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Regression estimators

Gauss-Markov assumptions

Ordinary Least Squares (OLS) is undoubtedly the simplest and
most commonly used estimator for linear regression analysis.

Under a set of hypotheses, called Gauss-Markov (GM) assumptions,
this estimator is the most e�cient linear unbiased estimator.

One of these assumptions is that errors are normally distributed. In
case of heavy-tailed and/or asymmetrical distribution of the error
term, OLS is not the most e�cient estimator anymore.

Errors with a heavier tailed distribution can result in extreme
observations and can signi�cantly a�ect the OLS estimates of
regression coe�cients; the loss in e�ciency can be very large.
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Regression estimators

Gauss-Markov assumptions

If the innovation distribution is known and not gaussian, the OLS
estimator is outperformed by the maximum likelihood estimator.

If the true error distribution is unknown, a nice solution is to
approximate it, relying on the information available in the sample,
and to estimate the regression coe�cients by pseudo-maximum
likelihood.

Unfortunately, this often leads to a rather complex maximum
likelihood optimization problem as the density function is either very
complicated or non-explicit.

The optimization problem needed to �t the model is generally
di�cult to handle.
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Regression estimator

Gauss-Markov assumptions

Xu and Genton (2015) consider that the distribution of the error term
belongs to the family of the Tukey g-and-h distributions (Tg ,h) and
propose a computationally e�cient numerical procedure to estimate
jointly, by maximum likelihood, the parameters of the error
distribution and the regression coe�cients.

The Tg ,h distribution, proposed by Tukey(1977), is extremely
�exible and approximates well a large number of commonly used
densities.

In essence, this distribution is de�ned as a transformation of the
standard normal allowing to introduce skewness and to obtain larger
tail heaviness.

The di�culty encountered by Xu and Genton (2015) is that there is
no explicit expression for the density function of a Tg ,h
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Flexible estimation

Tukey g-and-h

De�nition

Let Z be a random variable from the standard normal distribution N (0, 1).
De�ne the random variable Y through the transformation

Y = ξ + ωτg ,h(Z )

where ξ ∈ R, ω > 0, and

τg ,h(z) =
1

g
(egz − 1) ehz

2/2

with g ∈ R and h ≥ 0.

Variable Y is said to have a Tukey's g -and-h distribution with location
parameter ξ and scale parameter ω: Y ∼ Tg ,h (ξ, ω). Parameter g controls
the direction and the degree of skewness and h controls the tail thickness.

V. Verardi (FNRS, UNamur, ULB) E�cient regression estimator UK Stata Conference, 2018 5 / 38



Density function

Tukey g-and-h

It is easy to show that the density function of the Tg ,h(ξ, ω)-distributed
random variable Y takes the form:

fY |θ(y) =
φ
(
τ−1g ,h

(
y−ξ
ω

))
ωτ ′g ,h

(
τ−1g ,h

(
y−ξ
ω

)) , y ∈ R,

where φ(·) is the standard normal density function, and τ−1g ,h(·) and τ ′g ,h(·)
are the inverse and the �rst derivative of function τg ,h(·), respectively.
By de�ning Qg ,h(u) = τg ,h

(
Φ−1(u)

)
, the density function can be rewritten

as

fY |θ(y) =
1

ωQ ′g ,h

(
Q−1g ,h

(
y−ξ
ω

)) , y ∈ R,

where Q−1g ,h(·) and Q ′g ,h(·) are the inverse and the �rst derivative of the
quantile function Qg ,h(·) of the standardized Tg ,h (0, 1)-distribution.
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Density estimation

Maximum Likelihood

Let y1, . . . , yn be the realizations of n i.i.d. random variables of unknown
density f , possibly skewed and/or heavy tailed.

If density f is assumed to be a Tg ,h (ξ, ω), we may try to estimate

θ = (ξ, ω, g , h)T by maximizing log-likelihood:

`(n) (θ) =
n∑

i=1

ln(fY |θ(yi ))

=
n∑

i=1

[
lnφ

(
τ−1g ,h

(
yi − ξ
ω

))
− lnω − ln τ ′g ,h

(
τ−1g ,h

(
yi − ξ
ω

))]

=
n∑

i=1

[
− lnω − lnQ ′g ,h

(
Q−1g ,h

(
yi − ξ
ω

))]
.

However, since τ−1g ,h(·) and Q−1g ,h(·) do not have a closed form, numerical

evaluation of `(n) (θ) is needed.
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Density estimation

Order statistics

Here, we suggest to minimize the squared di�erence between
theoretical quantiles of the Tukey's distribution and the empirical order
statistics:

θ̂ = arg min
θ

n∑
i=1

[
y(i) −

{
ξ + ωQg ,h

(
i

n + 1

)}]2
= arg min

θ

n∑
i=1

[
y(i) −

{
ξ + ωτg ,h

(
zi/(n+1)

)}]2
,

where y(i) is the ith order statistics among y1, . . . , yn and
zi/(n+1) = Φ−1 (i/(n + 1)) is the quantile of order i/(n + 1) of the
standard normal distribution.

The score function to minimize is of the non linear least squares type
and the minimization problem can easily be solved by a classic algorithm
(of Gauss Newton type, for instance).
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Regression estimators

Semiparametric model

We propose here a quite di�erent approach, that �nds its foundation
in Vermandele (2000), Hallin et al. (2006) and Hallin et al. (2008).

We consider median-restricted regression model, that is a regression
model where the error term has zero median, but otherwise
unspeci�ed density f .

This model is a semiparametric model, with the unknown innovation
density playing the role of an in�nite dimensional nuisance
parameter.

In this context, semiparametric theory leads us to de�ne a sign and
rank based estimator of the regression coe�cients as a one-step
update of an initial root n consistent estimator.

The score function, initially de�ned on the basis of the exact
underlying innovation density f , is estimated using the fact that f
can be well adjusted by a Tukey g-and-h distribution.
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Regression estimator

Semiparametric median-restricted regression model

Let us consider the following linear regression model: for i = 1, . . . , n,

yi = β0 + β1xi1 + . . .+ βpxip + εi = xTi β + εi (1)

with β = (β0, β1, . . . , βp)T, xi = (1, xi1, . . . , xip)T and where the i.i.d error
terms εi have zero median, but otherwise unspeci�ed density f and
distribution function F .

Let F0 =
{
f : R→ [0,∞) such that

´ 0
−∞ f (z)dz =

´∞
0

f (z)dz = 1/2
}

denote the set of all densities on the real line that have median 0. Since
the innovation density is unknown, it plays the role of a nonparametric
nuisance.

Model yi = xTi β + εi de�nes a semiparametric model. The residuals
e1 (β) = y1 − xT1 β, . . . , en (β) = yn − xTn β are i.i.d. with (marginal)
density f ∈ F0.
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Local Asymptotic Normality

De�nition

In statistics, local asymptotic normality, introduced by Le Cam (1960),
is a property of a sequence of statistical models.

A sequence of statistical models is "locally asymptotically normal" if,
asymptotically, their likelihood ratio processes are similar to those for a
normal location parameter.

Technically, if the log likelihood is approximately quadratic with
constant Hessian, then the MLE is approximately normal.

Intuitively speaking, statistical inference in a LAN model is
asymptotically locally equivalent to inference in a Gaussian shift
experiment.

Wikipedia
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Semiparametric modelling

Parametric modelling

Parametric theory has received a lot of attention in the literature.
Indeed, most well-known elementary statistical methods are
parametric.

One of the most important results concerns the asymptotic normality
and e�ciency of the maximum likelihood estimator (MLE), rooted
in the work by Fisher in the 1920s.

Another key result is the lower bound theory rooted in the work by
Cramer and Rao in the 1940s

The semiparametric approach to misspeci�cation is to allow the
functional form of some components of the model to be
unrestricted.

Therefore, solutions, if they exist and are reasonable, will have
greater applicability and robustness.
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Semiparametric e�ciency

Semiparametric modelling

E�ciency bounds quantify the e�ciency loss that can result from a
semiparametric, rather than a parametric, approach.

These bounds provide a guide to estimation methods of the
parametric components of the model

Any
√
n-consistent and asymptotically normal under the

semiparametric assumptions, is actually in the same class as the
maximum-likelihood estimator of the parameter in the parametric
submodel, and therefore has an asymptotic variance no smaller than
the bound for the parametric submodel.

Since this comparison holds for each parametric submodel that one
could consider, it follows that the asymtpotic variance of any
semiparametric estimator is no smaller than the supremum of the
Cramer-Rao bounds for all parametric submodels.
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Parametrically e�cient central sequence and estimator for β

E�cient estimator

Classical likelihood inference for β can be based on the
parametric Rao score (log-likelihood derivatives), or, in Le Cam's
�uniform local asymptotic normality� terminology, on the central

sequence: ∆
(n)
f (β) = 1√

n

∑n
i=1 φf (ei (β)) xi with φf (e) = − f ′(e)

f (e) .

As n→∞, under P(n)
f ;β, ∆

(n)
f (β)

L−→ N (0, If ) where If is the
(parametric) Fisher information matrix for β

In particular, if β̃
(n)

is a
√
n-consistent�but possibly

ine�cient�estimator of β, then

β̂
(n)

f = β̃
(n)

+
1√
n

(If )−1∆
(n)
f (β̃

(n)
)

is an e�cient estimator of β: under P
(n)
f ;β, as n→∞,

√
n
(
β̂
(n)

f − β
)
L−→ N

(
0, (If )−1

)
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Semiparametrically e�cient central sequence

E�cient estimator

As ∆
(n)
f (β) in general is not properly centred under density g 6= f ,

inference based on this central sequence is not valid when density f used
for the score function φf (·) does not coincide with the true error density;

the estimator β̂
(n)

f is no longer
√
n-consistent.

However, in the presence of a suitable group invariance structure,
semiparametrically e�cient central sequence can be obtained by

conditioning ∆
(n)
f (β) on the maximal invariant.

Proposition 1 Under P
(n)
f ;β, as n→∞,

E

[
∆

(n)
f (β)

∣∣∣N(n) (β) ,R(n) (β)
]

= ∆
(n)∗
f (β) + oP(1)

= ∆
(n)∗
f (β) + oP(1)
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Semiparametrically e�cient central sequence

E�cient estimator
De�ne

∆̂
(n)∗

(β) =
1√
n

n∑
i=1

ϕ̂(n)
(
R
(n)
i (β)

) [
xi − x(n)

]
+ 2Ô(n) 1√

n

(
N

(n)
+ (β)− N

(n)
− (β)

)
x(n)

and

Î(n)∗ = Î(n) 1
n

n∑
i=1

(
xi − x(n)

)(
xi − x(n)

)
T

+
(
2Ô(n)

)2
x(n)

(
x(n)
)
T

with ϕf (u) = φf
(
F−1(u)

)
, for u ∈ (0, 1) and denoting by R(n) (β) and

s(n) (β) the vector of ranks and the vector of signs associated with the

residuals e1 (β) , . . . , en (β). De�ne N
(n)
+ (β) and N

(n)
− (β) as the numbers

of positive and negative residuals, respectively.
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Semiparametrically e�cient central sequence

E�cient estimator
De�ne

R
(n)
i (β) = I [si (β) = −1]

(
1

2
·

R
(n)
i (β)

N
(n)
− (β) + 1

)

+ I [si (β) = +1]

1

2
+

1

2
·
R
(n)
i (β)−

(
n − N

(n)
+ (β)

)
N

(n)
+ (β) + 1


For the estimation of ϕf (·), If and f (0), we approximate error density f
using a Tukey distribution with location parameter (median) equal to zero
and skewness parameter g , tail heaviness parameter h and scale parameter

w estimated from the residuals ei (β̃
(n)

), i = 1, . . . , n by solving

θ̂ arg minθ
∑n

i=1

[
e(i) −

{
ξ + ωQg ,h

(
i

n+1

)}]2
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Semiparametrically e�cient central sequence

E�cient estimator

Then, denoting by f̂ the density function of the T
ĝ ,ĥ

(0, ω̂)-distribution and

we have:

Ô(n) = f̂ (0) =
1

ω̂Q ′
ĝ ,ĥ

(
Q−1

ĝ ,ĥ
(0)
) =

1

ω̂Q ′
ĝ ,ĥ

(1/2)
=

1

ω̂
√
2π
,

ϕ̂(n)(u) = ϕ
f̂
(u) =

Q ′′
ĝ ,ĥ

(u)

ω̂
[
Q ′

ĝ ,ĥ
(u)
]2

and

Î(n) =

ˆ ∞
−∞

φ2
f̂
(y)f̂ (y)dy =

ˆ 1

0

ϕ2
f̂
(u)du

where the integral is determined numerically.

V. Verardi (FNRS, UNamur, ULB) E�cient regression estimator UK Stata Conference, 2018 18 / 38



Simulations

Setup (n=100, n=1000)

Generate variables x1, x2 and x3 from three independent standard random
normals. Then generate y = x1 + x2 + x3 + ε where ε is distributed
according to some speci�c distribution:

1 Heavy-tailed distributions. The distributions considered are i) Normal,

ii) Weibull(1,2), iii) LogNormal, iv) standard Laplace, v)

SkewLogistic(2), vi) Fréchet(3), vii) standard Cauchy, viii)

Stable(1,0.2) and ix) Fisher(5,2).

2 Tgh distributions with varying g and h parameters with

g ∈ {0, 0.25, 0.5, 0.75} and h ∈ {0, 0.25, 0.5, 0.75}.
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Simulations

Selected distributions
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Simulations

Average standard error
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Simulations

Average standard error
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Simulations

Tukey g-and-h
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Simulations

Average standard error
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Simulations

Average standard error
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Simulations

Relative variance w.r.t. OLS
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Relative speed

R&S vs ML
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Stata commands

Semiparametrically e�cient sign and rank regression estimators

Now we only have to plug everything in an ado-�le

The idea here is to estimate regression parameters and the distribution of
the error term jointly.

We can assume that the distribution could be reasonable well approximated
by a Tukey g-and-h distribution as expected here or rely on a kernel density
estimation

flexrank depvar indepvars [if] [in]

Tukey g-and-h based score function

flexnp depvar indepvars [if] [in]

Kernel based score function

Both methods should be asymptotically equivalent but the former has
much better small sample behaviour.
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Fréchet example

Example

clear

set seed 1234567

set obs 50

drawnorm x1-x3

gen e=(-ln(uniform()))^(-1/3)

gen y=x1+x2+x3+e

flexrank y x*

flexnp y x*

qreg y x*

reg y x*
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Fréchet example

Example

R&S NP L1 LS
VARIABLES

x1 1.054*** 1.058*** 1.030*** 1.166***
(0.050) (0.091) (0.111) (0.124)

x2 0.909*** 0.942*** 0.960*** 0.916***
(0.048) (0.088) (0.107) (0.119)

x3 1.099*** 0.975*** 1.210*** 1.219***
(0.050) (0.092) (0.112) (0.125)

Constant 1.236*** 1.245*** 1.183*** 1.427***
(0.066) (0.095) (0.109) (0.122)

Observations 50 50 50 50
R-squared 0.973 0.860 0.727 0.878

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Fréchet example

Example
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Application Nolan and Ojeda-Revah (2013)

Example

Week-to-week di�erences in AAA bond rates are regressed on the
di�erence in 10-year bond rates (period 2002-2014).
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Application Nolan and Ojeda-Revah (2013)

Example
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Application Stock and Watson (2007)

Example

Determinants of prices of 180 economics journals at US libraries, for the
year 2000.
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Application Stock and Watson (2007)

Results
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Conclusion

What to take back home

One of the Gauss-Markov assumptions in a regression model is that
errors are normally distributed. In case of heavy-tailed and/or
asymmetrical distribution of the error term, OLS is not the most
e�cient estimator anymore

Semiparametric e�ciency can be reached using a sign and rank
estimator

The density of the error term can be estimated jointly with
regression parameters

Residuals estimated density can be easily plotted

The density estimation can be done using kernels of more e�ciently
using a Tukey g-and-h approximation

Stata commands are available upon request
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