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Abstract: This paper studies the predictability and weak-form infor-
mational e±ciency of eight long daily time series of major stock index, spot
exchange rate and Eurodeposit rate returns. E±ciency and predictability
are inversely related and respectively increasing and decreasing in a sample's
self-information measure (SIM). SIM corresponds to a sample's normalized
entropy. Its evolution with sample size is non-monotonic and characterized
by sharp breaks corresponding to extreme events (outliers). Including such
events in-sample lowers the SIM and renders the underlying data generating
process less e±cient, or more predictable. It is found that Eurodeposit rate
returns are relatively more predictable than stock index returns, which in
turn are more predictable than exchange rate returns. The sample size at
which the SIM is maximum is smallest for sterling Eurodeposit returns and
greatest for dollar Eurodeposit returns. The proposed non-parametric frame-
work o®ers a convenient measure of the contribution of new information to
the predictability of asset returns processes.
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1 Introduction

Is the amount of past information to use in forecasting ¯nancial returns
independent of the likelihood of extreme events? Equivalently, what is the
appropriate out-of-sample separation point for optimizing the performance of
a given forecasting model? A non-normal but linear data generating process
only satis¯es weak stationarity, which is necessary but not su±cient for strict
stationarity (Granger and Newbold (1986) and Hamilton (1994)). Therefore,
sample size matters. The decision to include an extreme observation outlier
such as a ¯nancial crash in-sample can signi¯cant a®ect a forecasting model's
out-of-sample performance.
The need for a simple and robust framework for quantifying the value

of past ¯nancial information °ows has grown following recent episodes of
high volatility in various interest rate and stock markets. Indeed, against
a background of increasing ¯nancial market uncertainty, the value of past
information refers not only to the observed level|conditional mean|but
also to the observed volatility of the underlying ¯nancial assets. In that
respect, advances in GARCH and VaR methodologies for risk assessment
are often sensitive to parametric assumptions about the underlying returns
distributions. Unfortunately, these assumptions are likely to be violated by
the non-normal features of the actual empirical distributions. Moreover, the
choice of information set is independent of the following factors: (i) the likely
presence of extreme events, and (ii) the risk of contagion between di®erent
¯nancial markets documented in turbulent circumstances.

This paper proposes a ¯nite-sample non-parametric measure of a dgp's
predictability and weak-form informational e±ciency. The self-information
measure (SIM ) of a ¯nite sample is de¯ned as its entropy normalized by its
alphabet length. This measure is closely related to the normalized entropy
statistic of Golan, Judge and Miller (1996). The key motivation is to develop
a simple non-parametric measure of the value of past information which ac-
counts for factor (i) above. In that respect, Tambakis (2000) proposed using
a dataset's average information content (AIC) as an information-theoretic
predictability measure. A discrete dataset's average information content was
de¯ned as its normalized entropy. In turn, normalized entropy was shown to
be the ¯rst component of non-parametric predictability, de¯ned as the mu-
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tual information between the random variable to be forecast and the ensem-
ble of past observations, normalized by the alphabet length underlying the
sample's empirical fequency distribution. Theoretically, ¯nite-sample pre-
dictability was shown to be increasing in normalized entropy and decreasing
in the conditional entropy of the data generating process, while the general
relation between forecast error probability and normalized entropy was non-
monotonic. Quantifying the value of extreme events within one market is
necessary in order to address cross-market risk, which is the subject of factor
(ii) above.2

The focus is on the impact of the arrival of new information|that is of
changing sample size|on the SIM of a dataset, and hence on its univariate
predictability and weak-form informational e±ciency. The SIM of 8 daily
time series of stock index, FX and Eurodeposit rate returns is analyzed.
It is shown that SIM is non-monotonic in the sample size and is charac-
terized by clear breaks corresponding to extreme events. In the e±cient
market terminology of Fama (1970, 1991), the predictability of a ¯nancial
asset's returns process is inversely related to its informational e±ciency. In
information-theoretic terms, the predictability of the data generating process
can be de¯ned as the mutual information between the random variable to be
forecast and the ensemble of past observations, normalized by the alphabet
length underlying the sample's empirical probability distribution.3

The main results are as follows. First, the SIM of simulated data from
known pdf's is shown to be increasing in the sample size. Then, using long
daily return time series for stock market averages, spot exchange rates and
overnight Eurodeposit rates, it is shown that the evolution of SIM is non-
monotonic in the sample size and is behavior is marked by breaks corre-
sponding to extreme events. The relative predictability of returns is then
compared across ¯nancial markets. For small to moderate sample sizes, spot
FX market returns are relatively less predictable (more informationally ef-
¯cient) than stock market returns, which in turn are less predictable than
Eurodeposit rate returns. Finally, we estimate linear autoregressive (AR)
parametric models and compare the evolution of SIM against that of mean
squared forecast error (MSE) for changing sample size. The results suggest
that although the levels of SIM and MSE can be signi¯cantly correlated,

2This is the subject of current research which is discussed in the conclusion.
3See Fraser (1989) and Palus (1993).
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their stationary ¯rst di®erences are uncorrelated. However, it is shown that
the ¯rst di®erence of SIM Granger-causes the ¯rst di®erence of MSE for 6
out of the 8 time series.

The remainder of the paper is arranged as follows. In the theoretical Sec-
tion 2 the information-theoretic measures of sample, conditional and relative
entropy reviewed and the self-information measure obtained as one compo-
nent of ¯nite-sample predictability. The latter is shown to be increasing
in the conditional entropy of the dgp and decreasing in its SIM. Section 3
discusses the ¯nancial returns data. In Section 4 the implications of the theo-
retical properties of SIM are explored for simulated and actual data. Section
5 concludes.

2 Sample entropy and self-information

An n{vector of observations fxt; xt¡1; :::; xt¡n+1g from a discretely-observed
¯nancial variable X is denoted xn. The sample entropy of X is Hk

n(X) =
¡ Pk

i=1pi logpi, where fpigki=1 are the empirical probabilities of observations
partitioned into equally-spaced percentiles i = 1; :::; k. The log is to base
2, so the entropy units are information bits. The percentile ensemble is
de¯ned as the alphabet of the dgp. Its length k de¯nes the partition: a
¯ner (coarser) partition amounts to a bigger (smaller) alphabet. For discrete
random variables, the value of maximum entropy occurs for the uniform
probability density function (pdf) where pi = 1=k for all i: maxHk

n(X) =
log k.4 In "normal" circumstances the alphabet length is invariant to the
sample size. However, the arrival of an "extreme" observation in-sample
may necessitate a marginal increase in alphabet length from k to k + 1.

The joint and conditional entropies of random variables fX1; X2; :::; Xng
with joint pdf p(x1; :::; xn) are respectively:

Hk
n(X1; :::; Xn) = ¡

X

x1

X

x2

:::
X

xn

p(x1; :::; xn) log p(x1; :::; xn) (1)

Hk
n(Xn j Xn¡1) =

X

x1

X

x2

:::
X

xn

p(xn j xn¡1) logp(xn j xn¡1) , (2)

4See Applebaum (1996) and Golan, Judge and Miller (1996).
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where p(xn j xn¡1) is the conditional pdf of Xn given past observations
Xn¡1 fx1; :::; xn¡1g.

In Tambakis (2000), univariate non-parametric predictability P kn (Xn; X
n¡1)

of random variable Xn as a function of the information set Xn¡1 was de¯ned
as its mutual information I(Xn; X

n¡1) normalized by the maximum entropy
of a discrete dgp with a k{alphabet:

P kn (Xn; X
n¡1) =

I(Xn; X
n¡1)

log k
(3)

=
Hk
n (Xn) ¡Hk

n(Xn jXn¡1)
log k

Normalization implies that P kn (Xn) is and bounded between 0 and 1.
Fraser (1989) and Palus (1993) de¯ne the numerator of the predictability
statistic to be the (non-linear) redundancy measure. Note that mutual in-
formation in the numerator of (3) is symmetric and non-negative. If X and
Y are independent then H(X j Y ) = H(X ), so I(X;Y ) = 0 and Y is use-
less in predicting X . In contrast, if X is a deterministic function of Y then
H(X j Y ) = 0 and mutual information is maximized.

The entropy rate of a random sequence fXigni=1 is de¯ned as Hk(n) =
limn!1

1
nH

k
n(X1; :::; Xn). ThusH

k(n) is the limit of the average joint entropy
per observation. If the fXig sequence is iid then Hk

n(X1; :::; Xn) = nH
k
n(X1),

implying Hk(n) = limn!1nHk
n (Xn)=n = H

k
n(Xn). Khinchin (1957) shows

the existence ofH k(n) for strictly stationary processes. Moreover, for strictly
stationary ergodic processes conditional entropy converges to the entropy
rate. Asymptotic predictability then becomes:5

lim
n!1P

k
n (Xn; X

n¡1) =
1

log k
[ lim
n!1(H

k
n(Xn))¡Hk(n)] (4)

The second term in (4) converges to the entropy rate. Thus asymptotic
predictability is smallest (e±ciency is greatest) when limn!1Hk

n(Xn)= logk
is maximized, while it is zero for an iid sequence. We therefore de¯ne the

5For a proof see Cover and Thomas (1991).
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resulting ¯nite-sample statistic as the self-information measure (SIM ) of a
sample of size n and alphabet length k:

SIM k
n =

Hk
n(Xn)

log k
(5)

3 The data

The variation of SIM with sample size is examined for long daily returns
series from 8 ¯nancial markets. The stock index data consist of daily returns
of the Dow Jones (DJIA) and Nikkei (NIKKEI) averages over the period
1=1=1973{6=4=1998. The FX market data consist of daily returns of the
deutschemark/dollar (DM/$), yen/dollar (JPY/$) and sterling/dollar ($/$)
spot exchange rates over the same period. This yields a total of 6; 591 obser-
vations. The interest rate data are daily returns on overnight Eurodeposit
rates denominated in US dollars (EURO{$), German marks (EURO{DM)
and sterling (EURO{$). The Eurodeposit rate sample period is 3=1=1975{
2=4=1998, a total 6; 065 observations. All returns time series are weakly
stationary over the sample period.6 The alphabet length is ¯xed at k = 100
percentiles, and the last in-sample observation is ¯xed at 6; 500 for stock
market and FX returns, and 6; 000 for Eurodeposit rate returns. The last
in-sample observation is the out-of-sample cut-o® point.

4 Returns predictability and market e±ciency

4.1 Monte Carlo simulations

The evolution of SIM k
n with changing sample size is ¯rst illustrated using

simulated data from the Gaussian (0; 1), uniform [0; 1], gamma (1; 1) and
Poisson (1) distributions. For each sample size from n = 1 to 1000, the
simulated n{vector is partitioned using a discrete alphabet of ¯xed length
k = 100, thus yields kn possible output signals. Given the alphabet length,
the density function for a given sample size corresponds to the empirical
frequency distribution. Figure 1 shows that SIM k

n increases with sam-

6The results of the ADF tests have been omitted for space constraints. They are
available from the author upon request.
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ple size.7 This property is robust to alternative distributions and alphabet
length. Also note that, asymptotically, the maximum SIM occurs for the
uniform pdf. This follows from the maximum entropy principle because the
simulated data, although drawn from continuous pdf's, have been discretized.
Therefore, n¤ = arg maxn SIMk

n coincides with the maximum sample size,
implying that predictability increases in the number of observations. Intu-
itively, "more is better" because the underlying (true) dgp is strictly station-
ary. We now turn to analyze the evolution of the self-information measure
with changing sample size and its relation to predictability and weak-form
e±ciency for actual ¯nancial data.

4.2 Self-information and sample size

The variation of SIM with sample size yields important insights regarding
the informational value of extreme observations. The empirical frequency
distribution is used to compute SIM k

n, where n denotes the variable sample
size and k denotes the ¯xed alphabet length. For both time series, the cut-o®
obervation of the in-sample data is ¯xed at 6; 500, so the length of the out-
of-sample period is ¯xed at 91. The sample size is increased incrementally
from nMIN to nMAX observations by moving the ¯rst in-sample observation
backward one day at a time. SIM k

n measure is computed for each rolling
sample size n. For illustration purposes, we set nMIN = 400 and nMAX =
4; 400, or 4;000 rolling sample sizes. The data is partitioned in k = 100
equally-spaced percentiles. The maximum (uniform) entropy is therefore
log2 100 = 6:64.

8

Figure 2 plots all eight datasets' SIM as the sample size increases from
n = 1 (11/28/1997) to n = 6; 000 (12/2/1974). In The sample size n is
plotted against SIM k

n and the level of each time series on the left and right
vertical axes, respectively. Because the ¯rst in-sample observation is ¯xed
at 11=28=1997, the levels are plotted from right to left so that smaller sam-
ple sizes correspond to more recent observations. We make the following
observations. First, unlike the simulated datasets in Figure 1, SIM k

n is non-
monotonic in sample size: the normalized sample entropy is very sensitive

7The increase is not monotonic because there is only one sample: if many random
samples of length n were generated then AICk

n would be smoothly increasing in n.
8Following Golan, Judge and Miller (1996), the alphabet length k must be less than the

sample size n in order for the recovery of the probability vector fpigk
i=1 to be well-de¯ned.

This constraint is unlikely to be binding in practice.
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to the arrival of extreme observations (outliers). In particular, the evolution
of SIMk

n is characterized by discontinuities corresponding to the inclusion of
extreme events in-sample. Because the results of standard unit root tests for
non-stationarity may be misleading, we focus on comparing the variation of
SIM with sample size across markets.

For small sample sizes (n < 50), SIM rises from zero to a value close
to its maximum over all sample sizes. The predictability of the ¯rst out-of-
sample observation falls concurrently. In the limit, when n = 1 the empirical
frequency distribution is degenerate so the sample entropy is zero. As the
sample size increases, it approaches the maximum SIM over all sample sizes.
This corresponds to maximum weak-form e±ciency, or minimum predictabil-
ity relative to the uniform distribution benchmark. The SIM k

n{maximizing
sample size n¤ is less than 500 obervations in all cases. A smaller n¤ suggests
that the dgp is relatively less predictable using past information, or relatively
more weak-form e±cient. Table 1 shows the sample sizes n¤ and the value
of the maximum SIM for each returns series:

Table 1
Maximum SIM sample sizes
Series n¤ SIM k

n¤

DM/$ 152 0:8683
$/$ 83 0:8511
JPY/$ 144 0:8422
NIKKEI 236 0:8052
DJIA 214 0:7601
EURO-DM 237 0:6543
EURO-$ 66 0:5926
EURO-$ 287 0:5707

The results indicate that the EURO-$market (n¤ = 66) is relatively more
e±cient, while the EURO-$ market (n¤ = 287) is relatively less e±cient. $/$
is the second most e±cient market, while the DJIA and NIKKEI are almost
equally e±cient. We brie°y focus on the two stock market indices. The
most dramatic break occurs in the SIM of Dow Jones returns, which drops
discontinuously by 30% (from 70 to 49 percent) at sample size n = 2; 640.
This corresponds to 10=19=1987, the stock market crash of October 1987.
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Intuitively, the (ex ante extremely unlikely) realization of an extreme event
such as a crash occurring on any one day lowers the average information
content conditional upon an extreme event. Consequently, excluding the
crash from the sample increases the normalized entropy and lowers the dgp's
predictability. The Nikkei returns' SIM displays two smaller breaks, the
second on 10=19=1987, and the ¯rst at sample size 1; 908, corresponding to
8=19=1978. Following October 1987 and through to n = 6; 500, the SIM
of Dow Jones returns remains close to 50 percent, while that of the Nikkei
declines gradually from 60 to 50 percent.

For larger sample sizes (50 < n < 500), the SIM of exchange rate returns
exceeds that of stock market returns, which in turn exceeds that of Eurode-
posit rate returns. Within FX markets, DM/$ returns are somewhat less
predictable than GBP/$ returns, which in turn are relatively less predictable
than JPY/$ returns. Within Eurodeposit markets, overnight EURO-DM
returns are less predictable than either EURO-$ or EURO-$ returns. The
SIM of EURO-$ returns is noticeably smoother than that of the EURO-
$ and EURO-DM. The SIM of EURO-$ returns is characterized by two
breaks: the ¯rst corresponds to the 1973 oil price shock and the second to
sterling's forced exit from the European Monetary System in 1992. In each
case, including the relevant observation in-sample sharply lowers the aver-
age information content and increases the ¯nite-sample predictability of the
dataset. Finally, daily Nikkei returns are less predictable than Dow Jones
returns. Overall, the value of past information for univariate prediction is
smaller in the FX markets than in the stock markets, which in turn is smaller
than the overnight Eurodeposit markets. Therefore, overnight Eurodeposit
rate returns are relatively more predictable than daily stock market returns,
which in turn are more predictable than daily exchange rate returns.

4.3 Self-information and parametric forecast error

Figure 3 plots the variation in levels of SIM k
n and mean square forecasting

error (MSEjn) with changing sample size n for the DJIA and NIKKEI time
series. The plotted values are conditional upon the alphabet length, forecast-
ing model, AR order information criterion and forecast horizon. The forecast
horizon is ¯xed at j = 10 days-ahead and the forecasts are dynamic. The
MSEjn statistic is computed using a linear AR speci¯cation, where the lag
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order is determined is determined using the modi¯ed Schwartz information
criterion of Neumaier and Schneider (1997). The AR coe±cients and the lag
order speci¯cation are reestimated at each rolling sample size.

The sample correlation coe±cients of the levels of SIM 100
4000 and MSE

10
4000

are b½DJIA = 0:80 for Dow Jones returns and b½NIK = 0:005 for Nikkei re-
turns. The signi¯cance of these values is examined by bootstrapping the
estimated correlation coe±cients b½(SIMk

n;MSE
j
n). The right panels show

the empirical distribution of each bootstrap correlation statistic for 1; 000
bootstrap replications of the SIMk

n and MSE
j
n vectors. The bootstrap his-

tograms suggest that the true correlation coe±cient is signi¯cantly positive
for Dow Jones returns and zero for Nikkei returns. However, as the se-
ries have strong breaks, standard ADF tests for non-stationarity have low
power.9 Indeed, the correlations between the stationary ¯rst di®erences of
the two statistics are insigni¯cant: b½DJIA(¢SIM 100

4000;¢MSE
10
4000) = 0:004

and b½NIK(¢SIM 100
4000;¢MSE

10
4000) = ¡0:0009. Therefore, there is insu±cient

evidence that selecting sample size so as to maximize SIM contributes to a
lower mean squared error.

Moreover, correlation does not imply causation. Table 2 reports the
results of Granger causality tests on whether the current value of the ¯rst-
di®erenced mean squared errors (¢MSE) can be explained by lagged values
of the ¯rst-di®erenced self-information measure (¢SIM ), and vice versa. In
each case, we report the shortest signi¯cant lag speci¯cation:

9See Perron (1997) and the references therein.
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Table 2
¢SIM and ¢MSE: Granger causality tests10

DJIA Lags/n F-stat Prob
H0 : ¢MSE does not cause ¢SIM l = 5 1:05 0:38740
H0 : ¢SIM does not cause ¢MSE 3994 4:70 0:00028

NIKKEI Lags/n F-stat Prob
H0 : ¢MSE does not cause ¢SIM l = 3 0:16 0:92117
H0 : ¢SIM does not cause ¢MSE 3996 47:22 0:00000

DM/$ Lags/n F-stat Prob
H0 : ¢MSE does not cause ¢SIM l = 1 13:91 0:00019
H0 : ¢SIM does not cause ¢MSE 3998 27:82 0:00000

$/$ Lags/n F-stat Prob
H0 : ¢MSE does not cause ¢SIM l = 1 1:45 0:22846
H0 : ¢SIM does not cause ¢MSE 3998 5:49 0:01913

JPY/$ Lags/n F-stat Prob
H0 : ¢MSE does not cause ¢SIM l = 10 26:79 0:00000
H0 : ¢SIM does not cause ¢MSE 3989 27:09 0:00000

EURO{$ Lags/n F-stat Prob
H0 : ¢MSE does not cause ¢SIM l = 10 9:45 0:00000
H0 : ¢SIM does not cause ¢MSE 3989 0:46 0:91758

EURO{DM Lags/n F-stat Prob
H0 : ¢MSE does not cause ¢SIM l = 10 0:11 0:99974
H0 : ¢SIM does not cause ¢MSE 3989 0:29 0:98305

EURO{$ Lags/n F-stat Prob
H0 : ¢MSE does not cause ¢SIM l = 10 0:19 0:99713
H0 : ¢SIM does not cause ¢MSE 3989 108:9 0:00000

10In each case the AIC and MSE statistics are di®erenced and I(0). The Granger
tests computes the F {statistic for the null hypothesis that the coe±cients on all l lagged
explanatory variables are zero. The estimation uses n observations.
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The results indicate that for DJIA, NIKKEI, $/$ and EURO-$ returns
the null hypothesis that ¢SIM does not Granger-cause ¢MSE is strongly
rejected, whereas the null that ¢MSE does not Granger-cause ¢SIM is not.
For DM/$ and JPY/$ returns the null of no causality is strongly rejected in
both directions. For the EURO{$ returns ¢MSE Granger-causes ¢SIM
but not vice versa. Finally, for EURO{DM returns the null of no causality
cannot be rejected in either direction. We tentatively conclude that the fore-
cast accuracy of linear parametric models may be explained by the variation
in ¢SIM.

5 Conclusion

This paper studied the evolution of the self information measure (SIM) for ¯-
nancial data from the FX, stock and interest rate markets. The methodology
o®ers a robust non-parametric indicator of ¯nancial return predictability and
market e±ciency based on the sample size. First, it was shown that higher
SIM values reduce predictability and improves market e±ciency. In par-
ticular, interest rate returns were found to be more predictable than stock
markets returns, which in turn were more predictable than spot FX returns.
Second, for each dataset the sample size was determined corresponding to
maximum SIM, and thus to greatest weak-form e±ciency relative to the
uniform distribution benchmark. Finally, the ¯nancial returns data also in-
dicated that the levels of SIM and mean square forecast error are spuriously
correlated as they are non-stationary and characterized by structural breaks.
However, it was shown that on ¯rst di®erences SIM Granger-causes MSE and
not vice versa.

The present theoretical framework can be extended by relating paramet-
ric and parametric predictability using Fisher information. An empirical
extension involves computing bivariate predictability using the mutual in-
formation statistic between two di®erent datasets. This was the second key
factor of current parametric risk measurement practice referred to in Section
1. For example, the evolution of the mutual information between stock mar-
ket and interest rate data at a daily|or higher|frequency should re°ect the
degree to which past stock market events a®ect current and future interest
rate returns, and vice versa. The same can be said about the mutual infor-
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mation between stock market and spot FX data. A bivariate approach to
informational content thus suggests a new and powerful tool for updating
the relative value of information °ows from di®erent ¯nancial markets in real
time. The °exibility of the non-parametric approach is particularly useful
against the recent background of contagion between di®erent markets and
across international ¯nancial centers. Such an extension is the subject of
current research.

13



References

[1] Abarbanel, H.D.I. 1996. Analysis of Observed Chaotic Data. New York:
Springer Verlag.

[2] Applebaum, D. 1996, Probability and Information Theory: An Inte-
grated Approach, Cambridge: Cambridge University Press.

[3] Christo®ersen P., and Diebold, F.X. 1996. Further Results on Forecast-
ing and Model Selection Under Asymmetric Loss. Journal of Applied
Econometrics 11: 561-572.

[4] Cover, T. and Thomas, J. 1991, Elements of Information Theory. New
York: Wiley Interscience.

[5] Fama, E.F. 1970. E±cient Capital Markets: A Review of Theory and
Empirical Work. Journal of Finance 25.

[6] Fama, E.F. 1991. E±cient Capital Markets: II. Journal of Finance 46.

[7] Feder, M. and Merhav N. 1994. Relations Between Entropy and Error
Probability. IEEE Transactions on Information Theory 40(1): 259-266.

[8] Fraser, A.M. 1989. Reconstructing Attractors from Scalar Time Series:
A Comparison of Singular System and Redundancy Criteria. Physica D
34: 391-404.

[9] Golan, A., Judge, G. and Miller, D. 1996, Maximum Entropy Econo-
metrics: Robust Estimation With Limited Data. New York: John Wiley
& Sons.

[10] Granger, C.W.J. and Newbold D. 1986: Forecasting Economic Time
Series, Cambridge: Cambridge University Press.

[11] Hamilton, J. (1994): Time Series Analysis. Princeton: Princeton Uni-
versity Press

[12] Khinchin, A.I. (1957): Mathematical Foundations of Information The-
ory. New York: Dover.

14



[13] Neumaier, A. and Schneider, T. 1997, Multivariate Autoregressive and
Ohrstein-Uhlenbeck processes: Evidence for order, parameters, spectral
information and con¯dence regions, submitted to ACM Trans. Math.
Soft.

[14] Palus, M. 1993. Identifying and Quantifying Chaos by Using
Information-Theoretic Functionals, in Time Series Prediction: Forecast-
ing the Future and Understanding the Past, eds. A.S. Weigend and N.A.
Gershenfeld, SFI Studies in the Sciences of Complexity, Proc. Vol. XV,
Addison-Wesley.

[15] Perron, P. 1997. Further Evidence on Breaking Trend Functions in
Macroeconomic Variables. Journal of Econometrics 80: 355-385.

[16] Tambakis, D.N. 2000. Information-Theoretic Sample Size Selection for
Linear Prediction. Neural Network World 10(1-2): 73-79.

15


