
Trading Risk in Mobile-Agent Computational Markets

Jonathan Bredin, David Kotz, and Daniela Rus
Department of Computer Science

6211 Sudikoff Lab
Dartmouth College

Hanover, NH 03755, USA

Abstract

Mobile-agent systems allow user programs to au-
tonomously relocate from one host site to another. This au-
tonomy provides a powerful, flexible architecture on which
to build distributed applications. The asynchronous, decen-
tralized nature of mobile-agent systems makes them flexible,
but also hinders their deployment. We argue that a market-
based approach where agents buy computational resources
from their hosts solves many problems faced by mobile-
agent systems.

In our earlier work, we propose a policy for allocating
general computational priority among agents posed as a
competitive game for which we derive a unique computable
Nash equilibrium. Here we improve on our earlier ap-
proach by implementing resource guarantees where mobile-
agent hosts issue call options on computational resources.
Call options allow an agent to reserve and guarantee the
cost and time necessary to complete its itinerary before the
agent begins execution.

We present an algorithm based upon the binomial
options-pricing model that estimates future congestion to
allow hosts to evaluate call options; methods for agents
to measure the risk associated with their performance and
compare their expected utility of competing in the computa-
tional spot market with utilizing resource options; and test
our theory with simulations to show that option trade re-
duces variance in agent completion times.

1 Introduction

Faster, cheaper computing hardware and pervasive net-
working allows more powerful computational abstractions.
One abstraction that we promote is a mobile agent, a user
thread that may autonomously migrate from one host to an-
other. Mobile code supports flexible architectures that tran-
scend traditional client-server systems [LO99]. It is possi-
ble to inject agents offering a new service into the network

to replace an existing service without interrupting other ser-
vices. Collections of mobile agents can better utilize net-
work resources by relocating computation closer to the lo-
cation of the data and other resources and evenly distribut-
ing computation among many hosts. A query agent may
relocate to be closer to a disk or an agent operating on a
palm-top computer may jump to a more powerful desktop
machine to perform large computation or network opera-
tions. Other examples of mobile code use are proxy dis-
tribution in the Jini service lookup [AOS

�

99] and complex
queries carrying SQL code to be executed on a database
server.

While a mobile-agent system’s flexibility can speed ap-
plication development, decentralized control often hinders
deployment of mobile-agent applications. Without addi-
tional structure it is likely that mobile agents will crowd
some resource. Furthermore, existing mobile-agent systems
provide no incentive for resource owners to provide access
to arbitrary agents.

We promote computational markets where agents pur-
chase their computational resources from hosts and sell ser-
vices to hosts, users, and other agents [BKR99]. As one
would expect, markets expose agents to risk from fluctu-
ating prices and, in this paper, we propose that hosts and
agents trade risk through hosts issuing call options on com-
putation. We present a method for a host to price an option
and an algorithm for an agent compare the value of a call
option with the prospects of competing in the spot market
for computation. We demonstrate in simulations that agents
are able to avoid volatility in itinerary completion times by
using “computational options.”

2 Motivation

Mobile-agent systems provide clean abstractions to rep-
resent protocols and distribute resource consumption over
a network. Mobility delivers design flexibility, but often at
the expense of a loss of centralized control. We promote
markets as a structure with which to regulate resource allo-

1

user

agent

host

sysadmins
distribute
priviledges
to users

agents buy
resources

agents sell
services

agents sell
services

deploy agents
users

Figure 1. The exchange of currency, services,
and resources in a mobile-agent computa-
tional market.

cation and consumption in mobile-agent systems. Through
prices, markets impose additional constraints upon agents
and fluctuating prices can expose an agent to additional risk.
We therefore propose that hosts issue reservations for re-
source consumption to agents and forecast consumption us-
ing option-pricing theory.

2.1 Markets

If an agent can assess and is charged for the cost of its
actions, then the agent can make rational decisions regard-
ing resource consumption. It is possible that the agent con-
tracts another agent to complete a subtask. The agent’s host
can collect the charges made to the agent. The host’s ad-
ministrator endows its users with the proceeds, completing
the cycle of currency exchange. The exchange of resources,
services, and currency establishes a market for computation
in the network. Figure 1 shows the cycle of currency ex-
change.

A user endows its agent with a finite supply of currency
that represents the agent’s potential to consume resources
and load the network. Because the agent’s endowment is
limited, so is its ability to congest the network. The agent’s
limitation enforces a form of fault tolerance and prevents
errant programs from running amok. An agent that chooses
to irresponsibly consume resources curtails its lifetime. The
effect is reinforced by the market’s correlation between the
price and demand of a resource.

The price-congestion link not only promotes fault tol-
erance, but it serves to increase system utilization through
spatial load balancing. An agent visiting a host with a
higher price for computation will relocate to a cheaper, less
utilized host. If all sites in the network post high prices, then
the agent will go dormant to wait until congestion subsides.

The latter effect is temporal load balancing.
Finally, markets provide resource owners with incentive

to participate in mobile-agent systems. It is to a host’s ben-
efit to collect currency from mobile agents so that the host’s
administrator may redistribute the potential to her mobile-
agent using users. If the services mobile agents provide are
valuable enough, hosts can exchange currency used by mo-
bile agents for legal tender.

2.2 Market Volatility and Call Options

Markets are not without problems, however. Efficient
participation in markets requires agents to have timely in-
formation concerning the state of the network and efficient
markets may not shield participants from the volatility of
the underlying environment. To reduce risk in agents’ per-
formance, we investigate issuing call options on computa-
tion.

Relaying information on the state of a host consumes
network bandwidth and the latency involved in transferring
ages the information particularly when resource congestion
is high. The aging is aggravated by the fact that there is ad-
ditional delay between the event when an agent decides to
relocate and the event when the agent arrives at its destina-
tion. By the time an agent arrives at a site, other agents may
have also relocated possibly changing motives causing the
agent to relocate.

An agent with a fixed endowment may find part way
through its computation that it is not possible to continue at
its current rate or, in dire cases, to continue at all. This pos-
sibility adds volatility in a user’s expectations of its agents’
performance or cost if agents request additional currency
from the user.

A reservation offering a mobile agent a resource in the
future would be valuable to reduce variance in agents’ com-
pletion times. In this paper we present mechanisms for mo-
bile agents to purchase options guaranteeing the right to
consume a resource during a specified time in the future.
We represent these reservations as European call options
and leverage existing techniques from finance to evaluate
options. We modify an existing model of mobile-agent re-
source allocation to incorporate hosts’ ability to distribute
options and show simulation results describing the benefits
of using options.

In our previous work [BMI
�

00], we presented a game-
theoretic resource allocation for use in closed environments
where users collectively own computing resources and host
sites do not play active role in pricing resources. We defined
a mechanism that allows agents at a site to collectively ne-
gotiate the computational priority of each agent at the site,
given that each agent has perfect information regarding its
own itinerary. Using our policy, there is a unique, com-
putable Nash equilibrium strategy for agents to use to com-

2

pute their bids and plan their expenditures.
For agents to plan their itineraries, hosts must publish

the local cost of computation to prospective agents in the
network. With bursty workloads, even in a steady state, the
price of computation fluctuates at each host. A host that
announces itself to have the lowest price of computation can
look forward to entertaining a flood agents desiring service.

The number of agents responding to the host’s announce-
ment scales linearly with the number of sources. Addition-
ally, as network delay increases, so does the number of re-
sponses. There are two problems here. Both of these is-
sues are substantial. Mobile-agent systems are promoted
for their abilities to scale and operate in networked environ-
ments with high network latency.

The limitations of naive pricing motivate us to consider
systems where hosts, in addition to selling resources on de-
mand, also sell to agents reservations guaranteeing resource
access. In this paper, we consider modeling these reserva-
tions as European call options [CW92]. A host sells to an
agent a call option that guarantees to the agent that during
a specified time period, the agent may consume a specified
amount of resources for a price specified by the option. We
assume that agents are risk averse and are willing to pay a
premium for guaranteed performance.

3 Pricing and Purchasing Call Options

We proceed by describing the environment in which
agents operate in Section 3.1 and the nature of changes in
computational price in Section 3.2. In Section 3.3 we derive
an option-pricing algorithm for use by hosts and we con-
struct an algorithm for agents to purchase options in Sec-
tion 3.4 to be used in conjunction with existing algorithms
to participate in the spot market.

3.1 System Model

We begin by outlining an earlier model that defines our
underlying spot market for computation [BMI

�

00]. We
consider a network of mobile agents and their hosts. Each
mobile agent has a sequence of computational tasks to com-
plete and each task may be completed at one of several hosts
in the network. Every mobile agent is endowed with a fi-
nite amount of currency with which to purchase computa-
tional resources. For a detailed description of the model and
derivation of the bidding functions, we encourage the reader
to read our earlier work [BMI

�

00].
We begin with the assumption that an agent may not re-

turn remaining currency to users at the end of the agent’s
lifetime and that the agent’s only goal is to complete its
computation as quickly as possible given the available re-
sources. This assumption facilitates planning on the part of
the agent and operation of the computational spot market.

None of the algorithms presented in this paper, however, are
dependent on the mechanism driving the spot market or our
assumptions concerning an agent’s valuation of currency.

We also assume that once an agent migrates to a host,
it commits to finishing its immediate task at the host. The
agents present at a site competitively negotiate for the price
of computation by submitting bidding functions. Each
agent receives a portion of the CPU proportional to the rate
that the agent pays the host. The time an agent requires to
complete a task of size � is:

��� ���
���
	 (1)

where � is the agent’s rate of payment, � is the rate at which
the host collects payments from agents (including �), and �
is the host’s capacity, in instructions per second, to process
jobs. The cost, � , of execution in the model is the time taken
multiplied by the agent’s bid rate:

� � � ���
���
�� (2)

Because an agent’s share is dependent on the compet-
ing bids, we allow agents to condition their bids on the
level of competition and agents express their bids as con-
cave functions of, � 	 the sum of all bids at the host. When
only one agent is present, the price of computation is zero.
We derive in our earlier work the optimal bid function for
an agent given perfect information concerning the bid to-
tals at all hosts the agent will visit and the agent’s job sizes.
We also prove that when there are multiple agents at a host,
there is unique positive equilibrium allocation that satisfies
all agents’ bid functions.

We assume that hosts are risk neutral and that all agents
are risk averse with utility functions of the form

� ������������� �
� � 	 (3)

where
�����

is a parameter describing an agent’s prefer-
ence towards risk,

�!
is the time taken to complete the " -th

task, and # is the network delay incurred in transferring the
agent to the " -th site. Since hosts are risk neutral and agents
are risk averse it is to each party’s benefit to trade risk in the
form of computational options. A risk averse agent prefers
to pay a higher price for computation at a guaranteed rate
rather than take its chances with service with high perfor-
mance variance.

It is for this reason that we are interested in trading com-
putational options. For now we will restrict ourselves to the
set of options that have zero strike price. That is, the options
that we will investigate are completely front loaded; agents
pay in advance for their computation.

3

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

log (price)

F
re

qu
en

cy

observed
Gaussian

Figure 2. A histogram of the logarithm of the
price of computation at a simulated mobile-
agent host over time.

3.2 Price Behavior

A prerequisite for trading options is the ability to fore-
cast the price of the underlying security. We investigate the
properties of price fluctuation in our model to derive and
forecast of the price agents are willing to pay for computa-
tion.

We notice that it is not appropriate to model price move-
ment with relative changes and that the variance in the price
of computation is highly dependent on the current price.
In simulations, the price of computation at a host is log-
normally distributed over time. Figure 2 shows a histogram
of the spot price of computation at a host in the absence of
an options market. The histogram omits occurrences when
the price is zero, but it is not uncommon in a system running
at less than 100 percent utilization for computational prices
to fall to zero. Figure 3 shows an example time series of the
computational spot price of one host in our simulation.

We conclude that price movement cannot be entirely rel-
ative. Most option-pricing models assume that price move-
ment is relative to the price, e.g. the price of a security may
move up or down at each period by five percent. If we are
to model price fluctuation, we must either use absolute price
movement or handle the events of prices falling to and rising
from zero specially.

Another useful fact in prediction is price volatility. Fig-
ure 4 plots the relative volatility of computational prices
conditioned on the price. We see a very strong relation-
ship between the price and the magnitude of its next move-
ment. Several traditional pricing models assume that a price
volatility is independent of price, so we must consider the
relationship.

4000 4050 4100 4150 4200 4250 4300 4350 4400 4450 4500
0

20

40

60

80

100

120

140

time

pr
ic

e

Figure 3. A sample time series of the price of
computation at a host in the model.

10
−2

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

10
4

Price

σ
(∆

 P
ric

e/
P

ric
e)

Figure 4. Relative volatility, � 	 versus price.

3.3 The Crash Pricing Model

Cox et al. propose the CRR binomial model as a sim-
plified approach to pricing options as an alternative to the
Black-Scholes method [CRR79]. They discretize a secu-
rity’s lifetime into

�
equal length time periods. The secu-

rity’s price either rises by a factor of
�

or falls by a factor
of � with probabilities ��� and ��� � � � ��� 	 respectively.
The result of using the binomial model is a Markov chain,
from which we can compute the probability of prices. In
the limit, increasing the number of time periods to model
a security’s price movement yields the same result as the
Black-Scholes model. Figure 5 is an example of a small
Markov chain that allows us to estimate the price two time
periods into the future.

The basic CRR model assumes that the probabilities and
the relative movements of the security price are independent
of the security price, but it is easy to see that the parame-

4

pdd

p

pu

pud

puu

pd

Figure 5. An example of a binomial tree for
pricing a security. Each node is labeled with
a multiplier for the price of the security.

ters dictating relative price movement could be functions of
price. Our pricing model, the Crash Model, builds from the
CRR model by adding another event possibility and learn-
ing the price behavior of prices conditioned on the current
price.

We begin from the standard binomial model and add a
new state representing zero price. Each node in the original
binary tree has a transition to the new state. From the new
state, we have a transition to a state representing a positive
price. We analyze price movement history by partitioning
the data into groups dependent on price to determine:

� the frequency of the price falling to zero, a crash, from
each price group,

� the frequency of and average jump from zero price,

� the frequency and average price increases from each
positive price group,

� and the frequency and average decline, excluding
crashes, from each positive price group.

The size and ranges of each data group are parameters to
the model. Experimentally, we find that dividing the data
evenly across the range of prices so that each price range
has an equal number of observations works well.

We now describe how we build a Markov chain [Ros97]
representing the transitions between states. We label every
node in our Markov chain with the pair

� � 	 ��� to represent
a possible value for price, � 	 at time

� The function ��� � � �
represents the chance of � falling to zero in the next time
period. Accordingly, each node

� � 	 ��� has a transition to���
	 �	� �
�

with probability � � � � � Each node also has tran-
sitions to rise in price to node

� � � � � 	 ��� ���
with probability

� �
� � � and descend in price to node

�
�
� � � 	 �� ���

with prob-
ability

��� � � � � ��� � � � � �
For � equal to zero, we compute ��� and ���� 	 the mean and

variance of the absolute change in price conditioned the on

zero price. The computations of ��� and ���� are straightfor-
ward from past observations, ��� ��� ��� �

	 and �
��� ��� �

 The
remaining parameters to compute are

� ��� �
and � �

��� � We
start from the definition of the mean and variance:

� � � � �
��� � � ��� �

(4)

� �� � ���
��� � � ��� � � ��� ��� � � ���

��� ��� � �� (5)

and solve for
� ��� �

and ���
��� ���

� ��� � � � �� � ������� (6)

���
��� � � � ��

� �� � � �� (7)

For non-zero price, we compute ���
� � � and ��� � � � by look-

ing at the proportion of upward, downward, and extreme
downward changes from � We compute the mean and vari-
ance of the relative change in price conditioned on price as� � � � and ��� � � � 	 respectively.

From ���
� � � 	 ��� � � � 	 � � � � 	 ��� � � � 	 and the definitions of

mean and variance, we can compute the upward and down-
ward movements of price. The relative means and variances
of the change in price are:

� � � � � � �
� � � � � � ��� � � � �

� � � � � � ��� � (8)

��� � � � � � �
� � � � � � � � � � � � ��� � � �� � � � � � � � � � ��� �

� � ��� � � �� � � � � � � � � � �
(9)

We then solve for
� � � � and �

� � �

� � � � � � � � � � � ����� ��� ���! !"$#�%�'&'"$#�% � �
� � ��� (�! !"$#�% �*),+ "$#�%- "$#�% + ���
� �
� � ��� � �

� � �
(10)

�
� � � � � � � � ��� ��� � � � � � � �

� �
� � � (11)

It is possible to compute a negative value for �
� � � , so we

take the smallest solution to Equation 10 that yields a value
greater than � � � � � If �

� � � is still negative, we assume that
all price movement is either upwards or a crash and:

���
� � � � � � � � �

� � � � ��� � � � � � (12)

� � � � � � ��� � � � � � (13)

� � � � � � ��� � � ��� � � � � �
� � � � (14)

5

�
� � � � ���

� � � � �
(15)

This final case assures that
� � � � � � � � � � 	 � � � � � � �

and
� � � � � � �

We construct a Markov chain using the transition proba-

bilities and magnitudes, � �
� � � 	 � � � � � 	 � � � � � 	 � � � � 	 and �

� � � 	
and represent the Markov chain as a square matrix. Each
row of the matrix represents a state, corresponding to a price
band, in the chain. The entries within the row denote the
probability of jumping to the state represented by the cor-
responding column. For all but the first row and last rows,
there are three non-zero entries. The first and last row have
two non-zero entries.

The size of the matrix representing the Markov chain
reflects the accuracy and granularity of the prediction. A
larger matrix corresponds to conditioning price volatility to
larger number of prices. The resulting matrix has the po-
tential to give a finer probability density function for use in
pricing, but also requires more data to learn the variance of
each price band.

From the Markov chain, we can compute pdf(� 	 � 	 ���),
the probability density function for � � time periods into the
future conditioned on its current value, ��� The pdf can then
tell us the expected loss of revenue at time

�
of issuing a

call option of with a strike price � We compute the loss of
revenue for every period for which the option is valid during� � ���	� ��
 	 � ����� ���� 	 where

� ����� is the current time. If the
market for call options is competitive, this loss of revenue,� � � 		��	 � ���	� ��
 	 � ���	� �� 	 ��� � 	 will be equal to the price
of an option with strike price � for � of the � instructions
per second available from the host, valid from time

until 	 conditioned on the current price of computation is ��� So

the value of the option is the expected loss of revenue,

� � � 	�� 	 � ���	� ��
 	 � ���	� �� 	 ��� �����
�����

��
� � �"!�#

$ # #� � �&% pdf
� � 	 � 	 ��� � � � (16)

The quotient � � � � is the amount that the host could have
received for ��' � units of computation per second in the
spot market. The integral is over the space

� � � � �)(�
be-

cause no rational agent would choose exercise the option if
it were cheaper to execute in the spot market.

3.4 The Purchasing Decision

We now investigate how an agent can decide whether or
not to purchase reservation. We first discuss why an agent
would want to purchase a reservation. This motivation leads
us to consider how an agent should decide whether to pur-
chase an option as an alternative to participating in the spot
market. We conclude the section by presenting an algorithm

that incrementally improves an agent’s expected utility by
computing the agent’s expected utility from participating
in the spot market against utility derived from computation
backed by reservation.

We begin with the assumption that agents are risk averse
and have utility functions of the form of Equation 3. The
utility function places more weight on poor performance,
so an agent that wishes to maximize expected utility is will-
ing to take some performance degradation in return for a
guarantee on quality of service.

An agent needs to be able to compare the expected util-
ity of computing in the spot market with the expected utility
of holding a guarantee. To accomplish the comparison, we
have hosts in our model publish the mean and standard devi-
ation of the logarithm of the time taken to complete a single
unit of computation at the host conditioned on agents’ in-
come. We use logarithms, because we empirically observe
that the price of computation behaves as a log-normal ran-
dom variable in Section 3.2.

From the mean and standard deviation of the logarithm
of price at a server, the agent can quickly approximate its
expected utility and cost through a rough numerical inte-
gration as

�*
+ �

� � ���-, � � � ��� � � � � 	 (17)

where � is the size of the job at hand,
� � ���

is the utility
derived from executing for time

�
at a host, and

, � � � ���
is the probability that the log-normally distributed random
variable

�
yields the value

�
. The server reports the mean

and standard deviation of execution times per job unit ex-
ecuted, so we also normalize the value inside the probabil-
ity density function in Equation 17. The function

� � ��� �
��� � � �

, where here # is the latency incurred in jumping to
the host, represents the partial utility derived from executing
at the host. We justify the function by noting that the deriva-
tive of the utility (Equation 3) with respect to execution time
at one host in the agent’s itinerary is linearly dependent on
the execution times at other hosts.

An additional parameter that hosts publish in our model
is the mean cost of computation. We can approximate the
expected cost of executing an agent’s job by examining the
expected cost of computation, � From equation 2, if the
agent’s job is small in comparison to competing jobs, the
expected cost of execution reduces to ��� � � .

For now, we will only allow an agent to purchase op-
tions that it is certain to use. Algorithm 1 describes a greedy
process for an agent to choose the next host in its itinerary
and to purchase computational reservations. The algorithm
locates the host at which it will minimize its completion
time with the restriction that the agent competes in the spot
market. The budgeting process is defined in our earlier

6

Algorithm 1 Choose Next Site for Agent
�

1:
���

now()
2: for all unreserved tasks " � � � � do
3:

� � � � � � � (
4:

� � �
5: for all hosts � offering service " do
6: if � � '�� � � �

compute at � � � then
7:

� � � �
� � �

compute at � � �
8: � �� �
9:

� � �
�
cost of computing at� �

10: end if
11: end for
12: for all hosts � offering service " do
13: if � � '�� � � �

compute w/ reservation at �
at time

�
with cost � � � then

14:
� � � �

� � �
compute w/ reservation at � at time

��� �
15:

�� ��
reservation � sells

16: end if
17: end for
18: if � �	� � � then
19: break
20: else
21: buy

��
22: increment

�
by period of

�
23: end if
24: end for
25: if

� (then
26: jump to host honoring

� (
27: else
28: jump to host � (
29: end if

work [BMI
�

00]. The agent then attempts to purchase the
fastest option contract with cost equal to the cost of com-
puting at the best spot market. The algorithm continues
purchasing options until the expected utility of competing
in the spot market exceeds the opportunities to purchase op-
tions, or the agent reserves all of its computation.

The algorithm is run each time the agent considers relo-
cating to another host. Our algorithm has no performance
bounds or gaurantees. It simply attempts to reserve com-
putation that is at least as perferable to riskier spot-market
computation.

4 Simulation

We implement our computational pricing model and
option-purchasing decision process on top of our existing
simulator [BMI

�

00]. We model agents as having exponen-
tially distributed number of jobs, with individual jobs Pareto
distributed. Agents endowments are normally distributed
relative to the sum of their job sizes and we model agents’

1 1.5 2 2.5 3 3.5 4 4.5 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

risk

op
tio

n
us

ag
e

Figure 6. Agent risk versus the average pro-
portion of jobs in agents’ itineraries backed
by computational options.

risk prefereneces,
�

in Equation 3, as a normally distributed
random variable. Hosts capacities are also normally dis-
tributed. The distributions of all three normal random vari-
ables are truncated to generate only meaningful values.

Each one of the 100 hosts in the network offers only one
of eight services used by agents and constructs its own price
model for use in pricing options. Every host constructs an
eight by eight matrix to forecast price. Each of the # price
bands are represented by the a row in the matrix. Except for
the first, each row represents

�,� # -th of the data for prices
moving from non-zero values. The first row represents all
the price movement away from zero.

Agents attempt to complete a sequence of tasks as
quickly as possible given the available resources. Each task
that an agent has may be completed at one of eight to nine
of the one hundred hosts in the network. Each agent has a
fixed endowment to use to complete its set of tasks and uses
the algorithms presented in our earlier work [BMI

�

00] to
create its itinerary and plan expenditures.

We would first like to verify that risk-averse agents, ones
with high values of

� 	 utilize options. Figure 6 plots the
average portion of agents’ itineraries that are backed with
computational options versus agents’ risk parameter. We
see that risk-averse agents utilize reservations more fre-
quently.

Figure 7 shows that risk-averse agents are successful in
avoiding risk. We plot � 	 the mean of the ratio of the ac-
tual times taken to complete agents’ itineraries and the ideal
itinerary completion times in an uncongested network. The
line labeled � represents the standard deviation of comple-
tion time and has a downward trend as risk increases, indi-
cating that the volatility in performance is negatively corre-
lated with agents’ preference against risk. Being risk averse,

7

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

risk

id
ea

l/a
ct

ua
l p

er
fo

rm
an

ce

µ
σ

Figure 7. Agents’ risk versus the mean and
standard deviation performance, � and � 	
repectively. Performance is measured as the
ratio of the actual time taken to complete an
itinerary and the ideal, uncongested comple-
tion time.

however, has a cost. Agents mean performance, represented
by the line labeled � 	 degrades as their risk parameter in-
creases.

The cost of using options is further illustrated in Fig-
ure 8. We plot the the proportion of agents’ itineraries
backed by computational reservations versus the mean and
standard deviation performance. As expected, both metrics
are negatively correlated with the use of options. There are
few agents that buy options for more than ninety percent of
the tasks in their itineraries, so the data points representing
these agents are not significant.

5 Related Work

There is a large body of research that leverages
microeconomic ideas to increase system utilization in
distributed computing environments [KS89, WHH

�

92,
GFS95, CMM97]. These systems consider compute inten-
sive processes that have no ability to migrate once a location
is chosen. Regev and Nisan implement distribution of frag-
mented non-mobile applications over the World Wide Web
using computational markets [RN98].

The Geneva Messengers project uses markets to allocate
CPU time and memory to mobile agents [Tsc97]. Agents
can jointly sponsor areas of memory and prices fluctuate
with resource demand. The project does not, however, ex-
plore how agents plan in market environments to optimize
their performance or operate under budget constraints.

The Xenoservers project provides an operating system
with resource usage guarantees as well as the infrastructure

0 0.2 0.4 0.6 0.8 1
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

option usage

ac
tu

al
 /

id
ea

l p
er

fo
rm

an
ce

µ
σ

Figure 8. Proportion of itinerary backed by
options versus mean and standard deviation
performance, � and � 	 repectively.

for assessing costs to applications [RPM
�

99]. Stratford and
Mortier [SM99] present methods for trading resource con-
tracts within market-based operating systems, but do not go
so far as to implement pricing algorithms.

Steiglitz et al. analyze an synthesized market in which
agents participate [SHC96]. The agents produce, trade, and
consume two goods, food and gold. The work demonstrates
scenarios where agents speculate on the goods yield lower
price volatility. It will be interesting to investigate the ef-
fects of speculators in our computational markets.

Sandholm et al. propose algorithms for calculating
the values of leveled-commitment contracts [SSN99]. A
leveled-commitment contract specifies both the rewards for
participants as well as penalties for defaulting. Calculation
of rewards and penalties involves full knowledge of partici-
pants’ utility functions to establish a Nash equilibrium. Our
algorithms do not require agents to publicize their utility
functions, but leveled-commitment contracts are certainly
of interest since their use would allow hosts to over-sell
computational options and calculate appropriate amounts to
reimburse agents if a contract could not be honored.

6 Conclusions

We apply option-pricing theory to allow mobile-agent
hosts to issue reservations gauranteeing computation. We
represent a reservation as a restricted type of European call-
option and use a modified binomial model to price options
that agents substitute for demand consumption. Agents can
compare the expected utility of purchasing computation on
the spot market and the utility from gauranteed performance
to decide whether or not to purchase reservations on com-
putation. Our simulations show that the completion times of

8

risk-averse agents purchasing options are less volatile, but
their mean completion time is also lower.

This work exposes several open areas. It would be in-
teresting to explore more general options and better plan-
ning algorithms for budgeting agent resources. Much of the
work presented in the paper is ad hoc and glosses over sev-
eral topics. We do not consider whether it is in a host’s
best interest to publish accurate metrics; the reliance of op-
tion pricing on a liquid spot-market; or the possibility of
secondary option trade among agents. Finally, it will be en-
lightening to implement computational reservations in the
context of a working mobile-agent system.

We examine a restricted subset of European call options
in this paper. The purchase price of an option reflects all
of its value and we do not consider options with positive
strike price. In part, we consider fully front loaded options
to eliminate another dimension in agent planning, but with-
out interest rates, there is nothing to be gained by a conser-
vative agent holding an option with a positive strike price.

An option with positive strike price would be valuable
in many other applications, however. An agent may wish
to minimize response time of infrequent calculations. Such
an agent would benefit from purchasing many options dis-
counted to reflect a higher strike price. The use of more
general options necesitates more involved agent planning
and host pricing algorithms, possibly allowing hosts to over-
sell their resources in much the same way airlines overbook
seating.

There are other issues concerning hosts. We ignore,
in this paper, the incentives for hosts to publish accu-
rate parameters describing agent-performance history. It
is possible that an implementation would rely on a third-
party service tracking host performance. Another role for
third parties would be to trade options, possibly smoothing
price volatility through the quest for arbitrage opportunities.
Along with looking at the effects of secondary option trade,
it is important to consider the role of the spot market. In
our current pricing model, option trade replaces a portion
of the spot trade, but our method fails to price options in the
absence of a spot market.

Finally, this work would not be useful if it did not have
applications. An implementation will be interesting, espe-
cially since accurate descions on the part of agents require
accurate priors on the distributions characterizing conges-
tion. In running our simulations we found that the option
trading agents’ performance is sensitive to the accuracy of
their performance forecasts.

The financial option abstraction is powerful. We show
that it is useful for reserving computation time and lowering
the variance of mobile agents’ execution times. The same
pricing model could be applied to other resources to predict
congestion and guarantee quality of service.

Acknowledgements

This work is supported by Department of Defense
contract MURI F49620-97-1-0382 and DARPA contract
F30602-98-2-0107. We would also like to thank Andrew
Samwick for his insight and advice for representing re-
source reservations as call options.

References

[AOS
�

99] Ken Arnold, Bryan Osullivan, Robert W.
Scheifler, Jim Waldo, Ann Wollrath, and
Bryan O’Sullivan. The Jini Specification.
Addison-Wesley, Boston, MA, 1999.

[BKR99] Jonathan Bredin, David Kotz, and Daniela
Rus. Economic markets as a means of open
mobile-agent systems. In Proceedings of the
Workshop “Mobile Agents in the Context of
Competition and Cooperation (MAC3)” at Au-
tonomous Agents ’99, May 1999.

[BMI
�

00] Jonathan Bredin, Rajiv T. Maheswaran, Cagri
Imer, Tamer Başar, David Kotz, and Daniela
Rus. A game-theoretic formulation of multi-
agent resource allocation. In Proceedings of
the Fourth International Conference on Au-
tonomous Agents, Barcelona, June 2000. To
appear.

[CMM97] Anthony Chavez, Alexandros Moukas, and
Pattie Maes. Challenger: A multiagent sys-
tem for distributed resource allocation. In Pro-
ceedings of the First International Conference
on Autonomous Agents, Marina Del Ray, CA,
1997. ACM Press.

[CRR79] John C. Cox, Stephen A. Ross, and Mark
Rubinstein. Option pricing: A simplified
approach. Journal of Financial Economics,
7:229–263, 1979.

[CW92] Thomas E. Copeland and J. Fred West-
ion. Financial Theory and Corporate Policy.
Addison-Wesley, Reading, MA, third edition,
1992.

[GFS95] Ross A. Gagliano, Martin D. Fraser, and
Mark E. Shaefer. Auction allocatio of com-
puter resources. Communications of the ACM,
38(6):88–102, June 1995.

[KS89] James F. Kurose and Rahul Simha. A microe-
conomic approach to decentralized resource
sharing in distributed systems. IEEE Trans-
actions on Computers, 38(5):705–717, 1989.

9

[LO99] Danny B. Lange and Mitsuru Oshima. Seven
good reasons for mobile agents. Communica-
tions of the ACM, 42(3):88–89, March 1999.

[RN98] Ori Regev and Noam Nisan. The POPCORN
market— an online market for computational
resources. In Proceedings of the First Interna-
tional Conference on Information and Compu-
tation Economies, pages 148–157, Charleston,
SC, October 1998. ACM Press.

[Ros97] Sheldon M. Ross. Introduction to Probabil-
ity Models. Academic Press, San Diego, CA,
sixth edition, 1997.

[RPM
�

99] Dickon Reed, Ian Pratt, Paul Menage, Stephen
Early, and Neil Stratford. Xenoservers: Ac-
countable execution of untrusted programs. In
Proceedings of the 7th Workshop on Hot Top-
ics in Operating Systems. IEEE Computer So-
ciety, March 1999.

[SHC96] Ken Steiglitz, Michael L. Honig, and
Leonard M. Cohen. A computational market
model based on individual action. In Scott H.
Clearwater, editor, Market-Based Control,
chapter 1, pages 1–27. World Scientific,
Singapore, 1996.

[SM99] Neil Stratford and Richard Mortier. An eco-
nomic approach to adaptive resource manage-
ment. In Proceedings of the 7th Workshop on
Hot Topics in Operating Systems. IEEE Com-
puter Society, March 1999.

[SSN99] Tuomas Sandholm, Sandeep Sikka, and Sam-
phel Norden. Algorithms for optimizing lev-
eled commitment contracts. In International
Joint Conference on Artificial Intelligence (IJ-
CAI), pages 535–540, Stockholm, Sweden,
1999.

[Tsc97] Christian F. Tschudin. Open resource alloca-
tion for mobile code. In Proceedings of The
First Workshop on Mobile Agents, pages 186–
197, Berlin, April 1997.

[WHH
�

92] Carl A. Waldspurger, Tad Hogg, Bernardo A.
Huberman, Jeffrey O. Kephart, and W. Scott
Stornetta. Spawn: A distributed computational
economy. IEEE Transactions on Software En-
gineering, 18(2):103–117, February 1992.

10

