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Today’s talk

New command for a two-step Heckman sample selection estimator
under heteroskedasticity.

Outline of talk
1. Background

▶ endogenous sample selection model
▶ two-step Heckman estimator

2. Introduce heteroskedasticity - generalized two-step Heckman
Estimator

▶ gtsheckman

3. Example
▶ Mroz (1987)
▶ use http://fmwww.bc.edu/ec-p/data/wooldridge/mroz, clear
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Sample Selection

The outcome is modeled as

yi = x1iβ + u1i (1)

but the outcome is not always observed.

yi is only observed when si = 1,

si = 1(x2iγ + u2i > 0) (2)

▶ both x1i and x2i include a constant
▶ often x2i = (x1i,wi)
▶ Ex: Estimating married woman wages

ln(wagei) =β0 + educiβ1 + u1i

inlfi =1(γ0 + educiγ1 + nwifinciγ2 + u2i > 0)
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Sample Selection

yi =x1iβ + u1i (1)

si =1(x2iγ + u2i > 0) (2)

Heckman (1979) famous paper assume(
ui1

ui2

)
∼ N

((
0
0

)
,

(
σ2 ρσ
ρσ 1

))
Which suggests two possible estimators:

1. Full information ML: maximum likelihood over the joint distribution
of yi and si.

2. Limit information ML: two-step estimator based on the conditional
distribution of yi|si = 1
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two-step Heckman Estimator

yi =x1iβ + u1i (1)

si =1(x2iγ + u2i > 0) (2)

Heckman (1979) famous paper assume(
ui1

ui2

)
∼ N

((
0
0

)
,

(
σ2 ρσ
ρσ 1

))
The two-step estimator builds follows from

E(ui1|si = 1,x1i,x2i) = ρσ
ϕ(x2iγ/1)

Φ(x2iγ/1)× 1

and therefore

E(yi|sit = 1,x1i,x2i) = x1iβ + ρσ
ϕ(x2iγ/1)

Φ(x2iγ/1)× 1
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two-step Heckman Estimator

two-step Heckman Estimator

1. Estimate the binary choice in equation (2) using probit, calculate the

estimated inverse mills ratio: λ̂i = ϕ(x2iγ̂/1)/(Φ(x2iγ̂/1)× 1).
2. Estimate the following augmented regression:

yi = x1iβ + βλλ̂i + εi.

Stata command:

heckman depvar
[
indepvars

]
, select(depvars = varlists) twostep
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two-step Heckman Estimator
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two-step Heckman Estimator
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Introducing Heteroskedasticity

yi =x1iβ + u1i (1)

si =1(x2iγ + u2i > 0) (2)

Now allowing for heteroskedasticity(
ui1

ui2

)
∼ N

((
0
0

)
,

(
σ2
1i σ12i

σ12i σ2
2i

))
Consider parametric models for the heteroskedasticity:

σ2
2i ={exp(z2iδ)}2 (3)

σ12i =z12iπ (4)

then

E(yi | si = 1,x1i,x2i, z2i, z12i) = x1iβ + z12iπ
ϕ(x2iγ/ exp(z2iδ))

Φ(x2iγ/ exp(z2iδ)) exp(z2iδ)
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generalized two-step Heckman Estimator

generalized two-step Heckman Estimator

1. Estimate the binary choice in equation (2) with exponential
heteroskedasticity in equation (3) via a pooled MLE approach using
hetprobit, calculate the scaled estimated inverse mills ratio:

λ̂i =
ϕ(x2iγ̂/ exp(z2iδ̂2))

Φ(x2iγ̂/ exp(z2iδ̂2)) exp(z2iδ̂2)
.

2. Estimate the following augmented regression

yi = x1iβ + λ̂iz12iπ + εi. (5)

Stata command:

gtsheckman depvar
[
indepvars

]
, select(depvars = varlists)[

het(varlist1) clp(varlist2) vce(vcetype)
]
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generalized two-step Heckman Estimator

What to include in z2i and z12i?

z2i are the covariates in the conditional variance of the binary sample
selection equation
▶ variables that determine the heterogeneity in variance of the latent

sample selection
▶ variables with a heterogeneous effect on sample selection
▶ all of x2i to allow for flexibility in the distributional assumption

(probit)

z12i are the covariates in the conditional covariance across the
outcome and sample selection equations
▶ it always includes a constant
▶ variables that determine the heterogeneity in the endogeneity of

sample selection
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generalized two-step Heckman Estimator

16



Conclusion

gtsheckman: generalized two-step Heckman sample selection
estimator
▶ available at https://carlsonah.mufaculty.umsystem.edu/research
▶ Carlson and Joshi (2021) utilizes the gtsheckman estimator for panel

data with heterogeneous coefficients and sample selection
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