
> (stime trt EV[logb]@a4 EV[logp]@a5 M5[id]@alpha , ... )
> (logb {&t}@l1 {&t}#M2[id] M1[id] , ... )
> (logp {&t}@l2 {&t}#M4[id] M3[id] , ... )

Michael J. Crowther megenreg 7th September 2017 31 / 44



Motivation Extended GLMM models Some new models Future directions

4. Generalised multivariate joint models

. megenreg (canctime trt EV[logb]@a1 EV[logp]@a2 , family(weibull, failure(canc))) ///
> (stimenocanc trt EV[logb]@a4 EV[logp]@a5 , ///
> family(gompertz, failure(diednocanc) ltrunc(canctime)) ///
> (stimecanc trt EV[logb]@a4 EV[logp]@a5 , family(gompertz, failure(diedcanc))) ///
> (logb {&t}@l1 {&t}#M2[id] M1[id] , family(gaussian) timevar(time)) ///
> (logp {&t}@l2 {&t}#M4[id] M3[id] , family(gaussian) timevar(time))
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5. A user-defined model - utility functions

A Gaussian response model

y ∼ N(η, σ2)

real matrix gauss logl(transmorphic gml)
{

y = gml util depvar(gml) //dep. var.
linpred = gml util xzb(gml) //lin. pred.
sdre = exp(gml util xb(gml,1)) //anc. param.
return(lnnormalden(y,linpred,sdre)) //logl

}

. megenreg (logb time time#M2[id] M1[id], family(user, loglf(gauss logl)) np(1))
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6. A NLME example with multiple linear predictors

Consider Murawska et al. (2012), they developed a Bayesian
NL joint model, with Gaussian response variable, and multiple
non-linear predictors each with fixed effects and a random
intercept. The overall non-linear predictor is defined as,

f(t) = β1i + β2i exp−β3it

where each linear predictor was constrained to be positive,

β1i = exp(X1β1 + b1i)

β2i = exp(X2β2 + b2i)

β3i = exp(X3β3 + b3i)

and for the survival outcome

λ(t) = λ0(t) exp(α1b1i + α2b2i + α3b3i)
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6. A NLME example with multiple linear predictors

We can fit this, and extend it, easily with megenreg

. megenreg (resp age female M1[id], family(user, loglf(nlme logl)) ///
> np(1) timevar(time))
> (age female M2[id], family(null))
> (age female M3[id], family(null))
> (stime age female EV[resp]@alpha1 EV[2]@alpha2 EV[3]@alpha3, ///
> family(weibull, failure(died))),
> covariance(unstructured)

real matrix nlme logl(transmorphic gml, real matrix t)
{

y = gml util depvar(gml) //dep.var.
linpred1 = exp(gml util xzb(gml)) //main lin. pred.
linpred2 = exp(gml util xzb mod(gml,2)) //extra lin. preds
linpred3 = exp(gml util xzb mod(gml,3))
sdre = exp(gml util xb(gml,1)) //anc. param
linpred = linpred1 :+ linpred2:*exp(-linpred3:*t) //nonlin. pred
return(lnnormalden(y,linpred,sdre)) //logl

}
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7. Mixed effects for the level 1 variance function

A recent paper by Goldstein et al. (2017) [17] proposed a
two-level model with complex level 1 variation, of the form,

yij = X1ijβ1 +Z1ijb1j + εij

εij ∼ N(0, σ2
e)

log(σ2
e) = X2ijβ2 +Z2ijb2j(

b1j
b2j

)
∼ N

[(
0
0

)
,

(
Σb1

Σb1b2 Σb2

)]
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7. Mixed effects for the level 1 variance function

We can fit this, and extend it, easily with megenreg

real matrix lev1 logl(transmorphic gml, real matrix t)
{

y = gml util depvar(gml) //response
linpred1 = gml util xzb(gml) //lin. pred.
varresid = exp(gml util xzb mod(gml,2)) //lev1 lin. pred
return(lnnormalden(y,linpred,sqrt(varresid))) //logl

}

. megenreg (resp female age age#M2[id] M1[id], family(user, loglf(lev1 logl)))
(age female M3[id], family(null))
covariance(unstructured)
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Summary

• I’ve presented a very general, and hopefully usable,
implementation which can fit a lot of different and new
models

• Through the complex linear predictor, we allow seamless
development of novel models, and crucially, a way of
making them immediately available to researchers
through an accessible implementation
• Realised it can fit multivariate network IPD

meta-analysis models this week

• I’ve incorporated level-specific random effect distributions,
and integration techniques
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Stuff I didn’t show

• family(user, hazard(funcname)

cumhazard(funcname))

• fp() and rcs() as elements

• dEV[], d2EV[], iEV[] as elements

• Shell files - just like gsem
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Future directions

• Dynamic risk prediction, predictions will be a key focus of
the megenreg engine

• location-scale models, multi-membership models...

• It’s so general, and hence it can be slow(er)

• score and Hessian - analytic derivatives will provide
substantial speed gains, so far I’ve implemented hybrid
analytic and numeric derivatives.

• I should’ve released it by now...

• Crowther MJ. Extended multivariate generalised linear
and non-linear mixed effects models. (Under review).

• Updates and tutorials here:
www.mjcrowther.co.uk/software/megenreg
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