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Fitting Bayesian regression models using the bayes prefix

In a nutshell

In a nutshell

Stata 15 provides a convenient and elegant way of fitting Bayesian
regression models by prefixing your estimation command with
bayes.

You fit linear regression by typing

. regress y x

You can now fit Bayesian linear regression by typing

. bayes: regress y x

Default priors are provided for convenience; you should
carefully think about the priors and often specify your own:

. bayes, prior(. . . ) prior(. . . ) . . . : regress y x

45 estimation commands are supported including GLM,
survival models, multilevel models, and more.

All Bayesian postestimation features work after bayes: just
like they do after bayesmh.
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Fitting Bayesian regression models using the bayes prefix

In a nutshell

Classical linear regression

Data: Math scores of pupils in the third and fifth years from
48 different schools in Inner London (Mortimore et al. 1988).

Linear regression of five-year math scores (math5) on
three-year math scores (math3).

. regress math5 math3

Source SS df MS Number of obs = 887

F(1, 885) = 341.40
Model 10960.2737 1 10960.2737 Prob > F = 0.0000

Residual 28411.6181 885 32.1035233 R-squared = 0.2784

Adj R-squared = 0.2776
Total 39371.8918 886 44.4378011 Root MSE = 5.666

math5 Coef. Std. Err. t P>|t| [95% Conf. Interval]

math3 .6081306 .0329126 18.48 0.000 .5435347 .6727265

_cons 30.34656 .1906157 159.20 0.000 29.97245 30.72067
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Fitting Bayesian regression models using the bayes prefix

In a nutshell

Bayesian linear regression

. set seed 15

. bayes: regress math5 math3

Burn-in ...
Simulation ...

Model summary

Likelihood:
math5 ~ regress(xb_math5,{sigma2})

Priors:

{math5:math3 _cons} ~ normal(0,10000) (1)
{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_math5.
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Fitting Bayesian regression models using the bayes prefix

In a nutshell

Bayesian linear regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000

Number of obs = 887
Acceptance rate = .3312

Efficiency: min = .1099
avg = .1529

Log marginal likelihood = -2817.2335 max = .2356

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

math5
math3 .6070097 .0323707 .000976 .6060445 .5440594 .6706959

_cons 30.3462 .1903067 .005658 30.34904 29.97555 30.71209

sigma2 32.17492 1.538155 .031688 32.0985 29.3045 35.38031

Note: Default priors are used for model parameters.

bayes: regress is not regress!

Let’s review a few Bayesian concepts before we interpret
results.
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Fitting Bayesian regression models using the bayes prefix

What is Bayesian analysis?

What is Bayesian analysis?

Bayesian analysis is a statistical paradigm that answers research
questions about unknown parameters using probability statements.

What is the probability that a person accused of a crime is
guilty?

What is the probability that treatment A is more cost effective
than treatment B for a specific health care provider?

What is the probability that the odds ratio is between 0.3 and
0.5?

What is the probability that three out of five quiz questions
will be answered correctly by students?

And more.
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Fitting Bayesian regression models using the bayes prefix

Why Bayesian analysis?

You may be interested in Bayesian analysis if

you have some prior information available from previous
studies that you would like to incorporate in your analysis. For
example, in a study of preterm birthweights, it would be
sensible to incorporate the prior information that the
probability of a mean birthweight above 15 pounds is
negligible. Or,

your research problem may require you to answer a question:
What is the probability that my parameter of interest belongs
to a specific range? For example, what is the probability that
an odds ratio is between 0.2 and 0.5? Or,

you want to assign a probability to your research hypothesis.
For example, what is the probability that a person accused of
a crime is guilty?

And more.
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Fitting Bayesian regression models using the bayes prefix

Components of Bayesian analysis

Assumptions

Assumptions

Observed data sample y is fixed and model parameters θ are
random.

y is viewed as a result of a one-time experiment.

A parameter is summarized by an entire distribution of values
instead of one fixed value as in classical frequentist analysis.
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Fitting Bayesian regression models using the bayes prefix

Components of Bayesian analysis

Assumptions

There is some prior (before seeing the data!) knowledge about
θ formulated as a prior distribution p(θ).

After data y are observed, the information about θ is updated
based on the likelihood f (y |θ).

Information is updated by using the Bayes rule to form a
posterior distribution p(θ|y):

p(θ|y) =
f (y |θ)p(θ)

p(y)

where p(y) is the marginal distribution of the data y .
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Fitting Bayesian regression models using the bayes prefix

Components of Bayesian analysis

Inference

Inference

Estimating a posterior distribution p(θ|y) is at the heart of
Bayesian analysis.

Various summaries of this distribution are used for inference.

Point estimates: posterior means, modes, medians,
percentiles.

Interval estimates: credible intervals (CrI)—(fixed) ranges to
which a parameter is known to belong with a pre-specified
probability.

Monte-Carlo standard error (MCSE)—represents precision
about posterior mean estimates.
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Fitting Bayesian regression models using the bayes prefix

Components of Bayesian analysis

Inference

Hypothesis testing—assign probability to any hypothesis of
interest.

Model comparison: model posterior probabilities, Bayes
factors.

Predictions and model checking are based on a posterior
predictive distribution:

p(ynew |y) =

∫
f (ynew |θ)p(θ|y)dθ
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Fitting Bayesian regression models using the bayes prefix

Advantages and disadvantages of Bayesian analysis

Advantages

Advantages

Bayesian inference:

is universal—it is based on the Bayes rule which applies
equally to all models;

incorporates prior information;

provides the entire posterior distribution of model parameters;

is exact, in the sense that it is based on the actual posterior
distribution rather than on asymptotic normality in contrast
with many frequentist estimation procedures; and

provides straightforward and more intuitive interpretation of
the results in terms of probabilities.
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Fitting Bayesian regression models using the bayes prefix

Advantages and disadvantages of Bayesian analysis

Disadvantages

Disadvantages

Potential subjectivity in specifying prior
information—noninformative priors or sensitivity analysis to
various choices of informative priors.

Computationally demanding—involves intractable integrals
that can only be computed using intensive numerical methods
such as Markov chain Monte Carlo (MCMC).
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Fitting Bayesian regression models using the bayes prefix

Stata’s Bayesian suite of commands

Commands

Stata’s Bayesian suite of commands

Command Description

Estimation
bayes: Bayesian regression models using the bayes

prefix (new in Stata 15)
bayesmh General Bayesian models using MH
bayesmh evaluators User-written Bayesian models using MH

Postestimation
bayesgraph Graphical convergence diagnostics

bayesstats ess Effective sample sizes and more
bayesstats summary Summary statistics
bayesstats ic Information criteria and Bayes factors

bayestest model Model posterior probabilities
bayestest interval Interval hypothesis testing
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Fitting Bayesian regression models using the bayes prefix

Stata’s Bayesian suite of commands

Built-in models and methods available in Stata

Over 50 built-in likelihoods: normal, logit, ologit, Poisson, . . .

Many built-in priors: normal, gamma, Wishart, Zellner’s g , . . .

Continuous, binary, ordinal, categorical, count, censored,
truncated, zero-inflated, and survival outcomes.

Univariate, multivariate, and multiple-equation models.

Linear, nonlinear, generalized linear and nonlinear,
sample-selection, panel-data, and multilevel models.

Continuous univariate, multivariate, and discrete priors.

User-defined models: likelihoods and priors.

MCMC methods:

Adaptive MH.

Adaptive MH with Gibbs updates—hybrid.

Full Gibbs sampling for some models.
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Fitting Bayesian regression models using the bayes prefix

Stata’s Bayesian suite of commands

General syntax

Built-in models

Fitting regression models

bayes: stata command . . .

Fitting general models

bayesmh . . . , likelihood() prior() . . .

User-defined models

Posterior evaluator

bayesmh . . . , evaluator() . . .

Likelihood evaluator with built-in priors

bayesmh . . . , llevaluator() prior() . . .

Postestimation features are the same whether you use a built-in
model or program your own!
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Fitting Bayesian regression models using the bayes prefix

Bayesian linear regression

Bayesian linear regression

Recall our Bayesian linear regression of math5 on math3.

Let’s describe results in more detail.

. set seed 15

. bayes: regress math5 math3

Burn-in ...
Simulation ...

Model summary

Likelihood:

math5 ~ regress(xb_math5,{sigma2})

Priors:
{math5:math3 _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_math5.
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Fitting Bayesian regression models using the bayes prefix

Bayesian linear regression

Bayesian linear regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 887
Acceptance rate = .3312

Efficiency: min = .1099
avg = .1529

Log marginal likelihood = -2817.2335 max = .2356

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

math5

math3 .6070097 .0323707 .000976 .6060445 .5440594 .6706959
_cons 30.3462 .1903067 .005658 30.34904 29.97555 30.71209

sigma2 32.17492 1.538155 .031688 32.0985 29.3045 35.38031

Note: Default priors are used for model parameters.

The output from bayes: is the same as the output from
bayesmh.
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Fitting Bayesian regression models using the bayes prefix

Bayesian linear regression

Default priors

Default priors

Default priors are provided for convenience. For example, to
specify your own priors, you need to know the names of
parameters, and bayes: provides this information in the
output.

Normal priors with zero mean and variance 10,000 are used
for regression coefficients and inverse-gamma priors with
shape and scale parameters of 0.01 are used for variances.

The priors are chosen to be fairly uninformative but may
become informative for parameters of large magnitude.

Default priors may not always be suitable for your particular
model.

You should always carefully evaluate the choice of priors and
specify the priors that are appropriate for your model and
research question.
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Fitting Bayesian regression models using the bayes prefix

Bayesian linear regression

Custom priors

Custom priors

Modify parameters of the default normal and inverse-gamma
priors:

. set seed 15

. bayes, normalprior(10) igammaprior(1 2): regress math5 math3

Burn-in ...
Simulation ...

Model summary

Likelihood:

math5 ~ regress(xb_math5,{sigma2})

Priors:
{math5:math3 _cons} ~ normal(0,100) (1)

{sigma2} ~ igamma(1,2)

(1) Parameters are elements of the linear form xb_math5.
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Fitting Bayesian regression models using the bayes prefix

Bayesian linear regression

Custom priors

Bayesian linear regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 887

Acceptance rate = .3503
Efficiency: min = .1189

avg = .1471

Log marginal likelihood = -2815.3081 max = .2005

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

math5

math3 .6076875 .033088 .000948 .6076282 .5405233 .673638
_cons 30.326 .1931568 .005602 30.32804 29.93212 30.70529

sigma2 32.09694 1.530839 .034185 32.03379 29.27687 35.37723

Note: Default priors are used for model parameters.
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Fitting Bayesian regression models using the bayes prefix

Bayesian linear regression

Custom priors

Specify your own priors:

. set seed 15

. bayes, prior({math5:math3}, uniform(-1,1)) ///

> prior({math5:_cons}, uniform(-50,50)) ///
> prior({sigma2}, jeffreys): regress math5 math3

Burn-in ...
Simulation ...

Model summary

Likelihood:

math5 ~ regress(xb_math5,{sigma2})

Priors:
{math5:math3} ~ uniform(-1,1) (1)
{math5:_cons} ~ uniform(-50,50) (1)

{sigma2} ~ jeffreys

(1) Parameters are elements of the linear form xb_math5.
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Fitting Bayesian regression models using the bayes prefix

Bayesian linear regression

Custom priors

Bayesian linear regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000

Number of obs = 887
Acceptance rate = .3401

Efficiency: min = .1034
avg = .1405

Log marginal likelihood = -2806.8234 max = .211

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

math5
math3 .6064431 .0306863 .000954 .6068399 .5455701 .6676897

_cons 30.34391 .1856718 .005676 30.3475 29.96434 30.71451

sigma2 32.15952 1.55488 .033853 32.10525 29.25887 35.33335
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Fitting Bayesian regression models using the bayes prefix

Bayesian linear regression

Gibbs sampling

Use more efficient Gibbs sampling:

. set seed 15

. bayes, gibbs: regress math5 math3

Bayesian linear regression MCMC iterations = 12,500

Gibbs sampling Burn-in = 2,500
MCMC sample size = 10,000
Number of obs = 887

Acceptance rate = 1
Efficiency: min = 1

avg = 1
Log marginal likelihood = -2817.184 max = 1

Equal-tailed

Mean Std. Dev. MCSE Median [95% Cred. Interval]

math5
math3 .6085104 .0333499 .000333 .6087819 .5426468 .6731657
_cons 30.34419 .1916673 .001917 30.34441 29.97587 30.72617

sigma2 32.16765 1.551119 .015511 32.10778 29.238 35.29901

Note: Default priors are used for model parameters.
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Fitting Bayesian regression models using the bayes prefix

Postestimation

Postestimation

All Bayesian postestimation features work after bayes: just
like they do after bayesmh.

. bayesgraph diagnostics {sigma2}
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Fitting Bayesian regression models using the bayes prefix

Bayesian autoregressive models

Bayesian autoregressive models

Although not as conveniently, we could already fit Bayesian
linear regression using bayesmh.

What we couldn’t do, and still can’t, is to use time-series
operators with bayesmh.

We can with bayes: regress!

Let’s use time-series operators to fit an autoregressive model.

Yulia Marchenko (StataCorp) 27 / 52



Fitting Bayesian regression models using the bayes prefix

Bayesian autoregressive models

AR(1) model

Data: Quarterly coal consumption (in millions of tons) in a
given year in the United Kingdom from 1960 to 1986 (e.g.,
Harvey [1989]). (Variable lcoal is transformed using
log(coal/1000).

Bayesian AR(1) model:

. bayes: regress lcoal L.lcoal

Burn-in ...
Simulation ...

Model summary

Likelihood:

lcoal ~ regress(xb_lcoal,{sigma2})

Priors:
{lcoal:L.lcoal _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_lcoal.
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Fitting Bayesian regression models using the bayes prefix

Bayesian autoregressive models

AR(1) model

Bayesian linear regression MCMC iterations = 12,500

Random-walk Metropolis-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 107
Acceptance rate = .3285

Efficiency: min = .1199
avg = .1448

Log marginal likelihood = -75.889709 max = .1905

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

lcoal
lcoal

L1. .7143121 .0649968 .001877 .7123857 .5884089 .8436602

_cons -.6896604 .1561023 .004433 -.6935272 -.9970502 -.3879924

sigma2 .1702592 .0243144 .000557 .1672834 .1299619 .2248287

Note: Default priors are used for model parameters.

Store results for later comparison.

. bayes, saving(lag1_mcmc)
note: file lag1_mcmc.dta saved

. estimates store lag1
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Fitting Bayesian regression models using the bayes prefix

Bayesian autoregressive models

AR(2) model

Bayesian AR(2) model:

. bayes, saving(lag2_mcmc): regress lcoal L.lcoal L2.lcoal

Burn-in ...
Simulation ...

file lag2_mcmc.dta saved

Model summary

Likelihood:
lcoal ~ regress(xb_lcoal,{sigma2})

Priors:

{lcoal:L.lcoal L2.lcoal _cons} ~ normal(0,10000) (1)
{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_lcoal.
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Fitting Bayesian regression models using the bayes prefix

Bayesian autoregressive models

AR(2) model

Bayesian linear regression MCMC iterations = 12,500

Random-walk Metropolis-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 106
Acceptance rate = .3614

Efficiency: min = .07552
avg = .1172

Log marginal likelihood = -82.507817 max = .1966

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

lcoal
lcoal

L1. .6954794 .0967804 .003522 .6958134 .5008727 .8832852
L2. .0372711 .0970813 .003091 .0350822 -.1491183 .2311099

_cons -.6414813 .1760301 .005622 -.6465191 -.9783713 -.2926136

sigma2 .1727567 .0248036 .000559 .1701944 .1296203 .2264395

Note: Default priors are used for model parameters.

. estimates store lag2
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Fitting Bayesian regression models using the bayes prefix

Bayesian autoregressive models

AR(p) models

Bayesian AR(3) model:

. bayes, saving(lag3 mcmc): regress lcoal L(1/3).lcoal

. estimates store lag3

Bayesian AR(4) model:

. bayes, saving(lag4 mcmc): regress lcoal L(1/4).lcoal

. estimates store lag4

Bayesian AR(5) model:

. bayes, saving(lag5 mcmc): regress lcoal L(1/5).lcoal

. estimates store lag5
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Fitting Bayesian regression models using the bayes prefix

Bayesian autoregressive models

Model comparison

Compute model posterior probabilities:

. bayestest model lag1 lag2 lag3 lag4 lag5

Bayesian model tests

log(ML) P(M) P(M|y)

lag1 -75.8897 0.2000 0.0000
lag2 -82.5078 0.2000 0.0000
lag3 -59.6688 0.2000 0.0000

lag4 -13.8944 0.2000 0.9990
lag5 -20.8194 0.2000 0.0010

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.

Yulia Marchenko (StataCorp) 33 / 52



Fitting Bayesian regression models using the bayes prefix

Bayesian autoregressive models

Lag selection

We can incorporate the estimation of a lag directly in our
Bayesian model through prior distributions.

. bayes, prior({lcoal:L1.lcoal}, normal(0, cond({lag}>=1,100,0.01))) ///
> prior({lcoal:L2.lcoal}, normal(0, cond({lag}>=2,100,0.01))) ///
> prior({lcoal:L3.lcoal}, normal(0, cond({lag}>=3,100,0.01))) ///

> prior({lcoal:L4.lcoal}, normal(0, cond({lag}>=4,100,0.01))) ///
> prior({lcoal:L5.lcoal}, normal(0, cond({lag}>=5,100,0.01))) ///

> prior({lag}, index(0.2,0.2,0.2,0.2,0.2)): ///
> regress lcoal L(1/5).lcoal
note: operator L1. is replaced with L. in parameter name L1.lcoal

Burn-in ...

Simulation ...

Model summary

Likelihood:
lcoal ~ regress(xb_lcoal,{sigma2})

Priors:
{lcoal:L.lcoal} ~ normal(0,cond({lag}>=1,100,0.01)) (1)

{lcoal:L2.lcoal} ~ normal(0,cond({lag}>=2,100,0.01)) (1)
{lcoal:L3.lcoal} ~ normal(0,cond({lag}>=3,100,0.01)) (1)

{lcoal:L4.lcoal} ~ normal(0,cond({lag}>=4,100,0.01)) (1)
{lcoal:L5.lcoal} ~ normal(0,cond({lag}>=5,100,0.01)) (1)

{lcoal:_cons} ~ normal(0,10000) (1)
{sigma2} ~ igamma(.01,.01)

Hyperprior:
{lag} ~ index(0.2,0.2,0.2,0.2,0.2)

(1) Parameters are elements of the linear form xb_lcoal.
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Fitting Bayesian regression models using the bayes prefix

Bayesian autoregressive models

Lag selection

Bayesian linear regression MCMC iterations = 12,500

Random-walk Metropolis-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 103
Acceptance rate = .34
Efficiency: min = .002852

avg = .04431
Log marginal likelihood = -8.2084752 max = .1716

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

lcoal
lcoal

L1. .2062446 .0784492 .011311 .2050062 .0487352 .3605725
L2. -.0738366 .0588681 .002764 -.0739381 -.1877364 .0391768
L3. .100462 .0597828 .004398 .1003963 -.0142032 .2216838

L4. .7994076 .0606384 .006607 .8031808 .6651497 .910174
L5. -.0729926 .0698683 .009211 -.0708155 -.2074388 .060126

_cons -.1401982 .0812334 .015212 -.1438271 -.2877263 .0403175

sigma2 .0343128 .0051157 .000123 .0338508 .0256253 .0456132
lag 4.0194 .1379331 .004424 4 4 4

Note: Default priors are used for some model parameters.

Note: There is a high autocorrelation after 500 lags.
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Fitting Bayesian regression models using the bayes prefix

Bayesian multilevel models

Random-intercept model

Recall our earlier example of math scores. There are multiple
observations for each school.

Classical random-intercept model:

. mixed math5 math3 || school:

Mixed-effects ML regression Number of obs = 887
Group variable: school Number of groups = 48

Wald chi2(1) = 347.92
Log likelihood = -2767.8923 Prob > chi2 = 0.0000

math5 Coef. Std. Err. z P>|z| [95% Conf. Interval]

math3 .6088066 .0326392 18.65 0.000 .5448349 .6727783
_cons 30.36495 .3491544 86.97 0.000 29.68062 31.04928

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

school: Identity
var(_cons) 4.026853 1.189895 2.256545 7.186004

var(Residual) 28.12721 1.37289 25.5611 30.95094

LR test vs. linear model: chibar2(01) = 56.38 Prob >= chibar2 = 0.0000
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Bayesian random-intercept model:

. bayes, melabel: mixed math5 math3 || school:

note: Gibbs sampling is used for regression coefficients and variance
components

Bayesian multilevel regression MCMC iterations = 12,500

Metropolis-Hastings and Gibbs sampling Burn-in = 2,500
MCMC sample size = 10,000

Group variable: school Number of groups = 48

Number of obs = 887
Acceptance rate = .8091
Efficiency: min = .03366

avg = .3331
Log marginal likelihood max = .6298

Equal-tailed

Mean Std. Dev. MCSE Median [95% Cred. Interval]

math5
math3 .6087689 .0326552 .000436 .6087444 .5450837 .6729982
_cons 30.39202 .3597873 .01961 30.38687 29.67802 31.10252

school

var(_cons) 4.272626 1.299061 .039697 4.122282 2.247659 7.220809

var(Residual) 28.23014 1.37812 .017365 28.18347 25.63394 31.04375

Note: Default priors are used for model parameters.



Fitting Bayesian regression models using the bayes prefix

Bayesian multilevel models

Random-intercept model

Default output (without option melabel):

. bayes

Multilevel structure

school
{U0}: random intercepts

Model summary

Likelihood:
math5 ~ normal(xb_math5,{e.math5:sigma2})

Priors:
{math5:math3 _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{e.math5:sigma2} ~ igamma(.01,.01)

Hyperprior:

{U0:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_math5.
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Bayesian multilevel regression MCMC iterations = 12,500
Metropolis-Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: school Number of groups = 48

Obs per group:

min = 5
avg = 18.5
max = 62

Number of obs = 887

Acceptance rate = .8091
Efficiency: min = .03366

avg = .3331
Log marginal likelihood max = .6298

Equal-tailed

Mean Std. Dev. MCSE Median [95% Cred. Interval]

math5
math3 .6087689 .0326552 .000436 .6087444 .5450837 .6729982
_cons 30.39202 .3597873 .01961 30.38687 29.67802 31.10252

school

U0:sigma2 4.272626 1.299061 .039697 4.122282 2.247659 7.220809

e.math5
sigma2 28.23014 1.37812 .017365 28.18347 25.63394 31.04375

Note: Default priors are used for model parameters.



Display estimates of the first 12 “random effects”:

. bayes, showreffects({U0[1/12]})

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

math5
math3 .6087689 .0326552 .000436 .6087444 .5450837 .6729982

_cons 30.39202 .3597873 .01961 30.38687 29.67802 31.10252

U0[school]
1 -2.685824 .9776969 .031227 -2.672364 -4.633162 -.7837494

2 .015465 1.290535 .03201 .0041493 -2.560203 2.556316
3 1.049006 1.401383 .033731 1.021202 -1.534088 3.84523
4 -2.123055 .9921679 .028859 -2.144939 -4.069283 -.1507593

5 -.1504003 .9650027 .033881 -.1468966 -2.093015 1.721503
6 .5833945 1.192379 .032408 .5918357 -1.660335 3.049718

7 1.490231 1.332917 .033846 1.481793 -1.095757 4.272903
8 .4198105 .9783772 .031891 .4579817 -1.496317 2.403908
9 -1.996105 1.02632 .035372 -2.001467 -4.037044 -.0296276

10 .6736806 1.249238 .031114 .660939 -1.70319 3.179273
11 -.5650109 .9926453 .031783 -.5839293 -2.646413 1.300388

12 -.3620733 1.090265 .033474 -.3203626 -2.550097 1.717532

school
U0:sigma2 4.272626 1.299061 .039697 4.122282 2.247659 7.220809

e.math5
sigma2 28.23014 1.37812 .017365 28.18347 25.63394 31.04375

Note: Default priors are used for model parameters.



Fitting Bayesian regression models using the bayes prefix

Bayesian multilevel models

Random-intercept model

Posterior distributions of the first 12 “random effects”:

. bayesgraph histogram {U0[1/12]}, byparm
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Fitting Bayesian regression models using the bayes prefix

Bayesian multilevel models

Random-coefficient model

Bayesian random-coefficient model:

. bayes: mixed math5 math3 || school: math3, covariance(unstructured)
note: Gibbs sampling is used for regression coefficients and variance

components

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Multilevel structure

school

{U0}: random intercepts
{U1}: random coefficients for math3

Model summary

Likelihood:

math5 ~ normal(xb_math5,{e.math5:sigma2})

Priors:
{math5:math3 _cons} ~ normal(0,10000) (1)

{U0}{U1} ~ mvnormal(2,{U:Sigma,m}) (1)
{e.math5:sigma2} ~ igamma(.01,.01)

Hyperprior:
{U:Sigma,m} ~ iwishart(2,3,I(2))

(1) Parameters are elements of the linear form xb_math5.
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Fitting Bayesian regression models using the bayes prefix

Bayesian multilevel models

Random-coefficient model

Bayesian multilevel regression MCMC iterations = 12,500

Metropolis-Hastings and Gibbs sampling Burn-in = 2,500
MCMC sample size = 10,000

Group variable: school Number of groups = 48

Number of obs = 887
Acceptance rate = .6985
Efficiency: min = .02935

avg = .1559
Log marginal likelihood max = .5316

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

math5
math3 .6234197 .0570746 .002699 .6228624 .5144913 .7365849

_cons 30.34691 .3658515 .021356 30.34399 29.62991 31.07312

school

U:Sigma_1_1 4.527905 1.363492 .046275 4.345457 2.391319 7.765521
U:Sigma_2_1 -.322247 .1510543 .004913 -.3055407 -.6683891 -.0679181

U:Sigma_2_2 .0983104 .0280508 .000728 .0941222 .0556011 .1649121

e.math5
sigma2 26.8091 1.34032 .018382 26.76549 24.27881 29.53601

Note: Default priors are used for model parameters.
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Fitting Bayesian regression models using the bayes prefix

Bayesian survival models

Exponential model

Data: Time to hip fracture adjusted for age and for wearing a
hip-protective device.

Bayesian exponential survival model:

. set seed 15

. bayes: streg protect age, distribution(exponential)

failure _d: fracture
analysis time _t: time1

id: id

Burn-in ...

Simulation ...

Model summary

Likelihood:
_t ~ streg_exponential(xb__t)

Prior:
{_t:protect age _cons} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb__t.
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Fitting Bayesian regression models using the bayes prefix

Bayesian survival models

Exponential model

Bayesian exponential PH regression MCMC iterations = 12,500

Random-walk Metropolis-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

No. of subjects = 148 Number of obs = 206
No. of failures = 37
No. at risk = 1703

Acceptance rate = .1927
Efficiency: min = .05694

avg = .07511
Log marginal likelihood = -106.19703 max = .086

Equal-tailed

_t Haz. Ratio Std. Dev. MCSE Median [95% Cred. Interval]

protect .1279039 .0447223 .001525 .1189394 .0616285 .2328919
age 1.086308 .0372036 .001559 1.085883 1.018374 1.159326

_cons .0043577 .0352772 .001229 .0002529 2.05e-06 .0224516

Note: _cons estimates baseline hazard.

Note: Default priors are used for model parameters.

Store results for later comparison:

. bayes, saving(exp_mcmc)
note: file exp_mcmc.dta saved

. estimates store exp
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Fitting Bayesian regression models using the bayes prefix

Bayesian survival models

Weibull model

Bayesian Weibull model:

. set seed 15

. bayes, saving(weib_mcmc): streg protect age, distribution(weibull)

failure _d: fracture

analysis time _t: time1
id: id

Burn-in ...

Simulation ...

file weib_mcmc.dta saved

Model summary

Likelihood:

_t ~ streg_weibull(xb__t,{ln_p})

Priors:
{_t:protect age _cons} ~ normal(0,10000) (1)

{ln_p} ~ normal(0,10000)

(1) Parameters are elements of the linear form xb__t.
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Fitting Bayesian regression models using the bayes prefix

Bayesian survival models

Weibull model

Bayesian Weibull PH regression MCMC iterations = 12,500

Random-walk Metropolis-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

No. of subjects = 148 Number of obs = 206

No. of failures = 37
No. at risk = 1703

Acceptance rate = .368
Efficiency: min = .05571

avg = .09994

Log marginal likelihood = -107.88854 max = .1767

Equal-tailed

Haz. Ratio Std. Dev. MCSE Median [95% Cred. Interval]

_t

protect .0956023 .0338626 .001435 .0899154 .0463754 .1787249
age 1.103866 .0379671 .001313 1.102685 1.033111 1.180283

_cons .0075815 .0411427 .000979 .000567 4.02e-06 .0560771

ln_p .4473869 .1285796 .004443 .4493192 .1866153 .6912467

Note: Estimates are transformed only in the first equation.

Note: _cons estimates baseline hazard.
Note: Default priors are used for model parameters.

. estimates store weib
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Fitting Bayesian regression models using the bayes prefix

Bayesian survival models

Weibull model, group-specific shape parameters

Bayesian Weibull model with group-specific shape parameters:

. set seed 15

. bayes, saving(weib_anc_mcmc): streg protect age, distrib(weibull) ancillary(male)

failure _d: fracture
analysis time _t: time1

id: id

Burn-in ...
Simulation ...

file weib_anc_mcmc.dta saved

Model summary

Likelihood:
_t ~ streg_weibull(xb__t,xb_ln_p)

Priors:

{_t:protect age _cons} ~ normal(0,10000) (1)
{ln_p:male _cons} ~ normal(0,10000) (2)

(1) Parameters are elements of the linear form xb__t.
(2) Parameters are elements of the linear form xb_ln_p.
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Fitting Bayesian regression models using the bayes prefix

Bayesian survival models

Weibull model, group-specific shape parameters

Bayesian Weibull PH regression MCMC iterations = 12,500

Random-walk Metropolis-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

No. of subjects = 148 Number of obs = 206
No. of failures = 37
No. at risk = 1703

Acceptance rate = .136
Efficiency: min = .006093

avg = .02061
Log marginal likelihood = -102.48 max = .03044

Equal-tailed

Mean Std. Dev. MCSE Median [95% Cred. Interval]

_t
protect -2.108707 .3616945 .024969 -2.078421 -2.870089 -1.437823

age .0920509 .0330708 .001896 .0944527 .0324366 .1559498

_cons -9.881823 2.472154 .152612 -9.976053 -14.53088 -5.076762

ln_p
male -.5933872 .2344015 .016873 -.5561411 -1.171869 -.247341

_cons .4002401 .1083398 .013879 .4053514 .1776803 .6014997

Note: Default priors are used for model parameters.

Note: Adaptation tolerance is not met in at least one of the blocks.

. estimates store weib_anc
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Fitting Bayesian regression models using the bayes prefix

Bayesian survival models

Model comparison

Model comparison using Bayes factors:

. bayesstats ic weib_anc exp weib

Bayesian information criteria

DIC log(ML) log(BF)

weib_anc 147.9772 -102.48 .

exp 171.2604 -106.197 -3.717029
weib 162.7683 -107.8885 -5.408532

Note: Marginal likelihood (ML) is computed
using Laplace-Metropolis approximation.

Weibull model with group-specific shape parameters is
strongly preferable to the other models because log(BF)s are
negative and |2× log(BF)| > 6.
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Fitting Bayesian regression models using the bayes prefix

Concluding remarks

As of Stata 15, you can use bayes: to fit Bayesian regression
models more conveniently.

You can continue using bayesmh for fitting more general
Bayesian models or for programming your own.

Unlike bayesmh, bayes: provides default priors. You should
always evaluate the choice of priors and use the ones
appropriate for your model and research question.

All Bayesian postestimation features are available after
bayes:.

For a full list of commands supported by bayes:, see
www.stata.com/features/overview/bayesian-estimation/

See [BAYES] bayes and
www.stata.com/new-in-stata/bayes-prefix/ for more examples.
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Fitting Bayesian regression models using the bayes prefix
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