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Abstract

Some insights are provided on constructing contiguity matrices for spatial
models when only the X-Y latitude-longitude coordinates of the centroids from
spatial units are available. The spatial weights matrix is computed from the
so-called "range" of the two- dimensional semivariogram estimation, that is,
the plot of semivariances against the sampling interval. The resulting conti-
guity matrix is then included in an error-components model for a regressive
spatial autoregressive process. The model is estimated in two stages using the
sequential estimator suggested by Chamberlain (1982, 1984). To overcome the
computational difficulties that beset spatial processes, the data, in the first
stage, are treated as T cross-sections whose parameters are estimated by a
pseudo maximum likelithood procedure. In the second stage, nonlinear restric-
tions that combine both weak simultaneity and correlation effects are imposed
in the application of the minimum distance method. The presence of a weight-
ing matrix precludes direct and/or linear restrictions on parameters of interest.
This framework is applied to estimating spatial patterns in residential water

demand.
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1 Introduction

It is often relevant to consider the spatial distribution of phenomena such as diffusion
patterns in counties or states of a country, or as a map of points of occurrences. This
yields the spatial analysis of the so-called lattice data, i.e., observations for a fixed
and given set of locations in space. Related applied econometric areas are various.
LeSage and Dowd (1997) used this methodology to examine the spatial contiguity
influences on state price level formation. A similar framework has been used by Case
(1991) to describe spatial patterns in household demand for rice in some Indonesian
districts. Recent examples of empirical works that explicitly incorporate spatial
dependence concern, among others, the analysis of innovation decisions, Hautsch
and Klotz (1999), the forecasting of cigarette demand using panel data, Baltagi
and Li (1999), real wages variation to local and aggregate unemployment rates over
time, Ziliak et al. (1999) and the estimation of a hedonic model for residential sales
transactions, Bell and Bockstael (2000).

In a regression framework, spatial autocorrelation (more generally spatial de-
pendence) is the situation where the dependent variable or/and the error term of
a regression function, at each location, is correlated with observations on the de-
pendent variable or/and values of the error term at other locations. As pointed
out by Anselin (1988), ignoring this structure when it is actually existing results in
mis-specification and bias in estimation. While most studies focus on cross-sectional
specifications, spatial models for panel data have not received much attention.

As outlined by Case (1991), fixed effect specifications can be used to control
for spatial components in panel data. But in some cases, when there is no intra-
regional variation in variables of interest, a spatial modeling approach may be more
appropriate. This is the case for example when the variation in the variable depends
upon distance between points. Then, there is a perfect correlation between the
variables of interest and the fixed effects. The same paper discusses the gains in
information and efficiency which are achieved by spatial random effects modeling,
and shows that when specific effects are uncorrelated with right hand side variables,
there are clear benefits to spatial specification. More generally, it can be argued that
the equicorrelated structure of individual dependence that is typically specified for
the error-components in panel data models does not allow for distance decay effects.
Furthermore, the equicorrelation is associated with the time, and not the individual,

dimension of the data set. Such a structure is not adequate for estimating spatial



patterns in panel data. This study provides empirical advances on this topic.

In this study I consider estimating panel data autoregressive models in the frame-
work of Chamberlain’s (1982, 1984) sequential estimator. We specify a mixed regres-
sive spatial autoregressive model. This specification defines a class of random fields,
i.e., models derived from processes indexed by space, time and cross-sectional di-
mensions. | work with a row-standardized spatial weighting matrix, i.e., the spatial
weight matrix is normalized so that the rows sum to unity. This standardization
produces a spatial lagged variable that represents a vector of average values from
neighboring observations. The specification is assumed to be the true data gener-
ating process which relates observations with reference to points in space and time.
Then the model id estimated in two stages.

To overcome the computational difficulties that beset spatial processes and as-
suming the errors to be normally distributed, the data, in the first stage, are treated
as T cross-sections whose parameters are estimated by a pseudo-maximum likeli-
hood procedures. Under suitable regularity conditions, this stage provides both
unrestricted consistent parameters estimates, including the spatial coefficient, and
scores which are used to compute the consistent asymptotic covariance needed for
the second stage. Then, nonlinear restrictions that combine both weak simultane-
ity and correlation effects are imposed in the application of the minimum distance
method. Three cases of restrictions are considered: the fixed slopes, the all identical
parameters and the time-varying parameters. The minimum distance estimates are
computed for each case and is consistent and asymptotically efficient. We used this
specification for empirical application.

The empirical analysis consists in examining the spatial variations of residential
water demand for the French department of "Moselle", including electricity price
effects. At this stage, it is important to explain why electricity price can be used
as additional regressor in the model specification and why the data at hand are
appropriate to spatial context.

Indeed, as indicated by Hansen (1996), when estimating the determinant factors
of residential water demand, we may expect to observe the indirect effects of energy
variables, according to water consumption between different water-using tasks. In-
deed, water is consumed by households jointly with different tasks which involves
use of water and in most cases sizable amounts of energy and other goods (appli-
ances, etc.). Table 5 in Appendix 6.2 reports the daily distribution (on average) of

French residential water consumption between household tasks. About 40% of this



distribution is concerned with water heating (mainly by electricity). We combine
this consideration with spatial aspects for two reasons.

The first reason is related to the empirical concern. Several studies have pointed
out a regionalized water consumption behavior of households living in municipalities
concerned by our study, which is linked to the availability of water resources. See,
e.g., INSEE (1998) for more details on this purpose.'). Furthermore as will be
seen later, these municipalities have been organized in two spatial sectors for the
need of water network management. In this context, the specification udes may
be viewed as a model of endogenously changing tastes, which allows to check for
social interdependence by testing the extent to which households look to a reference
group when making water consumption decisions. It may also be thought of as
indicating the magnitude and the direction of interactions between consumers with
respect to the availability of water resources. The second reason is attached to the
theoretical framework. As outlined earlier and as will be seen in data description,
there is no intra-regional variation in water prices and variations in this variable
depend on distance between minicipalities. As a result, a spatial approach seems
more appropriate and should be preferred above pure fixed effect modeling in this
specific application. Furthermore in our panel, the number of waves is less than the
number of cross-sections. Then an framework like one suggested by Whittle (1954)
can not be applied.?2 All these reasons motivate the use of the spatial approach
adopted here.

Section 2 presents the model. The proposed specification combines elements of
spatial modeling and panel data framework using the minimum distance approach.
Section 3 is dedicated to data. We describe the sampling and basic descriptive
statistics. Correlograms are computed to check for spatial patterns. We also use
nonparametric density estimation to identify spatial sectorial tendance in the distri-
bution of water average price. Estimation results involving both parameters estimate
and spatial elasticities are presented in Section 4. Concluding remarks are given in

Section 5.

'Tableaux de 1'Economie Lorraine 1997/1998 (Tables of Lorraine Economics

2Whittle (1954) suggests that if panel data are available and if the time dimension is sufficiently
large, T' > N, one can consider, e.g., a seemingly unrelated regression specification, or an error com-
ponents model to permit for cross-sectional correlation, and estimate the cross-sectional correlations

through the time dimension of the panel.



2 Spatial model for panel data

The materials used here originate in Chamberlain (1982, 1984). . See also Crépon
and Mairesse (1996) for a suitable presentation of the Chamberlain approach for
linear models, and ? for nonlinear models. The Chamberlain approach use restric-
tions implied by model assumptions on moments to obtain asymptotically efficient
estimates without imposing conditional homoskedasticity or independance over time
on the disturbance of the model. This estimator is sequential in that in a first stage,
the moments of the variables are computed up to the second order, forming a set of
auxiliary parameters. In a second stage, the parameters of interest are estimated on
the basis of their relations with the auxiliary parameters, using minimum distance
or asymptotic least squares estimator.

The basic feature of the Chamberlain method is that the sample covariance,
say, the set of moments of the response variable and regressors can be summarized
by a specific combination of moments by the so-called II matrix, which is formed
of the coefficients of the predictors of the response variable given the whole set of
regressors (leads and lags) at each period. This means that if there are T" waves in
the panel and K explanatory variables, the II = [m; ;] matrix of dimension 7' x KT
is obtained by stacking one above the other the row vectors of demension 1 x KT
of the coefficients for the T separate year regressions. The restricted estimates from
the minimum distance applied to the unrestricted I matrix are more efficient under
general conditions than the usual "within estimator" computed on the deviation of
the variable from their individual means. In what follows, we state the basic relations
between Il and parameters of primary and secondary interest implied by covariance
restrictions in the framework of autoregressive spatial models. Then, we discuss the
form of the estimating equations and of resulting restrictions on the Il matrix.

Consider a spatial autoregressive model for panel data containing a spatial lag

of the response variable as additional regressor. Then the model has the following

structure
K-1
k
Yir = Z pwijyjt + Z x,ft)ﬁk + i+ i, ol <1 (1)
i#i k=1

i=1, Nyj=1,-- Nyt=1,-T.

where y;; is the i-th observation on the dependent continuous variable at period ¢,

(%)

x;,’ is the i-th observation for the £-th explanatory variable, y;; is the j-th contiguous



to i. p is scalar spatial coefficient and the 3’s are k£ — 1 parameters of the remaining
explanatory variables. p and 3 are parameters of primary interest. w;; is an element
of the spatial weighting matrix, the computation of which based in semivariogram
estimation is given in Appendix. The correlated individual effect is given by p; and
n;t denotes a idiosyncratic i.i.d error term.

Let & = [z4,w;;y;¢] be a block component of regressors in (??). In a linear
regression framework, p; can be a general non-linear function of the & = [z;4’s that

is decomposed into its minimum mean squared error predictor and orthogonal error
pi = N&; + v; (2)

with &; = (2, @iy, Ty Yoy, Vs 7y;-T)/. Restrictions on A will allow the ex-
clusion of the regressors for wich one may assume non-correlation with the het-
erogeneity term pu;. Here, we will assume that the regression function F(u;|Z;)

is actually linear and that F(v;z;) # 0, that is v; indenpendent of the #;’s in-

cluded in (2) If we define y. = (2117 . 7ng)/7 T, = (ﬁ(ll)/7 - 7£g})/7 ce 7£g{(—l)/)/
and u; = (brp 40, rp+ Q’T)/, which are respectively block matrices (1 x 7T')

and (1 x KT) with each block being of (N x 1) dimension. The relation (1) can be

rewritten as
y, =Wy, + L(B)z; + u; (3)

where I'(3) = (81, -+, Br—1) @ IT. Factorising relation (3) from the left we can also

write
[I—pW ™y, =T(B)z; + u, (4)

So far, we have assumed that some component of z, to be correlated with pu; but
not with n;;. Let us denote ® = E(u;z!), the covariance matrix between u; and z;.

Projecting equation (4) on z; introduces the IT matrix
[ = pW) I = D(B) Bz B (zizf) ™ + @B (zzi) ™ (5)

with I = E(glg,’t)E(ng)_l Then non-linear restrictions are obtained in term of Il

and parameters of primary and secondary interest, p, 3, and A:
1= vee {[1 = pW]™'D(B) + [ = pW] "' @B (z,2}) ™' | = F(8) (6)

with Il = (1_[/17 ’H/T)/7 0= (Elaﬁlaél)/-



From (6) note that the presence of a spatial weighting matrix precludes direct
and/or linear restrictions on parameters of interest, inducing necessarily nonlinear
restrictions that combine both weak simultaneity and correlation effects.?

In a first stage, assuming the errors to be normally distributed, II; can be esti-
mated by maximazing the marginal log-likelihood function based on the distribution
of y;; conditional on non-correlated regressors. In a second stage non-linear restric-
tions (6) can be imposed by applying minimum distance estimator

0 = arg min (11— £(6)] 's.[11 - s(0)] (7)

where S, 23 S; a positive definite symmetric matrix. In the case of spatial models,
a consistent estimate of S, is not trivial since the computation of S,, make use of
the spatial weights matrix in the likelihood function from the first stage.

In order to derive the asymptotic distribution of \/N(f[ — fIO), let €2y denote a

consistent approximation of Sy such that

1, .- _
o = N [Jo ' 1o Jg '] (8)
where Jo = diag{.Jy,-- -, Jr} is a block diagonal matrix with elements
O*P(y, X; W, o)
, — E _ b b b
/ ( 0000’ 9)
and elements of Iy are
(P e P
I=F (%(:%)(71/‘/7 00)%(:%)(71/‘/7 00) (10)

A consistent estimator  of Q is obtained as follows. Let iy, X; W, p, 3, 0?) denote

the log-likelihood for one observation at each multi-period. That is

1 1 1
Vily, X; W, p,3,0%) = — §ln(27r) — §1n ol + N1n|A|
1 Loy

T 202 Z (L= — pwij) yi — ZXikﬁk

J€J k

%The spatial autoregressive model on consideration combines naturally two known cases of es-
timating equations: correlated effects and weak simultaneity due to the presence of the spatially
lagged dependent variable. In correlated effects case, it is assumed that the past, present and future
values of the explanatory variables are not correlated with the time varying disturbance n;;, but
that they can be correlated with the specific effects ;. Weak simultaneity corresponds to the case
of pre-determination or weak exogeneity of the explanatory variables (or some of them) that allow
for both "feedback effects" of the response variable which can be interpreted as spatial diffusion

patterns.



where j = 1,---,J is the set of communities contiguous to a community ¢ and 1},
denotes an indicator function. Taking partial derivatives of (11) with respect to the

parameters yields:

ovi(- 1
8ﬂi) = =3 | 22 (L= = i) i = D XinB | Xix (12)
| ied h _
oY (- 1 _
8—() = o5 | 20 (o= = pwid) y = 3 XinB | Y wigys +N7IE - (13)
p | jeT 3 | jet
2
0Yi(+) 1 1
90?7~ 207 T304 > (Lpimjy = pwig) yj = D Xk (14)
JeJ k
with
€= iln(l — pW) = —tr ([1 —~ W]-lw)
dp P g
Let v — [2%:0) | i) | i ()

T 3 Tl be a block element of I obtained by stacking the
vector of derivatives evaluated at parameters estimates. The empirical variances
matrix [ of individual scores is given by the cross product of ¥; s for ¢ # s. The
estimate € of Q is computed as Jj1 by replacing theoretical expectations by

sample means.

3 Data

The data considered here rely on a lattice sample coming from the French network
of drinking water distribution. The sample is constituted by 115 neighboring mu-
nicipalities located in the north-east of France, in the "department of Moselle ".
Households living in these communities are supplied with drinking water by a pri-
vate operator. The data are collected with a biannual frequency, from 1988.1 to
1993.2. We have then a balanced panel of 1380 spatial observations. Thus, we are
concerned with the residential water consumption per municipality expressed in m3
per household. A detailed data analysis can be found in Azomahou (1999). We refer
the reader to this study for a complete data description.

The explained variable is the aggregate water consumption per community ex-
pressed in cubic meter per house. Urban communities are larger than rural ones. So

as to consider homogeneous observations and in order to reduce the community size

effect, each consumption value has been divided by the total number of households



per community in 1990, the year of the last inventory available. It also constitutes
the last period when the population general census was conducted by the offices of
the National Institute of Statistics and Economic Studies "(INSEE)".

National statistics indicate an average water consumption tendency around 120
m3 per house and per year. These figures vary from one house to another. Old
houses are light on water consumption whereas high standing dwellings with gardens
can consume around 180 m3. When we compare these indicators with those com-
puted from the sample, we notice that the average consumptions recorded are of the
same magnitude. Minimum values can be considered as the consumption of rural
communities. These tendencies are also indicative of the standard of living of the
population considered. As a whole, there is no outliers in consumption values. Note
however some high values for 1989.2, 1991.1 and 1991.2 where we observe 74.55, 75.56
and 75.04 m3 respectively. This may result from extra consumptions in addition to
purely domestic ones. It may be the case for households having small businesses or
farms as described above. These statistics support, on average, the relative statility
of our data.

Disposable income statistics are characterised by very low values. Consider for
example the year 1990 where the minimum values are the lowest, that is, 31,820
FF per household paying tax. One obtains a monthly disposable income figure of
2,651.66 FF. Supposing that this household paying tax is made up of a single, the
latter earns around the "minimum insertion income" in France. This shows the dif-
ficulty usually encountered in recording income data. Other reasons explain these
low values. Indeed, various studies conducted by the "National Institut of Statistics"
show that, in the department of "Moselle", taxable incomes under-estimate by 30%
on average the actual household incomes.* This under-estimation is extremely high
for the self-employed (43%), and even more for self-employed farmers (57%). More-
over, even if we know that the consequences of the economic crisis on the evolution
of global wages has been compensated by a strong increase of social benefits and a
slight increase in taxes, the "Moselle" departement is below the national indicators.

The organization and the management of water distribution in France pertain to
public service liability. The price results from a negociation between local authorities
and the water distributor which may be the local collectivity itself or a private
company. Average price values clearly indicate relevant patterns. The average price

increases continuously on the twelve biannual periods. This increase shows three

*Tableaux de I'Economie Lorraine 1997/1998 (Tables of Lorraine Economics), (INSEE (1998)).



figures. From 1988.1 to 1989.2 the average price is below 7 FF; from 1990.1 to 1991.2
it is below 8 FF and from 1992.1, the tendency is higher than the previous ones. This
last tendency indicates an important modification in the water price structure. As a
whole, the price variable suggests a clustering pattern. It also presents an increasing
dispersion within clusters with stable minimum values (around 3,5 FF).

According to the water supplier, the communities are organized in two sectors,
but there is some doubt about the exact number of sectors. We denote each sector
by a dummy variable (dummy 1 for sector 1 and zero for sector 2). Out of 115
communities, 65.2% belong to sector 1. The sectors correspond to two distinct
areas of water management. This spatial arrangement is mainly due to the network
management issues (water transportation and various treatments to make water
drinkable) and is closely linked to the various elements of water prices.” The marginal
price of water is the same within a given sector but varies between sectors. Thus,
we know that there is no intra-regional variation in the marginal price. But the
average price varies from one community to another when the fixed charges of water
are included. Moreover, the laws on water of november 1992, by the so-called "M-
49 directive", have strongly modified the working orders of water agencies.® This
modification has been translated into a high increase in water prices. The aim is to
let customers pay for the effective price of water, and no more for the water service.

Finally, note that the meteorological values presented here are not dummy vari-
ables as in many studies, but the thrue values recorded by the Regional Center of

Meteorological Studies.

4 Estimation results

We use the model specified above to carry out empirical estimation on data described
in the previous section.” Tables 1 and 2 present the unrestricted maximum likelihood

estimates for the mixed regressive spatial autoregressive model for the twelve time

5To make ideas clear, we computed the correlation coefficient between the average price variable
and the sector dummy for each time period: (-0.33, -0.32, -0.38, -0.38, -0.36, -0.39, -0.35, -0.34,

-0.35, -0.38, -0.35, -0.41). There is evidence of correlation.
6Set up on November 10th, 1992 (its implementation date) the "M-49 directive" imposes to water

services (supply and cleaning up) the rule of budget balance. They are forced not to make their
general budget support the water spendings (building up and maintenance of network, equipments,

cleaning up...).
"GAUSS procedures to implement these calculations are available from the author on request.
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periods. A Lagrange multiplier test shows rejection of the alternative spatial error
specification for most cases except for 1988.2, 1991.1, 1992.1 and 1993.1.

For these cases, spatial dependence remains in the residuals and our specification
is clearly rejected. Thus, a mixed autoregressive spatial moving average model, i.e.,
a model with a spatial lag dependent variable as well as a spatial moving average
process in the error will be more appropriate. In the other cross-sections, the spatial
dependence has been adequately dealt with. A spatial Breusch-Pagan test for spatial
heteroskedasticity clearly indicates that heteroskedasticity patterns remain in the
specification.

Characteristics variables: proportion of persons below 19 years, proportion of
workers, proportion of unemployed, community equipments, density of population
appear to be stable over time. Some of them (proportion of persons below 19 years,
proportion of workers and proportion of unemployed) are highly significant in the
unrestricted cross- sectional estimates. Note that the average price of water becomes
significant only from 1990.1 on. The intercept varies widely but is not significant.

Table 3 reports the results from the asymptotic least squares for the two sets of
restrictions. From the general specification described in the modelling section, we
obtain various estimates by imposing two restrictions. The first restriction is that of

fixed slopes expressed as:

ol — 6,

~ é?g - Ox
g(b(0),a)=| " | =0 (15)

07 — 6,

with 6; = (é? éf)’, t=1,---T, where 69 and éf denote respectively the parameters
vector of varying intercept and the parameters vector of fixed slopes for the period

t, and @ = #,.. The second restriction is that of all identical parameters:

6, -0
. 6, — 0
g0 =" " =0 (16)
r — 0
with b = (él, cee éT)’ and @ = 6. For each case, the ALS estimates may be computed

by generalized least squares procedures.
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Table 1: Unrestricted ML regressive spatial autoregressive estimates (continued)

Cross-section estimates (and standard errors)

Variable 1988.1 1988.2 1989.1 1989.2 1990.1 1990.2
Intercept 128.33 -157.20  -190.32  58.00 -653.15  -160.67
(157.10) (171.10) (267.64) (244.24) (310.40) (256.57)
Disposable Income 0.524 0.036 -0.564 -0.887 0.238 0.063
(0.665) (0.590) (0.717) (0.736) (0.605) (0.605)
Water price -1.346 -0.860 -1.508 -1.702 -2.093 -1.391
(1.275) (1.195) (1.082) (1.209) (1.116) (1.137)
Electricity price 0.194 0.189 0.483 0.125 0.599 0.349
(0.130) (0.108) (0.264) (0.235) (0.284) (0.240)
Rainfall -0.946 0.269 -1.220 -1.384 0.862 -0.552
(0.380) (0.406) (0.373) (0.426) (0.376) (0.318)
Mean temperature -1.138 16.087 3.419 8.371 25.220 2.924
(6.469) (8.481) (6.521) (6.257) (9.068) (6.989)
Persons < 19 years -1.396 -1.694 -1.028 -1.239 -0.576 -0.882
(0.575) (0.530) (0.596) (0.607) (0.600) (0.582)
Workers -2.662 -1.478 -2.194 -0.726 -2.724 -1.716
(0.651) (0.585) (0.700) (0.695) (0.647) (0.659)
Unemployed -2.977 -2.624 -3.321 -2.740 -3.477 -3.124
(0.603) (0.561) (0.603) (0.614) (0.621) (0.616)
Equipments -0.409 -0.678 -0.281 -0.211 -0.084 -0.078
(0.352) (0.330) (0.359) (0.366) (0.359) (0.359)
Density of population 0.166 0.123 0.225 0.004 0.316 0.081
(0.400) (0.374) (0.405) (0.415) (0.412) (0.410)
Spatial lagged variable 0.273 0.119 0.281 0.323 -0.004 0.310

(0.282)  (0.325)  (0.288)  (0.292)  (0.335)  (0.292)

Diagnostics tests, (p-value)

LM spatial error 0.704 3.911 0.219 0.826 0.269 0.374
(0.401) (0.047) (0.639) (0.363) (0.603) (0.540)
Spatial B-P heteroskedas. 13.753 7.778 19.826 13.538 16.634 25.224
(0.131) (0.556) (0.019) (0.139) (0.054) (0.002)
Number of cross-section obs. 115
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Table 2: Unrestricted ML regressive spatial autoregressive estimates (end)

Cross-section estimates (and standard errors)

Variable 1991.1 1991.2 1992.1 1992.2 1993.1 1993.2
Intercept -248.72  -423.66  -T2.88 -21.60 -50.34 -320.07
(348.13) (330.08) (346.51) (317.15) (322.76) (350.23)
Disposable Income 0.067 0.100 0.127 -0.225 0.147 -0.269
(0.612) (0.518) (0.457) (0.443) (0.439) (0.483)
Water price -1.212 -3.595 -2.177 -0.729 -1.949 -3.092
(1.167) (1.025) (0.898) (0.915) (0.689) (0.757)
Electricity price 0.443 0.500 0.166 0.215 0.147 0.482
(0.346) (0.297) (0.334) (0.276) (0.306) (0.281)
Rainfall -1.384 -0.127 0.011 -0.911 0.002 -0.356
(0.606) (0.306) (0.384) (0.264) (0.280) (0.319)
Mean temperature -9.589 10.831 10.025 3.240 13.723 7.660
(8.177) (8.561) (7.646) (12.058)  (9.354) (8.216)
Persons < 19 years -0.829 -0.458 -0.697 -0.463 -1.138 -0.445
(0.651) (0.605) (0.566) (0.537) (0.550) (0.567)
Workers -2.533 -2.088 -2.209 -1.613 -1.796 -2.517
(0.719) (0.685) (0.689) (0.638) (0.646) (0.652)
Unemployed -3.088 -2.928 -3.067 -2.878 -2.479 -3.132
(0.690) (0.646) (0.623) (0.586) (0.606) (0.644)
Equipments -0.022 0.135 -0.166 0.015 -0.555 0.204
(0.402) (0.379) (0.364) (0.335) (0.345) (0.365)
Density of population -0.096 0.453 0.114 0.187 -0.004 0.523
(0.457) (0.435) (0.416) (0.392) (0.406) (0.421)
Spatial lagged variable 0.386 0.134 0.484 0.260 0.233 0.287

(0.273)  (0.299)  (0.243)  (0.285)  (0.299)  (0.284)

Diagnostics tests, (p-value)

LM spatial error 6.386 0.074 7.863 1.194 9.798 1.093
(0.011) (0.785) (0.005) (0.274) (0.001) (0.295)
Spatial B-P heteroskedas. 13.458 20.644 21.721 15.658 19.717 42.132
(0.142) (0.014) (0.009) (0.074) (0.019) (0.000)
Number of cross-section obs. 115
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Table 3: Asymptotic least squares estimates

Restriction 1 Restriction 2

(fixed slopes) (all fixed parameters)
Variable coef.  std.err  t-stat. coef. std.err  t-stat.
Intercept — — — 4.496  40.886 0.109
Disposable Income 0.092 0.145 0.637 0.205 0.170 1.201
Water price -1.998 0.253  -7.878 -2.385 0.264  -9.017
Electricity price 0.240 0.055 4.324 0.201 0.038 5.226
Rainfall -0.367  0.082 -4.474 -0.079  0.041  -1.901
Temperature 5.780 1.992 2.901 0.594 0.425 1.399
Persons < 19 years -0.991  0.155  -6.390 -0.959  0.183  -5.241
Workers -2.104  0.175 -11.965 -2.131  0.201 -10.584
Unemployed -2.931 0.167 -17.544 -2.800  0.196 -14.217
Equipments -0.223  0.097  -2.292 -0.271  0.115  -2.347

Density of population 0.149 0.111 1.341 0.175 0.130 1.338
Spatial lagged variable 0.271 0.078 3.437 0.289 0.091 3.163

R? 0.692 0.603
R? 0.656 0.565
X2 (5%) 94.165 133.972
dof 143 121
Number of obs (N x T) 1380

The minimum distance tests indicate no rejection for our restrictions (fixed slopes
and all fixed parameters). Nevertheless, imposing additional restrictions may lead to
rejection. For the first restriction, the estimated coefficients appeared to be signifi-
cant except for the disposable income and the density of population variables. The
other coefficients have the expected sign, except perhaps for the coefficient of the
electricity price variable which is positive, which a priori appears to be surprising.

Indeed, although complementarity between the two goods (water and electric-
ity) may be expected, the positive sign for the parameter of electricity average price
variable indicates that, for the sample concerned, water and electriciy display substi-
tuability patterns. This means that an increase in electricity average price may result
in more water consumption by residential consumers. This a priori surprising result

is in contradiction with the study of Hansen (1996) where the energy cross-price
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parameter is found to be negative. Our cross-effects estimates suggest that changes
in electricity average price may induce modifications in the distribution of residential
water consumption for different uses. That is to say, the share of residential water
consumed in connection with electricity may decrease with electricity price, whereas
the remainder (the share of residential water consumed without energy) does not.
We have noticed in section 1 that about 40% of daily residential water consump-
tion in France is concerned with heating. 60% would not be, which partly explains
our result. This may also indicate that consumers take into account the electricity
block pricing structure where water consumption occurs effectively. For the second
restriction, meteorological variables (rainfall and mean temperature) are no longer
significant but are of the expected sign.

The spatial coefficient is also highly significant, which confirms the modelling
framework. Here, the spatial behavior may be viewed in two ways. First, we can
argue that households are actually influencing their neighbours. The water con-
sumption behavior of other households affects the consumption of a given household
through social proximity. In this sense, the estimated spatial coefficients represent a
direct measure of externality. The significant spatial pattern may also be interpreted

as the reaction of households with respect to the availability of water resources.

5 Conclusion

Statistical inferences in models for spatial processes are highly susceptible to misspec-
ifications in the contiguity matrix. In this paper, we take advantage of geostatistical
tools using the semivariogram to describe the degree of spatial dependence in an
economic attribute, and to suggest a way for computing a spatial weight matrix
for spatial econometric models. As shown, our approach is feasible and provides
a meaningful alternative when little information on the spatial structure of the at-
tribute being studied is available to the investigator.

So, what can we learn through this study? First, the estimated spatial lagged
parameter is strongly significant, which means that households living in the same
geographic area have approximately similar water consumption behaviors. Finally,
some comments concerning price variables are in order. We find evidence that con-
sumers respond jointly to water and electricity average price, not to water average
price only. The use of electricity average price as additional regressor improved the

model specification. A crucial assumption behind the maximum likelihood method
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used is that the disturbances are normally distributed. As pointed out by LeSage
(1996), violation of this can arise from outliers or spatial enclave effects where a
small cluster of observations display aberrant behavior. This aspect remains to be

examined.

6 Appendix

6.1 Computation of the contiguity matrix

Given the importance of the choice of the proper weights for the interpretation of
spatial models, some inherent characteristics of weights matrices must be satisfied.
These necessary regularity conditions such that asymptotics may be invoked to obtain
the properties of estimators and test statistics. For example one may ensure mixing

conditions such that:

n
Z|%‘j|§liw7 foralli=1,---,n;n>1
=1

n

Z|wij|§/{w, forallj=1,---,n;n>1

i=1
where k is a finite constant. The above relations mean that the row and column
sums of the weighting matrix are uniformly bounded in absolute value. Specifically,

this assumption means that weights must be nonnegative and restricts the extent of

correlations relating to the elements of u such that:

n n
n~! Z Z |corr(us, u;)| < K < 00 foralln > 1
i=1 j=1
where corr(u;, u;) denotes the correlation between u; and u;.

From now, suppose that the spatial units are not all contiguous and that the
investigator does not have any prior information to guide him for the choice of the
contiguity matrix, other than the X-Y latitude-longitude coordinates of the centroids
from each spatial units. What can he do ? First, choosing an appropriate metric,
he may compute a distance matrix and use it directly as weights. But as drawback,
this choice usually leads to explosive values for spatial coefficients; that is p and A
will no longer be less than one.

Another way consists in specifying W as a function of distance (inverse distance,

negative exponentials of distance etc.), see Cliff and Ord (1981) for details. However
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an important problem results from the incorporation of unkown parameters to be
estimated in the weights. These parameters are usually determined a priori from a
step which is not included in the whole spatial analysis. Such approach turns out
to be a circular reasoning. Indeed, the spatial structure which the investigator may
wish to discover from the sample is assumed to be known before data analysis.

Finally the investigator may compute a binary contiguity matrix based on critical
distance bands. However, recall that any prior notion of which meaningful distance
ranges is available to the researcher.® So he may try several distance bands until
finding a "good one". But this is not a scientific way to proceed. Moreover, the true
spatial process underlying the system is no longer well stated. This is a typical issue
one may face in empirical studies. Our proposed approach to handle this problem is
to bring in relations between geostatistics and spatial econometrics. We suggest to
use the two-dimensional semivariogram estimation for computing the weights matrix
from the so-called "range". That is the plot of semivariances against the sampling
interval.” The resulting contiguity matrix can then included in an error-components
model for a regressive spatial autoregressive process.

Semivariogram allows to assert the spatial variability of an attribute. It results
from the plot for semivariances against sampling interval or distance lag. Because
of its ease of computation and lack of issue when the variance is non-stationary,
the semivariance is a robust tool having the properties of optimum interpolation and
structure recognition. In this section, we show how the semivariogram can contribute
to constructing spatial weights in a meaningful way. Then, we give an application.

Consider a series of observations for an economic attribute Z(s;) measured at
locations {s; : i = 1,---,N}. The semivariance denoted 7(h) of the increment
Z(s;) — Z(s;) is defined as one-half the variance of this increment and is computed

as:
2y(h) = var[Z(s:) — Z(s;)] (17)
For points separated by distance h, relation (17) can be rewritten:

2y(h) = E[Z(s + h) — Z(s)]" (18)

Such prior notions may be for instance, economic organization of spatial agglomerations, travel

time, social network theory, etc.
°To the best of my knowledge, this approach is new in its application for computing spatial

weights matrices.
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The semivariance is estimated as:

oy L o) — Z(s T2

where the sum is over N(h) = {(¢,7) : s; — s; = h} and |N(h)| is the number
of distinct elements of N(h). For asymptotic considerations, the variance and the
covariance of {2§(h) : h = 1,---, H} for H fixed are shown to be O(1/n), Cressie
(1985). Then a mathematical model may be fitted to the realisation of sample values
at points {s; : i = 1,---, N} using either least squares or maximum likelihood.
Commonly used theoretical semivariogram models have been classified by Journel
and Huijbregts (1978). More technical details on semivariograms can be found in
Cressie (1991).

Theoretically, the (two-dimentional) semivariogram should pass through the ori-
gin, because differences between points and themselves are zero. Often, the semi-
variogram cut the v(h) axis at a positive value of it. This is the so-called "nugget
variance effect", which means that at the shortest sampling interval (lag = 1), there
is a random residual variation which is not spatially correlated. Then, the graph will
rise gradually to a point called the "range". This level is termed the "sill". At this
point, the semivariogram levels out. Then, the range represents the distance in which
points are spatially dependent. The presence of a sill and a constant semivariance at
lags greater than the range mean that observations spaced by distances greater than
the range may be considered as spatially independent. Our idea is to use the range
as a meaningful indicator upon which the structure of the W matrix can be based.

Semivariances estimation based on these data is carried out in two stages. (i)
Sample two-dimensional semivariograms were computed. (ii) Transition theoretical

curves were fitted (by weighted least squares) to these points using the "spherical"

specification:
0 h=0
1(hi8) = 3 co + ¢ [3/2)(IAll/a) - (1/2) (16l /)] 0 <l <a  (20)
o+t e 2]l = a

with 8 = (co, c, a)/; co > 0 is the nugget variance, ¢ > 0 is the sill and ¢ > 0 denotes
the range.
We propose a "corrected form" of the range as computation criterion for the spa-

tial weights matrix. Indeed, at this stage, edge effects (due for instance to sampling)
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may result in spurious spatial dependance. To avoid this, we compute confidence
limits for the range. Hence, a weights matrix can be constructed as follows.

Let W denote a spatial weights matrix with elements w;;, D the distance matrix
with elements d;; and A the range obtained from the semivariance estimation. A
binary contiguity relation can be defined as:

i = 1 ifd;; € [A; A] (21)
0 otherwise and if i = j
where A and A denote respectively the lower and upper asymptotic 95% confidence
limits for the range. Sample characteristics and semivariogram estimation results
for 1988.1 and for 1993.1 are reported in Table 4. Semivariogram plots are given in
Figure 1.

Sample characteristics and semivariogram estimation results for 1988.1 and for
1993.1 are reported in Table 4. Standard errors estimates are in brackets. Semi-
variogram plots are given in Figure 1. Dots correspond to estimated semivariance
points computed for each lag. The superimposed dashed lines show the weighted
least squares fit of the spherical model. The spatial variability of residential water
consumption is then asserted. Spatial autocorrelation occurred up to 37.53 km both
for 1988.1 and 1993.1, which suggests the use of approximately the same W matrix

for the two cross-section.'®

6.2 Distribution of French daily residential water consumption be-

tween household tasks
6.3 Definition of variables and related data sources

The data were provided by "La Compagnie Générale des Eaux (Direction Régionale
Est" (General Company of Water(s)), "la Direction Générale des Impots de la
Moselle" (Regional Tax Center), "le Centre Départemental de la Météorologie de
la Moselle" (Regional Center of Meteorological Studies) and "I’Institut National de
la Statistique et des Etudes Economiques" (National Institute of Statistics and Eco-

nomic Studies). The variables used in this study are the following.

'"We have computed the characteristics of the distance (using Euclidean metric) matrix based on
X-Y latitude- longitude coordinates of the centroids from each municipality. We find that the range
fails within the median and the third quartile distance, respectively 29.273 km and 41.641 km.
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Figure 1: Robust estimated semivariograms for residential water consumption. Dots

correspond to estimated semivariance points computed for each lag. The superim-

posed dashed lines show the weighted least squares fit of the spherical model. Spatial
autocorrelation occurred up to 37.53 km both for 1988.1 and for 1993.1.
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Table 4: Sample characteristics and the semivariogram model estimation for residen-
tial water consumption per municipality expressed in m3 per household. Standard

errors estimates are in brackets.

Sample characteristics Water consumption  Water consumption

and estimated parameters 1988.1 1993.1

Sample characteristics:

mean 69.68 72.24
std. dev. 27.75 26.51
min. 1.11 0.81
max. 153.15 157.33
obs. 115 115
Estimated parameters:
¢o (nugget variance) 14.40 (7.71) 10.82 (5.63)
c (sill) 1008 (366.54) 757.1 (270.39)
a (range) 37.53 (10.17) 37.53 (9.21)
Lags 9 9

Dependent variable: aggregate residential water consumption per community ex-

pressed in m3 per house.

Explanatory variables

e Water average price in "FI'" per m3 (computed to include fixed charges),
e Electricity average price in "FF" per kwh,

e Disposable income per household paying taxes,
e Rainfall in m,

e Mean temperature in degree Celsius,

e Proportion of persons below 19 years,

e Proportion of workers,

e Proportion of unemployed,

e Index of equipments,

e Density of population,

e Spatial lagged dependent variable.
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Table 5: Water-using tasks (Source: "General Company of Waters")

Water consuming tasks Proportion
Drink 1%
Cooking (heated) 6%
Dish washing (heated) 10%
Clothes washing (heated) 12%
Toilets 39%
Personal hygiene (heated) 20%
Outdoor use (including sprinkling) 6%
Other uses 6%
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