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Regression estimators

Gauss-Markov assumptions

o Ordinary Least Squares (OLS) is undoubtedly the simplest and
most commonly used estimator for linear regression analysis.

o Under a set of hypotheses, called Gauss-Markov (GM) assumptions,
this estimator is the most efficient linear unbiased estimator.

o One of these assumptions is that errors are normally distributed. In
case of heavy-tailed and/or asymmetrical distribution of the error
term, OLS is not the most efficient estimator anymore.

o Errors with a heavier tailed distribution can result in extreme

observations and can significantly affect the OLS estimates of
regression coefficients; the loss in efficiency can be very large.
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Regression estimators

Gauss-Markov assumptions

Qo

If the innovation distribution is known and not gaussian, the OLS
estimator is outperformed by the maximum likelihood estimator.

If the true error distribution is unknown, a nice solution is to
approximate it, relying on the information available in the sample,
and to estimate the regression coefficients by pseudo-maximum
likelihood.

Unfortunately, this often leads to a rather complex maximum
likelihood optimization problem as the density function is either very
complicated or non-explicit.

The optimization problem needed to fit the model is generally
difficult to handle.
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Regression estimator

Gauss-Markov assumptions

o Xu and Genton (2015) consider that the distribution of the error term
belongs to the family of the Tukey g-and-h distributions (T, 5) and
propose a computationally efficient numerical procedure to estimate
jointly, by maximum likelihood, the parameters of the error
distribution and the regression coefficients.

o The T, distribution, proposed by Tukey(1977), is extremely
flexible and approximates well a large number of commonly used
densities.

o In essence, this distribution is defined as a transformation of the
standard normal allowing to introduce skewness and to obtain larger
tail heaviness.

o The difficulty encountered by Xu and Genton (2015) is that there is
no explicit expression for the density function of a T,
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Flexible estimation

Tukey g-and-h
Definition

Let Z be a random variable from the standard normal distribution A/(0,1).
Define the random variable Y through the transformation

Y =€+ wrg n(2)

where £ € R, w > 0, and
1 gz hz?/2
Tg.n(2) = P (5 —1)e

with g € R and h > 0.

Variable Y is said to have a Tukey's g-and-h distribution with location
parameter £ and scale parameter w: Y ~ Tz p, (&, w). Parameter g controls
the direction and the degree of skewness and h controls the tail thickness.
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Density function

Tukey g-and-h

It is easy to show that the density function of the T, ,(§, w)-distributed
random variable Y takes the form:

(1 (59)
o) =———7— 70y YER
WTg b (Tg,h (T))
where ¢(-) is the standard normal density function, and 7'g_/17() and 7, (")

are the inverse and the first derivative of function 7, 4(-), respectively.

By defining Qg,n(u) = 7g,» (P71(u)), the density function can be rewritten
as

1
fyio(y) = —~ YER
<@ (e ()
where Q;},() and Qg ,(-) are the inverse and the first derivative of the
quantile function Qg n(-) of the standardized T, 4 (0, 1)-distribution.
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Density estimation

Maximum Likelihood

Let y1,...,y, be the realizations of n i.i.d. random variables of unknown
density f, possibly skewed and/or heavy tailed.

If density f is assumed to be a T, 4 (£, w), we may try to estimate
= (& w, g, h)T by maximizing log-likelihood:

> In(fyia(y)
i=1

= 2 [ino (i (M55)) ~ e (2 (959))

n

_ ; [—Inw— In Qg p <Q;}1 (Yiw€>>] '

However, since 7, h( ) and Q. +(*) do not have a closed form, numerical
evaluation of E(”)( ) is needed.

V. Verardi (FNRS, UNamur, ULB) Efficient regression estimator

UK Stata Conference, 2018 7/38



Density estimation

Order statistics

Here, we suggest to minimize the squared difference between
theoretical quantiles of the Tukey’s distribution and the empirical order

statistics:
n . 2
~ i
0 = i E ) — -1
argmén 2. {y(,) {§+WQg,h (n+1>}]
RN 2
= arg mgln .i 1 [y(,) — {5 + WTg.h (Zi/(n+1)) }} )
where y(;) is the ith order statistics among y1,...,y, and

Zi/(n+1) = ®71 (i/(n+ 1)) is the quantile of order i/(n+ 1) of the
standard normal distribution.

The score function to minimize is of the non linear least squares type
and the minimization problem can easily be solved by a classic algorithm

(of Gauss Newton type, for instance).
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Regression estimators

Semiparametric model

Qo

We propose here a quite different approach, that finds its foundation
in Vermandele (2000), Hallin et al. (2006) and Hallin et al. (2008).

We consider median-restricted regression model, that is a regression
model where the error term has zero median, but otherwise
unspecified density f.

This model is a semiparametric model, with the unknown innovation
density playing the role of an infinite dimensional nuisance
parameter.

In this context, semiparametric theory leads us to define a sign and
rank based estimator of the regression coefficients as a one-step
update of an initial root n consistent estimator.

The score function, initially defined on the basis of the exact
underlying innovation density f, is estimated using the fact that f
can be well adjusted by a Tukey g-and-h distribution.
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Regression estimator

Semiparametric median-restricted regression model

Let us consider the following linear regression model: for i =1,... n,
Yi:50+51Xi1+---+5pXip+€i:X,-T/3+€i (1)

with 3 = (B, 51, - .- ,BP)T, xi = (1, %1, - ,x,-p)T and where the i.i.d error
terms &; have zero median, but otherwise unspecified density f and
distribution function F.

Let Fo = {f : R — [0, 00) such that ono f(z)dz = [;° f(z)dz = 1/2}
denote the set of all densities on the real line that have median 0. Since

the innovation density is unknown, it plays the role of a nonparametric
nuisance.

Model y; = x',-rﬁ + ¢; defines a semiparametric model. The residuals

e (B)=y1 —xiB,...,en(B) = yn — x} B3 are i.i.d. with (marginal)
density f € Fp.
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Local Asymptotic Normality

Definition
In statistics, local asymptotic normality, introduced by Le Cam (1960),
is a property of a sequence of statistical models.

A sequence of statistical models is "locally asymptotically normal" if,
asymptotically, their likelihood ratio processes are similar to those for a
normal location parameter.

Technically, if the log likelihood is approximately quadratic with
constant Hessian, then the MLE is approximately normal.

Intuitively speaking, statistical inference in a LAN model is
asymptotically locally equivalent to inference in a Gaussian shift
experiment.

Wikipedia
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Semiparametric modelling

Parametric modelling

o Parametric theory has received a lot of attention in the literature.
Indeed, most well-known elementary statistical methods are
parametric.

o One of the most important results concerns the asymptotic normality
and efficiency of the maximum likelihood estimator (MLE), rooted
in the work by Fisher in the 1920s.

o Another key result is the lower bound theory rooted in the work by
Cramer and Rao in the 1940s

o The semiparametric approach to misspecification is to allow the
functional form of some components of the model to be
unrestricted.

o Therefore, solutions, if they exist and are reasonable, will have
greater applicability and robustness.
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Semiparametric efficiency

Semiparametric modelling

o Efficiency bounds quantify the efficiency loss that can result from a
semiparametric, rather than a parametric, approach.

o These bounds provide a guide to estimation methods of the
parametric components of the model

o Any \/n-consistent and asymptotically normal under the
semiparametric assumptions, is actually in the same class as the
maximum-likelihood estimator of the parameter in the parametric
submodel, and therefore has an asymptotic variance no smaller than
the bound for the parametric submodel.

o Since this comparison holds for each parametric submodel that one
could consider, it follows that the asymtpotic variance of any
semiparametric estimator is no smaller than the supremum of the
Cramer-Rao bounds for all parametric submodels.
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Parametrically efficient central sequence and estimator for 3

Efficient estimator

o Classical likelihood inference for 3 can be based on the
parametric Rao score (log-likelihood derivatives), or, in Le Cam’s
“uniform local asymptotic normality” terminology, on the central

. !
sequence: A;") (B) = ﬁ o ¢or (e (B)) xi with ¢f (e) = — f((:)).

o As n — oo, under Psr?[)_}, Afc") (B) £ N (0, 1¢) where I¢ is the
(parametric) Fisher information matrix for 3

. o ANy . .
o In particular, if ,8( ) is a y/n-consistent—but possibly
inefficient—estimator of 3, then

~(n)  =(n) 1 - n) 5N

B =8+ o007 APE")

is an efficient estimator of 3: under P;’%, as n — oo,
va (B - 8) 5N (0.007)
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Semiparametrically efficient central sequence

Efficient estimator

As Aff") (3) in general is not properly centred under density g # f ,
inference based on this central sequence is not valid when density f used
for the score function ¢¢(-) does not coincide with the true error density;

the estimator chn) is no longer \/n-consistent.

However, in the presence of a suitable group invariance structure,

semiparametrically efficient central sequence can be obtained by

conditioning Afcn) (B) on the maximal invariant.

Proposition 1  Under PS‘!% as n — 0o,

B (AP ()N (8),RW(3)] = AL (8)+o0r(1)
— A;”)*(ﬁ)+OP(1)
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Semiparametrically efficient central sequence

Efficient estimator

Define
A7) = ; 50 (R (8)) [x; - )]
+ 25(");5 (Ni") (8) — N (B)) %(7)
and
T+ _ f(n)% Z (X,. _ i(n)) (x,. _ i(n)>T L (25(")>2y(") (ym))T

with ¢f(u) = ¢ (F~(u)), for u € (0,1) and denoting by R(") (3) and
s(" (B) the vector of ranks and the vector of signs associated with the

residuals e; (B3), ..., en(B). Define NJ(F”) (B) and N (B) as the numbers

of positive and negative residuals, respectively.
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Semiparametrically efficient central sequence

Efficient estimator
Define

(n)
R™(B) = I[s(8)=—1] <1'R,.(m>

1 R7(B) - (n-n"(a))
2 MW@

bl =41+

For the estimation of w¢(-), Zr and f(0), we approximate error density f
using a Tukey distribution with location parameter (median) equal to zero

and skewness parameter g, tail heaviness parameter h and scale parameter

w estimated from the residuals e,-(B(n)

0 arg ming >y [e(i) - {f + wQg,h (ﬁ) Hz
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Semiparametrically efficient central sequence

Efficient estimator

Then, denoting by f the density function of the T. 7(0,@)-distribution and
g7
we have:

and

—00
where the integral is determined numerically.
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Simulations

Setup (n=100, n=1000)

Generate variables x;, x> and x3 from three independent standard random

normals. Then generate y = xy + xo + x3 + € where ¢ is distributed
according to some specific distribution:

@ Heavy-tailed distributions. The distributions considered are i) Normal,
i) Weibull(1,2), iii) LogNormal, iv) standard Laplace, v)
SkewLogistic(2), vi) Fréchet(3), vii) standard Cauchy, viii)
Stable(1,0.2) and ix) Fisher(5,2).

@ Tgh distributions with varying g and h parameters with
g € {0,0.25,0.5,0.75} and h € {0,0.25,0.5,0.75}.
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Simulations

Selected distributions

Normal

1

0-

4 2 0 2 4
920, h=0, Ri=1

Laplace
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5 0 5

920, h=0.13, R*=0.996

Cauchy

20 10 0 10 20
920, h=1, Ri=1
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Weibull(1,2)

4 1 2 3
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Skewlogistic(2)
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a-stable(1,0.2)

0 10 [ 10 20
9=0.14, h=0.96, R*=1
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LogNormal
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15-
1
5-
o-
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S
o
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Simulations

Average standard error

Distributions, n=100
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Simulations

Average standard error
Distribution: Normal, n=1000

Distribution: Laplace, n=1000
I i ]

Distribution: Cauchy, n=1000
157 13.2

Standard deviation
N
!

Standard deviation

3

Standard deviation
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Distributions, n=1000
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Simulations

Tukey g-and-h
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Simulations

Average standard error

Tukey g and h, n=100

Efficient regression estimator
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Simulations

Average standard error

Tail

Tukey g and h, n=1000
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Simulations

Relative variance w.r.t. OLS

®Fisher(5,2)

g LogNormal

@ Stable(1,0.2)
Cauchy

V. Verardi (FNRS, UNamur, ULB) Efficient regression estimator UK Stata Conference, 2018 26 /38



Relative speed

R&S vs ML

40- ML

30—
20—

— R&S

Estimated median computing time in seconds

I | | I I
0 20000 40000 60000 80000 100000
Sample size
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Stata commands

Semiparametrically efficient sign and rank regression estimators
Now we only have to plug everything in an ado-file

The idea here is to estimate regression parameters and the distribution of
the error term jointly.

We can assume that the distribution could be reasonable well approximated
by a Tukey g-and-h distribution as expected here or rely on a kernel density
estimation

o flexrank depvar indepvars [if] [in]
o Tukey g-and-h based score function

o flexnp depvar indepvars [if] [in]
o Kernel based score function

Both methods should be asymptotically equivalent but the former has
much better small sample behaviour.
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Fréchet example

Example

clear

set seed 1234567

set obs 50

drawnorm x1-x3

gen e=(-ln(uniform()))~(-1/3)
gen y=xl+x2+x3+e

flexrank y x*

flexnp y x*

qreg y x*

reg y x*
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Fréchet example

Example
R&S NP Ly LS
VARIABLES
x1 1.054%**  1.068*** 1.030*** 1.166***
(0.050)  (0.091)  (0.111)  (0.124)
x2 0.909%**  0.942%** (.960*** (0.916***
(0.048) (0.088) (0.107) (0.119)
x3 1.099***  (0.975***  1.210*** 1.219%**
(0.050)  (0.092)  (0.112)  (0.125)
Constant 1.236%**  1.245%** 1 183%** 1 427¥**
(0.066) (0.095) (0.109) (0.122)
Observations 50 50 50 50
R-squared 0.973 0.860 0.727 0.878
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Fréchet example

Example
1.6
1-
5-
— True
. —
0- ; T I — Kernel
I | I |
-2 0 2 4 6
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Application Nolan and Ojeda-Revah (2013)

Example

Week-to-week differences in AAA bond rates are regressed on the
difference in 10-year bond rates (period 2002-2014).

f g=.12,h=25

A.(AAA bonds)

Standardized residuals

A(10 yrs bonds)

—- s — Fs — Normal — Tukeyg-and-h
Estimated gain in efficiency w.r.t. LS: 44.4%
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Application Nolan and Ojeda-Revah (2013)

Example
reg d*

Source 55 df MSs Number of obs = 365
F(1, 363) = 1101.97
Model 2.57961138 1 2.57961138 Prob > F = 0.0000
Residual .849746427 363 .002340899 = 0.7522
= 0.7515
Total 3.42935781 364 .009421313 .04838
daaabond Coef. Stde Efts i P>|t] [95% Conf. Intervall]
dbons + 7639579 .0230136 33.20 0.000 .7187013 .8092146
-.0019117 .0025325 -0.75 0.451 -.0068919 .0030685

flexrank d*
daaabond Coef. Stde Efts z P3|z [95% Conf. Intervall]
.8069863 .0171641 47.02 0.000 .7733453 .8406273
-.0034377 .002088 -1.65 0.100 -.0075301 .0006547
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Application Stock and Watson (2007)

Example
Determinants of prices of 180 economics journals at US libraries, for the
year 2000.

Adjusted density Quantile-Quantile Plot

g=27,h=44

Tukey g-and-h prediction

10 15 -10 10 15

b -

-10

Stadardized residuals

0 5
Standardized residuals

Efficiency gain: 69.4%
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Application Stock and Watson (2007)

Results
Regression results
LS R&S
VARIABLES
i+ Pages 0.538%** 0.377***
(0.061) (0.030)
Characters pp. 0.055 0.049***
(0.034) (0.017)
Total citations -0.003 -0.029**
(0.024) (0.012)
First year 1.981 2.446***
(1.248) (0.625)
Society -270.397** -156.973**
(133.634) (66.943)
Constant -4,157.581*  -4,994.901***
(2,441.560)  (1,223.088)
Publisher and field F.E.
Observations 180 180
R-squared 0.806 0.896

S.E. in parentheses, *, **, *** indicate a significance
at 10%, 5% and 1% respectively
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Conclusion

What to take back home

Qo

Qo

One of the Gauss-Markov assumptions in a regression model is that
errors are normally distributed. In case of heavy-tailed and/or
asymmetrical distribution of the error term, OLS is not the most
efficient estimator anymore

Semiparametric efficiency can be reached using a sign and rank
estimator

The density of the error term can be estimated jointly with
regression parameters

Residuals estimated density can be easily plotted

The density estimation can be done using kernels of more efficiently
using a Tukey g-and-h approximation

Stata commands are available upon request
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