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Abstract

The estimation and management of risk is an important and complex task

with which market regulators and �nancial institutions are faced. It has be-

come apparent that accurate and reliable quantitative measures of risk are

needed in order to avert, or at least minimize, the undesirable e�ects on a

given portfolio of large uctuations in the conditions of the market. In order

to accomplish this task, a series of computational tools have been designed,

implemented and incorporated into MatRisk, an integrated environment for

risk assessment developed in MATLAB. Besides standard measures, such as

Value at Risk (VaR), the application MatRisk allows the calculation of other

more sophisticated risk measures. These novel risk measures (Shortfall, Max-

VaR, conditional VaR, etc.) have been introduced by a number of authors in

order to address the insuÆciencies of VaR to properly characterize the struc-

ture of risk. Conditional risk measures can also be estimated by a module

of the application devoted to the analysis of the heteroskedastic structure of

time series with autoregressive models.

Keywords: Risk analysis, Value-at-Risk, Shortfall, MaxVaR, het-

eroskedasticity, autoregressive processes, mixture models.
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1 Introduction.

The �nancial portfolio of an institution is composed of a number of products (in-

cluding bonds, assets, derivatives, etc.) that are openly traded in �nancial markets.

The prices of these products depend on the values of a number of risk factors: Inter-

est rates, asset prices, volatility, etc. Market risk analysis consists in the estimation

of the response of the portfolio to uctuations of the values of these risk factors.

Portfolio managers may use this analysis to adopt di�erent strategies: In situa-

tions where the goal is securing the value of a portfolio, risk analysis can be used

to minimize the e�ects of unexpected uctuations in the conditions of the market.

Alternatively, a portfolio manager may intend to acquire a competitive advantage

through a calculated and carefully controlled exposure to risk. On the other hand,

market regulators are interested in enforcing restrictions to discourage an excessive

or uncontrolled exposure to risk, which may lead to severe disruptions in the eco-

nomic system. These restraints should be also supple enough not to have a negative

e�ect on the functioning of the markets.

There are di�erent elements that make the problem of risk assessment a diÆcult

one. A non-exhaustive list includes the complexity of the portfolio itself, whose

value may depend on thousands of risk factors, the correlation structure between

the values of the di�erent assets that make up the portfolio, and �nally, the synthesis

of all these inputs into a small set of numbers (such as VaR or expected Shortfall)

that capture in a manageable form the information about the risk pro�le of the

portfolio.

In this work we assume that in the near future the portfolio exhibits the same

behavior, from a statistical viewpoint, as in its recent history. With this premise,

the analysis focuses on a synthetic time series composed of the reconstructed values

in the recent past of a hypothetical portfolio whose composition is constant over

time and is identical to that of the actual portfolio. The reconstruction process is

a complex task and may involve some portfolio compression (where the portfolio is

replaced by a few components that account for a large fraction of risk), replication

and other manipulations. Given this time series, the most common measure of risk is

the Value at Risk, VaR [1]. The objective is to estimate the worst trading losses of a

�xed portfolio during a certain period (T , the time horizon), for a given probability

level P . Assuming the time horizon is chosen to be one day, the histogram of

daily returns (relative daily changes in the value of the portfolio) is constructed

from the historical data. This empirical distribution is then �tted to a parametric

model from which a percentile at the level P is obtained. The usual assumption

is that the daily returns are random independent normally distributed variables.
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This procedure has the advantage of a fast implementation, but has recently come

under a great deal of criticism (see, for instance [2, 3]). As a matter of fact, there

seems to be a consensus in the �nancial community that current Value at Risk

measures fail to capture some of the essential features of actual market risks. It

is an empirical observation that the tails of the distribution of returns on �nancial

products have in general more weight than what would be predicted by a �t to a

normal distribution. In particular, the assumption of normality is known to fail

for large uctuations in the value of the portfolio [4]. These extreme uctuations

are precisely the ones that a risk measure such as VaR is trying to capture. The

failure to correctly represent the behavior of the portfolio in worst-case scenarios

has prompted several suggestions of alternative, more sophisticated models that

may correctly reect the probability of extreme events. One of the extensions of the

classical VaR methodology is to drop the assumption of normality of the daily losses

and to posit a di�erent distribution with a positive kurtosis and possibly skewness

(eg. hyperbolic distributions [5] , mixture of Gaussians [4], stable distributions [6],

etc.), which would provide a more accurate model of the behavior of the market.

The parameters of these non-normal distributions can be determined by maximum

likelihood estimation. Finally, a measure of risk analogous to the normal VaR is

extracted by calculation of percentiles. Extreme Value Theory [7, 3, 8] also provides

a framework for the de�nition of other non-standard risk measures such as MaxVaR

and Shortfall. In order to extract these parameters, the analysis focuses on the

distribution of extreme events itself.

The risk measures described in the previous paragraphs take the unconditional

distribution of returns as the basic object for the analysis. This corresponds to a

long-term view of risk management, where we are interested in the losses one may

incur in a long period of time (say a month). If on the contrary, we are concerned

by the daily changes in the value of a portfolio, it may be more useful to focus on

conditional distributions of returns. The question to be answered in this case is the

following: Given the recent changes in the value of my portfolio, what is the range of

changes I should expect and with what probability will they occur? In order to give

an answer to this question, the time series is assumed to follow an autoregressive

model [9], where Xt, the value of the return at time t depends on its recent history

Xt = f(Xt�1; Xt�2; : : :) + ut: (1)

The �rst term in Eq. (1) reects the trends in the time series. The function f is

generally parameterized as a linear model. The innovations ut are random variables

of zero mean and independent of one another. They are assumed to be gener-
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ated by a normal distribution with a time-dependent variance that also depends on

the previous values of the innovations (ARCH models [10]) or on both the innova-

tions and the variance itself (GARCH models [11]). Piecewise linear autoregressive

processes (MixARCH, MixGARCH) can be constructed by considering mixtures of

linear models [12]. Besides the increased representation exibility allowed by the

nonlinearity of the mixture models, these can also account for the leptokurtosis

generally observed in the distribution of the innovations.

In this work we present a series of computational tools that can be used to cal-

culate these di�erent risk measures. These tools have been integrated into MatRisk,

an application developed in MATLAB with a graphical user interface. MATLAB

has been chosen because it provides a well-suited programming environment, where

both numerical and interface design challenges can be met with a reduced develop-

ment e�ort. Throughout this article, we illustrate the di�erent capabilities of the

application by analyzing the time series for the IBEX35 stock index corresponding

to the period between 4/1/93 and 23/12/97. A stock index can be thought of as a

reference portfolio composed by a �xed proportion of assets traded in a given stock

market. The series used contains the 1296 daily closing values of the index during

a period of about 5 years (see Fig. (1)).

The paper is organized as follows: Section 2 describes the modules of the applica-

tion MatRisk that facilitate the calculation unconditional risk measures. The tools

provided are a module for �tting a parametric model (normal, mixture of normals,

hyperbolic distribution) to the full probability distribution of portfolio returns, a

module to carry out a �t to the tail of the distribution, assuming Pareto behavior,

and, �nally, a module to �t the maxima of the time series to a generalized extreme

value distribution. A summary of the results of a risk analysis for the IBEX35 data

is also presented. Section 3 is devoted to the modules of the application for the

estimation of conditional risk measures. The tools integrated in MatRisk permit

the selection of several autoregressive models: ARCH, MixARCH, GARCH, and

MixGARCH.

2 Unconditional risk measures

A �rst module of the application allows the computation of various risk measures

based on the unconditional probability distribution of historical returns. It is as-

sumed that we have at our disposal a reconstructed series of the values of the negative
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Figure 1: Daily values for the IBEX35 stock index.

of the log returns

rt = � log
St+1

St
� �

St+1 � St

St
; (2)

where St are the values of the hypothetical portfolio with the same constant compo-

sition as the actual portfolio. The approximation of log-returns by relative returns

can only be made if the time horizon (here normalized to unity, to simplify the nota-

tion) is short. The approximation is suÆcient for daily returns. The negative sign is

included so that losses appear to the right-hand side of the probability distributions.

As an illustration, the values of the relative daily returns for the IBEX35 are plotted

in Fig. (2). A histogram displaying the number of observations in non-overlapping

segments covering the whole range of observed returns gives a graphical represen-

tation of the empirical probability density distribution for the relative returns (see

Fig. 3). The unconditional risk measures that can be derived from the empirical
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Figure 2: Daily relative returns for the IBEX35 stock index.

data with the help of the application can be categorized into three di�erent classes:

Value-at-Risk, Shortfall and MaxVaR. We now proceed to describe in detail the

modules of the application for the computation of these risk measures.

2.1 Modeling the distribution: Parametric VaR

The usual risk measure, VaR (Value-at-Risk), is a percentile of the pro�t-loss distri-

bution at a given probability level, P (expressed as a percentage) for a given time

horizon T . Intuitively, if the time horizon is one day, this quantity represents the

minimum relative loss a portfolio will have in at least P out a hundred days, as-

suming the composition of the portfolio remains unaltered during that period. The

value of this percentile can in principle be obtained from the empirical probability

density distribution function (pdf). Due to the limited amount of data available,
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Figure 3: Daily relative returns for the IBEX35 stock index.

this measure is not very robust. In particular, the VaR estimations obtained are

very sensitive to sample uctuations. This is specially true in the tail of the distribu-

tion, in the region where extreme losses may occur. Furthermore no out-of-sample

VaR estimates can be given by this procedure. This fact may become crucial for

situations with small quantities of data available, such as portfolios based on new

markets or new economies products.

A more robust estimate is obtained if we assume a parametric form for the pro�t-

loss distribution and then �nd the parameters by likelihoodmaximization. The value

of VaR can then be obtained as a percentile of the �tted distribution. The problem

of selecting a model from the data is a diÆcult one, for which no general solution

can be given, except if a model for the market can be explicitly formulated. In

the absence of such model, one can assume di�erent parametric forms. Various

suggestions have been made in the literature. MatRisk incorporates the possibility
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of carrying out parametric �ts with a normal distribution, mixtures of normals, and

hyperbolic distributions.

2.1.1 Normal VaR

It is commonly assumed that the portfolio returns behave as an asset in the Black-

Scholes model, and that the relative returns are normally distributed. Figure (4)

depicts the main results of a risk analysis with a time horizon of 1 day and a prob-

ability level of 99% using MatRisk. The empirical distribution and corresponding

normal �t appear on the left hand side of the application window. The results of

two di�erent tests to assess the quality of the �t (the Kolmogorov-Smirnov statisti-

cal test and the quantile-quantile plot) are presented on the right-hand side of the

�gure. The Kolmogorov-Smirnov statistical test [13] gives a measure of the likeli-
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Figure 4: Risk measures for the IBEX35 using a normal model. The parameters of

the �t are � = �0:0901, � = 1:0249.

hood of the hypothesis that a set of data is an empirical sampling of a given model

pdf with certain values of the parameters. The test de�nes a sample statistic as
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the maximum distance between the empirical and the model cumulative probability

distribution. An analytic form for the probability distribution of this statistic can

be given if the parameters of the model distribution are independent of the data.

even though the parameters are obtained by maximum likelihood optimization from

the sample itself, the application makes use of this analytical form. Nonetheless, it

is expected that low values of the likelihood of the hypothesis as measured through

the Kolmogorov-Smirnov statistic indicate a low quality �t.

The quantile-quantile plot gives the empirical quantiles as a function of the

model quantiles. It also provides a way to assess the quality of the parametric �t

by inspection. If the �t is good, the quantile-quantile plot should be a straight line

with slope one. Deviations from this behavior are easy to detect by inspection in

this type of plot.

Besides the value of VaR at a certain probability level P , the application also

calculates the shortfall for the data

Shortfall � E [X jX > V aR(P )] : (3)

Shortfall is a measure of the average loss a portfolio will have, given that the loss is

above a certain threshold. It has been proposed by several authors as an alternative

measure of risk with the desired properties of subadditivity and coherence [14].

There are several indications of the failure of the normal model to reect the

distribution of extreme events. On one hand the Gaussian �t severely underestimates

the magnitude of the tails. The low value of the test on the likelihood for the

Kolmogorov-Smirnov (KS) statistic indicates that we should be wary of the quality

of the �t obtained. The quantile-quantile plot reveals that the main discrepancies

occur at the tails of the distribution. It can also be seen that the VaR level predicted

by the normal �t is much lower than the VaR derived directly obtained from the

empirical distribution (labeled as sample VaR in the �gures).

2.1.2 VaR with mixture models

Amongst the possible generalizations of the normal model for the portfolio of returns,

the Gaussian Mixture (GM) model has the appeal of greatly expanding the range

of phenomena that can be accounted for within the model, while remaining close

to the Gaussian paradigm. The mixture of normals model has been shown to be

exible enough to capture features that are commonly observed in actual �nancial

time series. One particularly important example is the fact that extreme events in

the �nancial world occur more frequently than the classical normal models would
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predict. This leads to distribution functions of returns on a �nancial asset that have

tails of greater weight than those of a normal distribution. This observation has

implications for the pricing of derivative products, for hedging and for the estimation

of risk measures. In 1997 Hull and White [15], introduced two new Greeks, 	 and

�, to reect the sensibility of a portfolio composed of derivatives to the kurtosis

and skewness, respectively, in the distribution of returns. They also showed how

a simple model based on a mixture of normals was suÆcient to capture this e�ect

and correctly model the smile observed in the implicit volatility in, amongst others,

foreign exchange and equity options. The parameters of the mixture models are

estimated by maximization of a modi�ed likelihood function with an Expectation

Maximization algorithm [16].

Let us examine the IBEX35 data when the distribution of returns is modeled by

a mixture of two Gaussians (Fig. 5). The �t is more plausible, as indicated by the

value of KS statistic test, which is now close to one, and by the quantile-quantile

plot. The values of the model and the sample VaR are now close to each other.

Given that we are obtaining within-sample values of VaR, this is an indication that

the model produces estimates consistent with the observations.

The mixture model is a simple yet exible extension of the normal model that

allows to model features that are observed in actual �nancial data. In particular,

it can be used to carry out a reliable and robust risk analysis, at least up to the

sample edges. Note however that the decay of the tails of a mixture distribution

is still Gaussian-like. It is unclear at this point whether the actual tail decay is

algebraic or exponential. Consequently, out-of-sample extrapolations made with

mixture of Gaussians models should be regarded with utmost caution. One should

also try to limit the number of components that enter the mixture, lest some amount

of over�tting should occur. Generally two or three components provide a reasonably

appropriate �t for the data.

2.1.3 VaR with hyperbolic models

Another proposal encountered in the literature to account for heavy tails is to model

the portfolio returns by a hyperbolic distribution. [5, 17]. The hyperbolic family

depends on four parameters

PHyp(x;�; �; Æ; �) =

p
�2 � �2

2� ÆK1(Æ
p
�2 � �2)

exp

�
��

q
Æ2 + (x� �)2 + �(x� �)

�
; (4)

Æ � 0; � > j�j � 0;
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Figure 5: Risk measures for the IBEX35 using a mixture of two normal distributions.

The parameters of the �t are p1 = 0:8988; �1 = �0:1052; �1 = 0:8934 for the �rst

normal in the mixture and p2 = 0:1012; �2 = 0:0438; �2 = 1:8053 for the second

normal.

where K1(x) is a modi�ed Bessel function the third kind with index 1. The quan-

tities � and Æ are the location and scale parameters, whereas �; � determine the

shape of the distribution. Several other distributions (eg. normal, symmetric and

asymmetric Laplace, exponential, generalized inverse Gaussian) appear as limiting

cases of this distribution. One advantage of the hyperbolic distribution is that it

can be seen as a mixture of an in�nite number of Gaussians where the weights are

given by a generalized inverse Gaussian distribution [5]. Furthermore, the hyperbolic

distribution appears as a stationary distribution of a continuous time Markov pro-

cess described by a particular stochastic di�erential equation [5]. This observation

implies that it can be used as a model to price options.

Figure 6 displays the �t obtained with IBEX35 data when the distribution of

returns is modeled by a hyperbolic distribution. The resulting �t is quite reasonable,

except possibly at the tails, which still decay exponentially.
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Figure 6: Risk measures for the IBEX35 using a hyperbolic distribution.

2.2 Modeling the tails: Pareto VAR and Shortfall

In the estimation of risk measures we are interested in events that occur in the tails

of the distribution. In contrast to the parametric approach exposed in the previous

section, where one attempts to model the full pdf of the portfolio uctuations, one

can focus on �nding an appropriate model for the tail of the distribution alone [7].

Assuming that the tail has a regular behavior, the distribution should asymptotically

behave like a Generalized Pareto distribution

Ptail(X) =
1

�

 
1 +

�

�
(X � u)+

!(1+ 1

� )

; X > u: (5)

The method is known in the literature on extreme events as the Peaks Over Thresh-

old (POT) method [7]. Note that the predicted decay is algebraic except if the tail

index � becomes close to zero, which corresponds to exponential decay. The param-

eter u should be chosen suÆciently large, so that the asymptotic behavior predicted
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by Eq. 5 obtains, but as small as possible so that there is a suÆcient amount of data

on the tail from which to produce reliable estimates for the remaining parameters

(�; �).

By default the application sets the value of u arbitrarily equal to 1. The user is

given the choice of modifying the value of this threshold using as a guide the mean

excess plot that appears at the right-hand corner of the window for the tail analysis.

The mean excess over a threshold of a random variable is de�ned as the conditional

expectation of that variable, provided that it exceed the selected threshold, minus

the value of the threshold. For an empirical realization with N data samples, the

mean excess is

E [X � � jX > �] =
1

NX>�

NX
j=1

(Xj � �)+; (6)

where NX>u is the number of instances above the threshold in the sample. If for

X > u the distribution of this variable can be approximated by a Generalized Pareto

(Eq. (5)), the mean excess is linear in the threshold

E [X � � jX > �] =
�

1� �
+

�

1� �
(�� u): (7)

In order to select parameter u of the Generalized Pareto (GP) distribution, the user

should inspect the mean excess plot and identify regions for which the plot is linear.

Then the threshold u is chosen as small as possible, but within the linear region.

For the IBEX35 data, we present the results with di�erent choices of the thresh-

old. Figure (7) displays the results with u = 1, corresponding to the at region

(� � 0, exponential decay) in the mean excess plot Even though data is scarce, it

is possible to identify a separate linear region for values X > 2. The corresponding

Pareto Fit for a threshold u = 2:25 is displayed in Fig. (8) In contrast to the previous

choice of the threshold, which predicts an exponential decay, for this second choice

the decay predicted is algebraic. This question is of importance shortfall becomes

very sensitive to the type decay for edge-of-sample probability levels (around and

above 99:9%). It is possible that the true asymptotic decay is algebraic, as predicted

focusing on points beyond the threshold u = 2:25. One could also conclude that the

decay is exponential and the algebraic-like behavior observed for u � 2:25 comes

from sample uctuations. With the data available is diÆcult to decide which of the

two hypothesis is closer to reality.
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Figure 7: Risk measures for the IBEX35 data using a Generalized Pareto Fit u = 1.

The �t parameters are � = 0:6397; � = 0:0141.

2.3 Modeling extreme events: MaxVaR

The evolution of the value of a portfolio in response to large uctuations in the

risk factors is one of the important elements in risk management. It is thus useful

to develop models for distributions of extremal events [7]. Under certain relatively

weak conditions (identical distribution of events, independence of the maxima, etc.),

it can be shown that the maxima of a time series follow asymptotically a Generalized

Extreme Value (GEV) distribution

P (x) =
1

 

 
1 +

�

 
(x� �)

!(1+ 1

� )

exp

8<
:�

 
1 +

�

 
(x� �)

!(1+ 1

� )
9=
; : (8)

Incidentally, parameter � is the tail index introduced in the previous section, and

should be similar to the one estimated from the Generalized Pareto �t. The anal-
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Figure 8: Risk measures for the IBEX35 data using a Generalized Pareto Fit u =

2:25. The �t parameters are � = 0:3830; � = 0:3864.

ysis proceeds as follows: We choose a time lapse, and partition the data into non-

overlapping segments of the selected length. A new series is formed with the max-

imum values for the losses within each of the segments. The size of the boxes is

chosen through a compromise between selecting suÆciently large boxes, so that the

independence and asymptotic conditions are met, and having a suÆcient amount of

data to produce reliable estimates of the GEV parameters. The application allows

the user to chose the length of the periods from which maxima are to be extracted.

A minimum of 25 points is �xed by the application to estimate the GEV parameters

by maximization of the likelihood function. Focusing on maxima has the advantage

that these should have smaller correlations than the original returns, being further

separated in time. This fact possibly means that risk measures based on the analysis

of maxima are more reliable.

Let us consider the MaxVaR analysis for the IBEX35 data. We focus on weekly

maxima (Fig. (9)) and maxima over periods of 2 weeks (Fig. (10)). The novel
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Figure 9: Risk measures for the weekly maxima of IBEX35 data. The parameters

of the GEV distribution �tted are � = 0:6084;  = 0:6179; � = 0:0324.

elements in the interface are the Hill plot and the module for risk analysis based

on maxima. The Hill plot permits the estimation of the parameter �, when it is

positive. The points in the time series fX1; X2; : : : ; XTg, are ordered according to

their magnitude

XT ;T � XT�1;T � : : : � X2;T � X1;T (9)

The Hill plot gives the value of the Hill estimator for the tail index

�̂(H) =
1

k

kX
j=1

log
Xj;T

Xk;T

(10)

as a function of the integer k = 1; 2 : : : T . The point selected in the graphic by a cross

is the 10% Hill estimator (i.e. k = 0:1T ). We observe that this estimate is close to

the tail index found by a �t to a GP with a threshold u = 2:25, which indicates an

algebraic decay in the distribution tails. However, the maximum likelihood estimate
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Figure 10: Risk measures for the biweekly maxima of IBEX35 data. The parameters

of the GEV distribution �tted are � = 0:9666;  = 0:5864; � = 0:0774.

for the distribution of weekly and biweekly maxima predicts a tail index close to 0

(exponential decay of the tails), in agreement with the Pareto �t with a threshold

u = 1.

The module for the risk analysis permits the selection of two probability levels

Pl < Pu. By calculating the corresponding percentiles of the GEV distribution,

one obtains a range where the corresponding maxima can be found with a certain

probability [Maxl;Maxu]. The expected value for the maxima conditioned to the

maxima being in the range derived is also reported in a text window

E [MaxjMaxl �Max � Maxu] : (11)
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2.4 Summary of results for IBEX35

The main results obtained for the Value-at-Risk and shortfall for the IBEX35 data

are summarized in tables 2.4 and 2.4. Table 2.4 displays the Value at Risk , and Table

2.4 the Shortfall for di�erent probability levels and with di�erent parametric �ts.

The rows are labeled according to the model used to compute the values: empirical

distribution VaR (sample), normal (GM1), mixture models (GM2, GM3, mixtures

with 2 and 3 Gaussians, respectively), hyperbolic distribution (HYP), and Generalize

Pareto distributions (GP, with the chosen threshold between parentheses). The

second column displays the result of the Kolmogorov Smirnov statistical test (KS

test). The rest of the columns are labeled according to a probability level at which

the risk measures are computed.

We observe that within-sample risk measures (95%) are fairly insensitive to the

model selected. For the probability level P = 99%, all parametric �ts basically pre-

dict the same risk measures, except for the normal VaR, which begins to exhibit its

shortcomings; namely, it severely underestimates both VaR and Shortfall. The ten-

dency becomes more marked for higher probability levels. Beyond this probability

level, data are scarce, and sample-derived measures should not be trusted.

For an edge-of-sample probability level (P = 99.9 %), and beyond sample mea-

sures (P = 99.99 %), whether the asymptotic decay is algebraic or exponential is of

some consequence. Shortfall is specially sensitive to this issue. We observe that the

model with a mixture of two Gaussians and the Pareto Fit with u = 1 predict fairly

consistent risk measures. The hyperbolic model, with fast decaying exponential tails

yields an excellent agreement for the body of the distribution, but clearly predicts

much thinner tails than observed. Much higher values for the risk measures are

predicted by the Pareto Fit with u = 2:25, with slow algebraic decay. The model �t

with 3 Gaussians lies somewhere in-between.

3 Conditional risk measures: Autoregressive mod-

els

Classical risk measures generally focus on the unconditional distribution of portfolio

returns. This approach cannot account for the autocorrelations that often appear

in �nancial time series, or for the time-dependent structure in the volatility [18].

From the graphic presented in Fig. (11) it is apparent that extreme events (of either

sign) seem to cluster in periods of high volatility. A more quantitative manner

of unveiling these serial dependences is to plot the autocorrelation function of the
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Table 1: Comparison between di�erent measures of VaR

KS test 95 % 99 % 99.9 % 99.99 %

Sample 1.58 2.49 4.40 5.22

GM1 0.12 1.60 2.29 3.36 3.72

GM2 0.92 1.54 2.53 4.25 5.63

GM3 0.99 1.58 2.46 4.41 6.86

HYP 0.99 1.59 2.57 3.91 5.30

GP (u = 1) 0.78 1.57 2.63 4.18 5.78

GP (u = 2:25) 0.76 * 2.45 4.16 8.34

Table 2: Comparison between di�erent measures of Shortfall

KS test 95 % 99 % 99.9 % 99.99 %

Sample 2.19 3.16 4.81 5.22

GM1 0.12 2.02 2.64 3.07 3.97

GM2 0.92 2.16 3.27 4.86 6.13

GM3 0.99 2.17 3.21 5.51 7.69

HYP 0.99 2.20 3.15 4.49 5.80

GP (u = 1) 0.78 2.23 3.30 4.87 6.50

GP (u = 2:25) 0.76 * 3.20 5.98 12.79

portfolio returns. Consider the time series,

X1; X2; : : :Xt; : : : ; XT ; (12)

which we assume to be of zero mean and stationary in the weak sense, the autoco-

variance can be estimated form the data through the formula

C(�) =
1

T � �

T��X
t=1

XtXt+� : (13)
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If we normalize this expression by the variance, as estimated from the data, we

obtain the function of autocorrelations

�(�) =

1
T��

PT��
t=1 XtXt+�

1
T

PT
t=1XtXt

: (14)

The autocorrelation functions of the returns and the absolute value of the returns for

the IBEX35 data are plotted in Fig. (12). The two lines parallel to the time axis give

the 95% band associated to sampling errors. The autocorrelation functions exhibit

two of the common features of �nancial time series: First, the correlations between

returns are short-lived. In this case, correlations disappear after approximately a

day. However, there exist long-term correlations among the absolute value of the

returns. Intuitively, this means that large relative changes in the value of a portfolio

tend to be followed by changes which are also large, but which can be of either sign.

Conditional risk measures rely on the analysis of the conditional probability

distribution of portfolio returns in an attempt to capture trends in the market

volatility [19].

In the problem of estimating conditional risk measures, we consider the series

of daily portfolio returns. We then make the hypothesis that the behavior of the

variables that describe the �nancial system is determined by the values that these

same variables (or a subset thereof) have taken in the recent past, and select an

autoregressive model to carry out the �t [9]. Assuming that the innovations in the

series exhibit some de�nite statistical properties and temporal structure, there are a

range of technical tools available, which permit the estimation of the model param-

eters. Standard autoregressive models for the temporal structure of the volatility

are ARCH (Autoregressive conditional heteroskedasticity [10]) and GARCH (gener-

alized ARCH, [11]). MatRisk also incorporates the possibility of selecting mixtures

of autoregressive models (MixARCH, MixGARCH). These models have been intro-

duced by the author as an extension of the MixAR models of Zeevi et al. [12], in

order to account for both the heteroskedastic structure of �nancial time series, and

the presence of heavy tails. This generalization is a natural way of introducing in the

estimation of conditional risk the mixtures of normals paradigm, which has proved

quite useful in the estimation of unconditional risk measures. We now proceed to

give a detailed descriptions of these autoregressive models and their application to

the IBEX35 data. The interface permitting the analysis of the time series with

di�erent models is displayed in Fig. (13).
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Figure 11: Unconditional Risk measures for the IBEX35. The daily VaR at a

probability level of 95% corresponds to the straight line on the lower part of the

plot. Days in which the loss is below this level are indicated by the bars at the

bottom. A similar measure is given for the side corresponding to pro�ts (positive

part of the plot).

3.1 The ARCH model

Consider the historical series of portfolio returns

X1; X2; : : : ; Xt; : : : ; XT : (15)

Without loss of generality we can work with the zero-mean series,

X̂1; X̂2; : : : ; X̂t; : : : ; X̂T ; X̂t = Xt � hXti ; (16)
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Figure 12: Normalized autocorrelations for the IBEX35 returns time series.

which is obtained by subtracting from the original return the unconditional mean,

estimated from the data

hXti =
1

T

TX
t=1

Xt: (17)

We assume weak stationarity for this time-series, and posit the model

X̂t = �y � X̂
(m)

t + ut (18)

ut = �t �t (19)

�2
t = �+�y �

h
u2
t

i(q)
; (20)
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Figure 13: MatRisk Interface for time series analysis.

where �t is Gaussian white noise with zero mean and unit variance. The delay

vectors for the time-series values and for the innovations are

X̂
(m)

t =
�
X̂t�1 X̂t�2 : : : X̂t�m

�
�h
u2
t

i(q)�y
=

�
u2t�1 u

2
t�2 : : : u2t�q

�
;

respectively.

In summary, the portfolio returns are modeled as an autoregressive process of

order m. The non-negativity condition in the ARCH(q) model for time-dependent

variance is satis�ed provided that the parameters satisfy the conditions

� > 0;

�i � 0; (21)
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With these assumptions, the requirement that the process be co-variance stationary

leads to the inequality
qX

i=1

�i < 1: (22)

In terms of these parameters, the unconditional volatility is

�2 = E
h
u2t

i
=

�

1�
Pq

i=1 �i
; (23)

The conditional volatility, which is the relevant quantity for conditional risk mea-

sures, is

E
�
u2t jut�1ut�2 : : : ut�q

�
= �+�y �

h
u2
t

i(q)
: (24)

The application we present contains a module to model the time series by an

ARCH model. Once the order of the model is selected by the user, the parameters

are estimated by maximization of the likelihood function. Then independence hy-

pothesis is tested by plotting the correlograms for the residuals and for the absolute

value of the residuals. The normality assumption can be checked by a quantile plot

of the residuals against computer-generated Gaussian random numbers. Figure (14)

presents the results for the IBEX35 data, modeled by an AR(1)/ARCH(1) model.

The conditional volatility is presented in Fig.(15). The resulting ARCH process is

X̂t = 0:1129X̂t�1 + �t�t (25)

�2
t = 0:9097 + 0:1118(X̂t�1 � 0:1129X̂t�2)

2: (26)

Results for the IBEX35 data show that the ARCH(1) model is insuÆcient to account

for either correlations or for heavy tails. The correlation functions displayed in Fig.

(14) show that, in spite of the fact that the one-day correlations are negligible, the

magnitude of the correlations with longer delays is only slightly lowered. It is clear

that a more sophisticated model (eg. a GARCH process) is needed to account for

the correlation structure of the time series. There is another de�ciency in the �t

obtained. The normality hypothesis for the distribution of residuals is not ful�lled,

as shown by the quantile-quantile plot.

3.2 The MixARCH model

In this section we consider the natural extension of the mixture model introduced

for unconditional distributions in order to account for the heteroskedastic structure
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Figure 14: ARCH model for the IBEX35 time series.

of a time series. Our �nal goal is to use this model to carry out a estimation of

conditional risk measures for �nancial time series.

In a MixARCH model we assume that the heteroskedastic time series is generated

from a probabilistic mixture of AR(m) models

X̂t = �
y

[i] � X̂
(m)
t + u[i](t); with probability g[i](X

(d)
t ; �

y

[i]); i = 1; 2; : : : ; J: (27)

The probabilities are given in terms of sigmoidal functions depending on the vector

of delays

g[i](X
(d)
t ; �

y

[i]) =
exp

n
c[i]

�
X̂t�1 � (b[i] + a

y

[i] � X̂
(d�1)
t�1 )

�o
PJ

j=1 exp
n
c[j]

�
X̂t�1 � (b[j] + a

y

[j] � X̂
(d�1)
t�1 )

�o : (28)
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Figure 15: Conditional volatility of the ARCH model for the IBEX35 time series.

The bars correspond to the residuals of the ARCH process. The continuous lines

delimit the one �t band.

The model for the innovations is

u[i](t) = �[i](t)�t: (29)

The quantities f�t; t = 0; 1; 2; : : :g are assumed to be identically distributed inde-

pendent random variables drawn from a time-independent normal distribution with

zero mean and unit variance.

The variance of the process �2
t is assumed to follow the model

�2
[i](t) = �[i] +�

y

[i] � [u
2
[i]]

(q)(t) (30)
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for each of the di�erent components in the mixture. The procedure speci�ed is a

natural way of introducing the use mixtures in the estimation of conditional volatil-

ities.

The determination of the parameters of the MixARCH model is made through

the maximization of the likelihood function

L(�;�; �; fXtgTt0) =
TY

t=t0

mX
i=1

g[i](X
(d)
t ; �

y

[i])
1q

2��2
[i](t)

expf�

�
X̂t � �

y

[i] � X̂
(m)
t

�2
2�2

[i](t)
g:

The optimization problem can be solved by the Expectation Maximization algo-

rithm, or, as done in MatRisk, by a constrained optimization algorithm.

At this point, the application MatRisk only allows for an analysis with a prob-

abilistic mixture of two AR(1)/ARCH(1) models. In Fig. (16) we can examine the

results for the IBEX35 dataset. It can be seen that the correlation structure for

the residuals is not much improved by the use of a mixture model. However, the

quantile-quantile plot shows that the MixARCH process yields a better approxima-

tion for the probability of extreme events occurring in the tails of the distribution.

The �t parameters are

Model 1 X̂t = 0:0559X̂t�1 + �t�t (31)

�2
t = 2:2194 + 0:1976(X̂t�1 � 0:0559X̂t�2)

2 (32)

Model 2 X̂t = 0:1380X̂t�1 + �t�t (33)

�2
t = 0:6820 + 0:0381(X̂t�1 � 0:1380X̂t�2)

2 (34)

The probabilities for the mixture are

g[1](Xt�1) =
1

1 + e�0:6839(X̂t�1�2:5155)
; g[2](Xt�1) = 1� g[1](Xt�1) (35)

3.3 The GARCH model

The GARCH(p,q) model for a time series has the following structure

X̂t = �y � X̂
(m)

t + ut (36)

ut = �t �t (37)

�2
t = �+�y �

h
u2
t

i(q)
+ �y �

h
�2
t

i(p)
; (38)
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Figure 16: MixARCH model for the IBEX35 time series.

where �t is Gaussian white noise with a standard deviation equal to 1, the delay

vectors are de�ned in Eq. (21), except that for the variance, which is

�h
�2
t

i(p)�y
=

�
�2
t�1 �

2
t�2 : : : �2

t�p

�
: (39)

The conditions speci�ed in Eq. (21) should be complemented with the require-

ment that all components of � be non-negative. The requirement of covariance-

stationarity is now
qX

i=1

�i +
pX

i=1

�i < 1: (40)

In terms of these parameters, the unconditional volatility is

�2 = E
h
u2t

i
=

�0

1�
Pq

i=1 �i �
Pp

i=1 �i
; (41)
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The conditional volatility, which is the relevant quantity for conditional risk mea-

sures, is

E
�
u2t jXt�1Xt�2 : : :

�
= �+�y �

h
u2
t

i(q)
+ �y �

h
�2
t

i(p)
: (42)

The interface for the GARCH �t is similar to the one described for the ARCH model.

Figure (17) displays the results for the IBEX35 data with a AR(1) / GARCH(1,1)

model. The conditional volatility is displayed in Fig.(18). The resulting process is
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Figure 17: GARCH model for the IBEX35 time series.

X̂t = 0:1358X̂t�1 + �t�t (43)

�2
t = 0:0527 + 0:0755(X̂t�1 � 0:1358X̂t�2)

2 + 0:8733�2
t�1: (44)

Note that in this model the correlations between the residuals are negligible. The

normality hypothesis is less convincingly supported by the quantile plot.
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Figure 18: Conditional volatility of the GARCH model for the IBEX35 time series.

The bars correspond to the residuals of the ARCH process. The continuous lines

delimit the one �t band.

3.4 The MixGARCH model

A MixGARCH model is probabilistic mixture of GARCH processes. The formulas

for MixARCH can be easily extended to include terms dependent on the delayed

average volatilities for the prediction of the actual conditional volatility.

The analysis with MatRisk of the IBEX35 data with a probabilistic mixture of

two AR(1)/GARCH(1,1) models is presented in Fig. (19). The resulting model is

Model 1 X̂t = 0:1678X̂t�1 + �t�t (45)

�2
t = 1:5041 + 0:0(X̂t�1 � 0:1678X̂t�2)

2 + 0:0228�2
t�1 (46)

Model 2 X̂t = 0:1313X̂t�1 + �t�t (47)
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�2
t = 0:0084 + 0:0978(X̂t�1 � 0:1313X̂t�2)

2 + 0:8794�2
t�1 (48)

The probabilities for the mixture are

g[1](Xt�1) =
1

1 + e0:3054(X̂t�1+4:8489)
; g[2](Xt�1) = 1� g[1](Xt�1) (49)

The MixGARCH model seems to be able to account well for both the correlations
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Figure 19: MixGARCH model for the IBEX35 time series.

and for heavy tails in the data.

4 Summary.

There exist two di�erent but complementary approaches to the analysis of the risk of

a portfolio. A risk manager may take a long-term view and proceed to estimate the

probability of occurrence of an adverse extreme, irrespective of the recent history
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of the behavior of the portfolio. Alternatively, if one is interested in a more local

measure of risk, one's attention should veer to quantities related to the conditional

volatility. These conditional risk measures constitute an attempt to uncover the risk

structure of the portfolio using information about recent uctuations in its value.

Both types of analysis can be carried out with the help of MatRisk, the ap-

plication presented in this work. For unconditional risk analysis the application

integrates the following tools

� Parametric �t with a choice of various distributions (normal distribution, mix-

ture of normals, hyperbolic distribution).

� Pareto �t to the tails of the distribution.

� Generalized Extreme Value Fit, for the maximal losses within a given period.

Besides traditional risk measures, such as VaR, novel risk measures such as Shortfall

and MaxVaR can also be calculated. This permits an integral view of the risk struc-

ture of the portfolio and can be a helpful tool to adopt risk management strategies

from a more informed perspective.

For conditional risk measures, besides the classical linear autoregressive mod-

els for the analysis of time series (ARCH, GARCH), MatRISK integrates a limited

vocabulary of mixture models. These models are an attempt to analyze the impli-

cations of deviations from normality in the estimation of conditional risk measures

is still reduced.
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