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Abstract

One of most promising applications of wavelets is in the field of
nonparametric statistical estimation, in which one wants to estimate
an unknown signal from some noisy data. Donoho and Johnstone
(1994, 1995) have developed a simple and yet powerful methodology
for nonparametric regression and smoothing based on the principle of
wavelet shrinkage (removing noise by shrinking wavelets coefficients
towards zero) referred as the Waveshrink algorithm. In order to select
the best values for the parameters of the waveshrink algorithm several
approaches have been proposed. Fach of the methods suggested have
their pros and cons depending on the particular domain of applica-
tion. Nevertheless a basic question is which of the methods dominates
under a forecasting criterion. To put in simple words: which method
is best?. The purpose of this paper is twofold, first we analyze the
potential advantages of wavelet shrinkage methods for financial time
series prediction, then we identify the best combination of srinkage
parameters. Our results show that, in general, filtering may result
harmful and that the choice the parameters is more critical for some
parameters than for others.

1 Introduction

Wavelets theory has been developed with ideas taken from different fields
such as applied mathematics, signal processing or physics. They have been



applied in many statistical areas (Donoho and Johnstone, 1994, 1995; Fan et
al. 1993; Johnstone et al., 1992) such as regression, pattern analysis, density
estimation or forecasting of time series. In the dynamic case, wavelets have
been demonstrated to be a very powerful tool when dealing with phenomena
that evolve rapidly in time.

One of great successful stories of wavelets is in the field of nonparamet-
ric statistical estimation, in which one wants to estimate an unknown signal
f(z¢) from some noisy data y;. Donoho and Johnstone (1994, 1995) have de-
veloped a simple and yet powerful methodology for nonparametric regression
and smoothing based on the principle of wavelet shrinkage (removing noising
by shrinking wavelets coefficients towards zero) referred as the Waveshrink
algorithm. Shrinkage essentially rests on three simple principles: signal fea-
tures can be represented by just a few wavelet coefficients, noise affects all
wavelets coefficients, and by shrinking wavelet coefficients towards zero, the
noise can be removed while preserving features. The algorithm can be de-
scribed as a three step procedure: 1) Data are transformed into a set of
wavelets coefficients applying the discrete wavelet function; 2) a shrinkage of
the coefficients is performed; 3) the shrunken wavelet coefficients are trans-
formed back in the domain of the original data.

1.1 Wavelet function estimation

Suppose the data are given by y = f(z;) + e, t = 1,2,...,n where f(¢) is
a L*(R) discrete signal, and e; are independent and identically distributed
normal errors. The wavelet estimators are a special class of orthogonal series
estimators of the form:
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where djr = [ f(2)¢;,(x)dx are the wavelets coefficients of f. The
wavelet coefficients are localized in time and frequency, this time-frequency
localization is the main reason why wavelets are useful for function approxi-
mation. The basis function wavelets are usually of the form:

() = 289 (20 — k)



where 1 (z) is a particular kind of function so that ;. (x) forms an or-
thogonal basis, ¥(z) and all its derivatives up to order m exist and decrease
rapidly and () is orthogonal to all polynomials of degree m — 1.

1.2 'Wavelet shrinkage

The discrete wavelet transform can be represented by an orthogonal matrix

W:

w=Wy

where w are the wavelet coefficients. The idea of wavelet shrinkage is to
modify the coefficients by some procedure obtaining a new set of coefficients
w and the perform an inverse transformation to obtain:

f=wTw

where fis an estimate of f at x.
The Waveshrink algorithm can be described as:

1. Apply the wavelet transform with J levels to the signal y, obtaining
wavelets detail and smooth coefficients w = (dy, ..., d s, s7)

2. Shrink the detail coefficients at the j finest scales to obtain new de-
tail coefficients d; = 8,(dy),ds = 6.(ds), .. d = 6.(d;) , applying the
function 6(d) to shrink d towards zero.

3. Apply the inverse discrete wavelet transform using the detail coefficients
w = (dl, dg, . dj, djt1,..dy,sy) to obtain the waveshrink estimate f

Generally, the shrinkage function § may take two basic forms, “soft shrink-

age” .
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and “hard shrinkage”:
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where ¢ = A x o (other shrinkage forms have been also proposed such
as semisoft shrinkage, Gao and Bruce, 1996;and non-negative garrote, Gao,
1997). In order to select the best values for the parameters of the waveshrink
algorithm, the thresholding level, \, and an estimate of the noise variance,
o, several approaches have been proposed. To select the threshold A, four
different rules have been proposed: “rigsure” (selection using the principle of
Stein‘s Unbiased Risk Estimate), “sqtwolog” (fixed form threshold equal to
2 % log(n), “heursure” (selection using a mixture of the first two options),
and finally, “minimaxi” (selection using minimax principles). With respect
to the scale of the noise, there are three basic rules: “one” is the basic model
with o = 1, “sln” use the finest scale detail coefficients to estimate a single
factor for all levels and “min” employs a separate scale factor for each level.
Each of the methods proposed have, obviously, their pros and cons de-
pending on the particular domain of application. Nevertheless a basic ques-
tion is which (if any) of the methods dominates under a forecasting criterion.
To put in simple words: which method is best?.

2 Procedure employed and Database

As we have previously mentioned, we are interested in wavelets as a technique
for noise reduction. Our approch is to apply wavelet shrinkage methods to
obtain a “clean” signal which is then used to estimate several linear models.
If too few noise is removed from the data, the linear models estimated over
the clean signal should perform approximately as well as the linear model on
the corresponding noisy time series. Also, if the function is “oversmoothed”,
the patterns present in the data are removed and forecasts should be also
poor. This suggest that there may be a balance between too much filtering
and too few filtering so that forecasts may be improved.

The approach adopted is quite simple but extremally computationally
intensive: we consider all the posible combinations of wavelet parameters
and apply each of the combinations to filter the noise of a set of financial
time series. Then, we construct a variety of linear models for each of the



filtered series and perform a dynamic forecasting exercise. Finally we conduct
an analysis on the relative superiority of each of the filtering methods by
comparing the results with the ones obtained with the non-filtered series.

The choice of the type of Wavelet is based on previous work. Daubechies’
wavelet is probably the most widely used applied studies while the Coifiet
wavelet has been also applied in a financial context (e.g. Thomason, 1996;
Abecasis, 1997). Finally, we have employed the Symlet wavelet to complete
our study, since it has been employed less frequently in the literature.

Since we consider three types of wavelets ( Coiflet 4, Daubechies 4, Symlet
4), two levels of decomposition (J = 4,6), two levels of shrinkage (j = 2,4
for J =4 and j = 4,6 for J = 6), three scales of noise (one, sin, min),
two shrinkage functions (soft and hard) and four threshold rules (rigsure,
sqtwolog, heursure, minimazi), we have 3r2x2x3r2z4 = 288 diferent filter-
ings. In what follows, each one of the filters will be represented as an 6-upla
(threshold, wavelet, noise, function, level, resolution), so that, for example,
(Rigsure, Coiflet, sln, hard, 0, 6) means that we have employed a filter using
rigsure as the threshold rule, the Coiflet wavelet, sin as the scale of noise,
hard as the srinkage function, j=4 and J=6.

The database is composed of daily closing prices (Reuters) of 14 indexes
of the main european markets as well as the Nikkei and S&P500, the period
of study spans from 10/11/1995 to 10/15/1997. The indexes employed are
CACA40 (France), IBEX35 (Spain), DAX30 (Germany), AEX (Netherlands),
FTSE100 (United Kingdom), MIB30 (Italy), BEL20 (Belgium), ATX (Aus-
tria), OMX (Sweden), PSI (Portugal), KFX (Denmark), FOX (Finland),
OBX (Norway), SMI (Switzerland), NIKKEI (Japan) and S&P500 (United
States).

Firstly, and to justify the use of the wavelet transform, we verified non-
stationarity in the log prices by means of the augmented Dickey-Fuller test
(Dickey and Fuller, 1979), which did not allow to reject the null of the exis-
tence of a unit root. All series showed leptokurtic and left-skewed, so that,
the Jarque-Bera statistic permited to reject null of normality of the uncon-
ditional distribution of the returns. Also, we verified the evidence of some
linear structure in the returns with the Ljung-Box test (we rejected no auto-
correlation of order ten at the 5% level in all series) and comprobated that
the correlation is removed with a simple autoregressive model of order five.
Similarly to Swanson and White (1997) our study employs log prices instead
of returns (a main diference with most of the empirical studies). The em-
ployment of log prices allows us to simplify assumptions about the “true”
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data generating process, specifically, the existence or not of cointegrating
relations.

2.1 Univariate and bivariate specifications

In our first set of experiments we will compare the predictions obtained from
linear models when they are estimated over filtered as well as nonfiltered
series, we proceeded as follows. First we set an observational window of
size 256 (approximately one year of daily observations), begining in the first
observation of the series, and filter this subseries through each one of the 288
combination of wavelets parameters to obtain a set of filtered series. Then,
we fit, for each ones of the filtered series, univariate autoregressive models of
the form:

3
log P! = ag + Z Iallog P, + ¢ (1)

i=1

where P/ is the index j (j = 1,2,...,16) at time ¢, and use them to
forecast next day log price. Finally, the diference between the forecast and
the real observation is computed. We roll the window one observation ahead
and continue the process until the end of the sample is reached. We also
proceed similarly with the nonfiltered series, computing the error, and use
this as the benchmark to compare each of the filterings.

Throughout our paper, the loss function employed to test for accuracy is
the mean squared error (mse):

mse = %Z(pz —1;)? (2)

where p; is the forecast, r; the real data and n the number of forecats
(which, in our case, is equal to 266). To normalize, the mse of each of the
models and filters is divided by the mse of a random walk (no drift) and
expressed in percentage terms, so that a ratio less than 100 means that the
particular model is better than the random walk.

The procedure adopted with the bivariate specification is identical, except
that in this case our models also include past information of the S&P500
index (we also use 3 lags). The models are then of the form:
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3 3
log PF = ag + Z aflog PF ., + Z ﬁ?'P500 log Pts_1;500 + & (3)

i=1 Jj=1

2.2 Multivariate specifications

We have also analyze the possible improvements of filtering through wavelets
in a multivariate context. To alleviate the computational burden we will
focus just in five of the indexes, DAX30, CAC40, FTSE100, PSI20 and AEX.
These indexes are chosen because they are sufficiently representative of the
European stock markets and they represent diferent degrees of predictability
(being the PSI20 index the most predictable, in terms of magnitude, during
the period of study and the FTSE100 the least predictable). For each of the
indexes, we employ five stockmarket indexes as regressors, the indexes are
selected to maximize the correlation with the “target” index. Te regressors
employed in each one of the cases are, DAX30, AEX, ATX, BEL20 and KFX,
for the DAX; CAC40, IBEX35, AEX, FTSE100 and OMX, for the CACA40;
FTSE100, AEX, CAC40, OMX and BEL20 for the FTSE100; PSI20, DAX30,
AEX, OMX and CACA40, for the PSI20 and AEX, OMX, DAX30, FTSE100
and BEL20 for the AEX.
The multivariate models employed are parameterized as:

5 5
log P! = ap + leai log Pl + ...+ kaaf log PF, + & (4)

i=1 i=1

where PF is the index k (k = 1,2,...,5) at time ¢, and I*,k = 1,...,5 is
equal to one in the index k is included in the model and zero otherwise (so
that when I* = 0,Vk # 1 the model is just an AR(5) in the logs). Since we
have 5 possible regressors, the maximum number of models is 32 (= 2%). The
simplest model includes the past values of the index as the information set
while the most complicate employs all the corresponding five indexes. The
models are estimated, againg, using a rolling window of a fixed size of 256
filtered observations and, in this case, and to check for the robustness of our
results, always using five lags (a trading week, approximately).

As we have 522 daily observations (which imply 266 forecasts) and 32
diferent models, the number of independent forecasts for each filtering is
8544 (= 267x32). Also, since there are 288 diferent filters and five series, the
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whole number of forecasts is 12.303.135, which gives an idea of the compu-
tational burden of the problem.

3 Results

3.1 Univariate and bivariate forecasts

To present our results, and due to the magnitude of data, we have ellaborated
figures 1 and 2 which provide a visual intuition. Since the errors of some of
the forecasts obtained with many of the filterings were orders of magnitude
higher than the errors obtained with the nonfiltered series, we will just focus
on the best 50 filterings. In all the figures we represent in the the y-axis the
porcentual mse ratio of the corresponding filter against the one obtained by
a random walk, so that a number higher than 100 denotes a worse behavior
than the latter. In the x-axis we represent the sorted order of each ones
of the the best 50 filterings, so that, for example, x=1 may correspond to
a filter of the form (Rigsure, Coiflet, sin, hard, 0, 6). We have also plotted
the ratio against the random walk of the model estimated on the nonfiltered
series, which we represent by an horizontal line. To the extent that the
filters are significantly below this line, wavelet filtering will be beneficious,
independently if models are able or not to beat the random walk, to the
extent that the filters are significantly below this line and also significantly
below 100, models could be useful in predicting future stockmarket prices.

As we can see, the univariate models are generally useless for predicting
stockmarket prices in virtually all the cases. For the nonfiltered series, with
the exception of the KFX, OBX , PSI20 and BEL20 we find ratios slightly
over 100. Of the mentioned four cases, only the PSI20 shows a significa-
tive improvement while the others are clearly marginal. The second thing
to mention is that the filters errors are generally smaller than the nonfilterd
ones (the exceptions are the DAX30, AEX, S&P500 and KFX). Maybe un-
fortunately, we find that the improvements are insignificant, since the most
important is for the SMI and it is around 2%.

For the bivariate models the results change in some sense. First, in all the
cases the improvements against the random walk for the nonfiltered series
is obvious in all the cases. The forecasts are in some cases a 30% lower
than the ones obtained with the random walk (DAX30) and in the worst
case (NIKKEI) they are around 5% better. Focussing on the results with

8



the filterings, we find though that the conclusions are similar to the ones
obtained with the univariate models. In this case, the filters are generally
worse for CAC40, DAX30, EAEX, OMX and KFX and the improvements
are absolutely marginal (around 1%).

As we see, there are no significative differences when we compare the
filters in “good” (the models beat the random walk) or “bad” (the model does
not beat the random walk) situations. Also, note that we are exclussively
focussing on the performance of the best filterings that are selected ezx-post.
This means that, with no previous knowledge, the experimenter would obtain
much worse results by applying a naive filter than without using it.

3.2 Multivariate forecasts

Now we will analyze the effect of filtering in a multivariate context. Again,
and to give an intuitive vision of the results, we present all of them as points
in a cartesian plane. Since, in this case, we have 32 diferent models for each
ones of the filters, our representation will be slightly diferent to the preceeding
ones. In this case we plot, for each one of the 32 multivariate models, the
results obtained with each ones of the 288 filterings, so that for each one
of the models we obtain a family of points that represent the correponding
mse ratios. Again we will focus only on some of the models (the best 25)
since the worst ones produced errors orders of magnitude higher and their
representation would rest clarity to our presentation. In the fiures 4 to 6,
the z-axis denote each one of the models (sortered in increasing mse order,
as before) and the y-azis denote the respective ratio to the random walk.
For example, the point (23,0.96) means that model 23 improves the random
walk by a 4% while the point (17,1.07) means that model 17 is a 7% worse
than the random walk. We plot the errors obtained by the models with the
nonfiltered series in red and the errors obtained using the filtered series in
yellow. To give a clearer view, the filterings are also sorted in increasing mse
ratio for each ones of the models so that, for example, model 1 for filtering
number 166 may not be the same as model 1 for filtering number 38. Finally,
we also plot the ratios obtained with the nonfiltered series.

In figure 4 we show the results obtained with all the filterings. Again, a
ratio smaller than one should be interpreted as a better performance than a
random walk. As it can be seen, most of the filterings make the estimated
models exhibit worse performance than the ones built on the nonfiltered
series, since the yellow lines lie above the red line line. Note that filtering



may serverely damage the forecasts since, especially for the worst models,
the ratio is significantly higher than one.

To see more clearly the results, we propose two additional figures. In the
first one (figure 5) we present only the filterings for which the best model is
at least as good as the random walk. It can be seen that there are much less
filters which have this property. Note that for the first series (CAC40), some
of the filters permit to improve the forecasts than the ones obtained with the
nonfiltered series but in all the other four cases, most of the filters are worse.

In the next figure (figure 6) we plot only the filters for which the best
model improves the best nonfiltered model. As it can be seen, again for the
CAC40, many filters have this property, while for the rest of the models they
are very few (e.g. four for the DAX30) and the improvements are negligible.
In the case of CAC40, some of the improvements seem to be significative,
since they are around a 6%.

As a conclusion, we have confirmed the results obtained with univariate
and bivariate models. The filters generally provided worse forecasts than the
ones obtained using “raw” series.

Now we will turn our attention to the effects of each one of the filtering
parameters in the quality of the forecasts obtained. This aspect is important
since, as we have seen, there is a considerable variation in the quality of the
predictions depending on the selected filter, so that it is relevant to investigate
if some configurations dominate.

To see the effects of each one of the six parameters, we will compute the
number of models that are better than the random walk keeping a particular
parameter fixed. For example, we compute the number of models that are
better than the random walk and employ the Rigsure thresholding, then we
repeat for each on the thresholding methods. If, say, the number of models
that employ Rigsure is considerably higher than the number of models that
use other thresholdings we can conclude ceteris paribus that Rigsure com-
pares favourably to the other methods. Tables 1 to 6 give the details for each
one of the parameters, we show the percentage of the models that beat the
random walk and include a particular factor (the number of models are 122,
166, 107, 180 and 131 for CAC, DAX, FTSE, PSI and AEX, respectively).

With respect to thresholding, there are no significative diferences among
Rigsure, Heursure and Minimaz, while Sqtwolog seems clearly inferior. The
wavelet type does not seem to be of clear importance but the Coiflet dom-
inates slightly. Respecting the estimation of noise, one is clearly superior,
while mlin is the worst. Hard shrinkage clearly dominates over soft and,
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finally, changes in the resolution and level do not seem to be very impor-
tant. Note that these results are consistent along the series employed, which
showed diferent degrees of predictability.

Until now, we have focused on analyzing qualitatively the questions of
wheter filtering or not and the choice of the optimal filter. Now we will
employ a statistical test to verify the statistical significance of the improve-
ments, for which we will employ the nonparametric test of Diebold and Mari-
ano (1995). Let us suppose we have two predictions p}, p? (say that p} is the i
prediction of a model built on the nonfiltered series while p? is the i prediction
of the same model built on the filtered series) and let g(pr*, r;) be a loss func-
tion, (for example the mean squerd error: g(p;*, ;) = 1 S (pi®—713)?). The
diference of the loss functions for prediction i will be: d; = g(p}, ;) —g(p?,7:).
Then, it can be shown that, under the null of equal predictive power:

DM = ——— ~ N(0,1) (5)

where

C_i:

SHE

Z d; (6)

and ﬁl(O) is a consistent estimator of the spectral density of the difference
of predictive errors at frequency zero.

Our idea consists on comparing the predictive accuracy of two models:
the first one, which employs non-filtered data and a second one estimated
over the filtered time series. If DM is bigger than 1,96, we can reject the null
hypothesis (at a 5% level) of equal predictive power in favor of the alternative
that model 2 provides better predictions (that is, filtering is beneficious). On
the contrary, when the DM value is smaller than -1,96, we can conclude that
filtering damages the forecasts.

We will use, again, a graphical presentation of the results. We restrict our
attention to CAC40 and DAX30, which represent examples of the relative
“goodness” and “badness” of filtering. In Figures 7 (for CAC40) and 8
(for DAX30) we present the value of the DM statistic for each of the filters
which provide at least one model better than the nonfiltered series. If a
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filter is always useful, it will exhibit DM statistics (represented in the y-axis)
consistently above 1,96, while if is is perjudicial it will provide DM statistics
below -1,96. In other case, we can not say that filtering is bebeficious nor
perjudicial in terms of forecasting accuracy. As it can be seen for the CAC40
only in four cases we find a consistent statistical improvement by filtering
while in the rest of the cases (excepting the model ranked in the twelfth
position) the filtered series permit to obtain equivalen forecasts (the values
of the DM statistic are in the interval [-2,2]). In the case of the DAX30,
the filters appear to produce more pronounced results, while very few filters
permit to obtain better forecasts the vast majority of them are irrelevant or
perjudicial.

4 Conclusions

In this paper we have explored the sensitivity of the forecasts obtained by
employing a denoising procedure based on wavelet shrinkage. We have shown
that, in the particular application chosen, filtering with wavelets does not
permit to obtain more accurate forecasts and, in fact, it can damage them.
Of course, our results are just a first approximation to the problem but we
think they are illustrative on the potential damage of a naive use of wavelets
in financial time series prediction.

Another finding is that the shrinkage do not seem to be very sensitive to
certain parameters while, for others, the differences are clear: we find that
the wavelet type is not crucial but the one rule of noise estimation dominates,
as it does hard shrinkage over soft shrinkage. Again, more work to evaluate
the potential superiority of some filterings is needed.

References

[1] Abecasis, A. M.and E. S. Lapenta (1997): “Modelling the Merval Index
with Neural Networks and the Discrete Wavelet Transform”. Journal of
Computational Intelligence in Finance, 5, 15-19.

[2] Daubechies, I. (1988): Ten Lectures on Wauvelets. Philadelphia: STAM.

12



3]

[4]

[6]

[7]

Dickey, D.A. and W.A. Fuller (1979): “Distribution of the estimators
for autoregressive time series with a unit root”, Journal of the American
Statistical Association, T4, 427-431.

Donoho, D.L., and I.M. Johnstone (1994): “Ideal spatial adaptation by
wavelet shrinkage”. Biometrika, 81, 425-455.

Donoho, D.L., and I.M. Johnstone (1995): “Adapting to unknown
smoothness via wavelet shrinkage”, Journal of the American Statististi-
cal Association, 90, 1200-1224.

Fan, J., P., M. Martin and P. Patil (1993): “Adaption to high spatial
inhomogeneity based on wavelets and on local linear smoothing”, Tech.
Rept. CMA-SR18-93. Australian National University.

Johnstone, .M., G. Kerkyacharian and D. Picard (1992): “Estimation
d’une densité de probabilité par méthode d’ondelettes”, Comptes Rendus
Acad. Sciences Paris, 315, 211-216.

Smith, M., and T. Barnwell (1986): “Exact reconstruction techniques
for tree-structurated subband coders”, IEEE Transactions on Acoustics,
Speech and Signal Processing, 34, 434-441.

Swanson, N. R. and H. White (1997):“ Forecasting economic time se-
ries using flexible versus fixed specification and linear versus nonlinear
econometric models”, International Journal of Forecasting, 13, 439-461.

Thomason, M. R. (1997): “Financial Forecasting with Wavelets Fil-
ters and Neural Networks”. Journal of Computational Intelligence in
Finance, 5, . 27-32.

Gao, H.-Y. (1997): “Wavelet shrinkage denoising using non-negative
garrote”, Statistical Sciences Division, MathSoft Inc.

13



Table 1: Effect of thresholding

CAC40 DAX30 FTSE1I00 PSI20 AEX

Rigsure  30% 30% 35% 29% 32%
Sqtwolog  10% 14% 15% 8% 9%

Heursure 32% 30% 35% 29% 32%
Minimax  29% 27% 16% 23% 27%

Table 2: Effect of Wavelet type

CAC40 DAX30 FTSE100 PSI20 AEX

Coiflet 41% 34% 38% 38% 37%
Daubechies 25% 34% 30% 36% 33%
Symlet 34% 32% 32% 26% 30%

Table 3: Effect of noise

CAC40 DAX30 FTSE100 PSI20 AEX

min  10% 16% 9% 13% 11%
one 69% 58% 76% 53% 61%
sin  21% 27% 15% 33% 27%

Table 4: Effect of function

CAC40 DAX30 FTSE1I00 PSI20 AEX
Soft  31% 35% 31% 37% 24%
Hard 69% 65% 69% 63% 76%

Table 5: Effect of level

CAC40 DAX30 FTSE100 PSI20 AEX
0 49% 48% 50% 48% 47%
1 51% 42% 50% 52% 53%

Table 6: Effect of resolution

CAC40 DAX30 FTSE100 PSI20 AEX
4 52% 52% 51% 52% 53%
6 48% 48% 49% 48% 47%
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Figure 1: MSE ratio against a random walk, univariate models
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Figure 2: MSE ratio against random walk, univariate models (cont.)
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Figure 3: MSE against a random walk, bivariate models (S&P500 included

in the model)
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Figure 4: All filterings: CAC, FTSE, DAX, PSI, AEX
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Figure 5: Filterings better than the random walk: CAC, FTSE, DAX, PSI,
AEX
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Figure 6: Filterings better than the best linear model: CAC, FTSE, DAX,

PSI, AEX
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Figure 7: Diebold and Mariano test: CAC40
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Figure 8: Diebold and Mariano test: DAX30
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