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Abstract

The purpose of this paper is to compare the quasi-Monte Carlo
methods, in particular the so—called (¢, m, s)-nets , with classical Monte
Carlo approaches for the simulation of econometric time series mod-
els. Quasi-Monte Carlo methods have found successful applications
in many fields such as in physics, image processing, and the eval-
uation of finance derivatives. However, they are rarely used in the
field of econometrics. In this paper, we apply both traditional Monte
Carlo and quasi—-Monte Carlo simulation methods to time series mod-
els which typically arise in macroeconometrics. The numerical exper-
iments demonstrate that quasi-Monte Carlo methods outperform the
traditional Monte Carlo for all models we investigate.

1 Introduction

The traditional Monte Carlo method is widely used in many research fields
due to its simplicity. Indeed, it is computationally easy and its convergence
rate is independent of the dimension of the problem. However, this method
exhibits also several disadvantages. In particular, it can be computationally
onerous to achieve a high level of accuracy, because its convergence rate is
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only O(N~'2) for N sample paths. For example, to reduce the error by a
factor of 10, the number of simulations would have to increase by a factor
of 100. Hence, high accuracy requirements may lead to long computation
times. Furthermore, it might be difficult to obtain “randomly” generated
sample paths in high dimension (Ripley, 1987, pp. 23ff).

A quasi-Monte Carlo simulation uses more uniformly distributed deter-
ministic sequences. It can provide a considerably improved convergence rate,
close to O(N~1) or even O(N~%2) in some special cases (?) (?).! This im-
provement in convergence rate has the potential for dramatic gains both in
computational time and in the range of applications of simulation methods
for econometric problems.

We will review both the Monte Carlo and the quasi-Monte Carlo method,
and also introduce the quasi-Monte Carlo sequences such as: Fauré, Halton,
Sobol and the most recently developed (¢, m,s)-nets (Niederreiter, 1992).
Special emphasis will be given to discussing the problems that may be en-
countered in implementing quasi-Monte Carlo methods and comparing their
performance with the traditional Monte Carlo. Particularly we will apply
both methods on time series models as they typically arise in the econo-
metric modeling of macroeconomic data. We are especially interested in the
uni— and multivariate autoregressive models (AR—~, VAR—models), error cor-
rection models (ECM and VECM), and non-linear models as they appear,
e.g. in form of the minimum condition or an aggregate matching function in
models of temporary equilibrium (Franz et al., 2000).

The rest of the paper is arranged as follows. In Section 2, we provide
a basic description of Monte Carlo and quasi-Monte Carlo simulation tech-
niques. In Section 3, we introduce the econometric time series models we
investigate, and in Section 4 we discuss the results of an extensive numerical
comparison study. Some final remarks are given in Section 5.

1See also Fang et al. (2000) on related results for latin hypercube designs.



2 Classical Monte Carlo, Low—Discrepancy
Sequences and (t,m, s)—Nets

2.1 The Monte Carlo Simulation Framework

There exists a large literature on Monte Carlo simulation (Gentle, 1998).
Therefore, we provide here only a brief overview and concentrate the discus-
sion on applications to econometric time series models.

The problem of simulating time series models may be illustrated using
the simplest case of a stochastic univariate autoregressive process

Y = Qg + Q1Yp_1 + €.

For a given initial value y, and given parameter (estimates) ap and «, a
sample path for y; of length T can be simulated based on a sequence of ¢,
of length T'. However, usually a single realization of such a sample path
is not sufficient, since one might be interested in the distribution of some
y: or some statistics derived from this distribution. Of course, such results
are always conditional on the given or assumed joint distribution of all &;.
Typical examples of statistics on y;, which are of interest in econometric re-
search, include its expectation and variance or confidence bands. In a simple
linear setting with normally distributed error terms e, these statistics can
be obtained analytically. In more general settings, however, these statistics
have to be approximated using the empirical distribution of the y; obtained
by simulating a large number N of sample paths. The resulting empirical
distribution of the y; is taken as Monte Carlo approximation of the true
distribution.

The sample paths g (i = 1,...,N, t = 1,...,T) are obtained in three
steps by classical Monte Carlo. First, a pseudo-random number generator is
used to generate numbers uniformly distributed in the interval (0, 1). Second,
these uniformly distributed numbers are transformed to normally distributed
numbers by some transformation method, e.g. Box-Muller or inverse method
(Ripley, 1987, pp. 54ff). Finally, the vectors &;; of length T for each i =
1,..., N are formed by using T consecutive numbers. If the inverse method
is used for the transformation to normal deviates,? the problem of generating
“good” £’s is equivalent to the problem of generating “good” random numbers

2Different transformation methods, such as the Box—Muller method, should be avoided
in this context, as they might introduce artificial correlation (Ripley, 1987, pp. 54ff).



in the T-dimensional unit cube. By “good”, we mean that for each time
period, the distribution of the simulated &’s closely approximates N (0, I),
where I denotes the T-dimensional identity matrix. Correspondingly, “good”
random numbers in the unit cube (0,1)T should approximate the uniform
distribution as close as possible.

For multivariate and non-linear time series models, the situation is simi-
lar. However, the dimension of the sample paths €;; increases. For example,
in a two-dimensional autoregressive models, sample paths of length 27" have
to be generated: one of length 7T for the first equation and one of length T'
for the second. As the time series models usually assume that these sample
paths are independent, this requirement has to be satisfied by Monte Carlo
or quasi—-Monte Carlo methods as well.

So, the key to Monte Carlo methods is to generate “good” random points.
However, we can only generate pseudo-random sequences, which, in partic-
ular in higher dimension, might lead to clumping of points and, therefore,
limits their uniformity. The cause of this clumping is the fact that points
in a pseudo—random sequence are almost, but not completely independent.
Thus, they have a chance of landing very close to each other.> The accuracy of
Monte Carlo methods can be improved by using more uniformly distributed
pseudo-random sequences. One straightforward method consists of the use
of antithetic variates, i.e. with a random vector £ also —e is used for the
simulation. In linear models, this method reduces the bias of the estimation
of the mean to zero. However, the effect of antithetic variates on estimates of
variance and in non-linear models is not clear.* Hence, quasi-Monte Carlo
or low—discrepancy sequences methods strive for uniformly distributed point
sets in a more general setting. Instead of using pseudo-random sequences,
deterministic point sets are applied, thereby minimizing clustering and im-
proving accuracy. In fact, by uniformly picking the points, higher accuracy
may be achieved with a smaller number of simulations. However, what the
uniformity really means in the context of time series simulation and which
measure of uniformity is adequate in this case has not been addressed yet.

3Some bad examples are provided in Ripley (1987, pp. 23f).
4The simulation results in Section 4 provide some evidence.



2.2 Measuring the Uniformity of Point Sets

Intuitively, for a uniformly distributed sequence x,, in the s—dimensional unit
cube I* = [0,1]*, we would expect to see exactly the same number of points
located in all subsets of I* which have the same volume. Actually, we can
measure the uniformity of x,, in terms of its discrepancy. This is simply
defined by considering the number of points in the subsets of I°. Thus, for
N points {x,}} in the s—dimensional unit cube I°* = [0,1]%, s > 0, and a
subset J of I° the local discrepancy D(J; N) is defined by

D(J;N) = A(J;N) - V(J)N,

where A(J; N) is the number of n,1 < n < N, with x,, € J and V(J) is the
volume of the subinterval J. Hence, if the NV points are uniformly distributed
then the local discrepancy should be very small for all J’s. This leads to a
global definition, the discrepancy® A(N) of the N points, which is defined to
be
A(N) = sup |D(J; N)|,
J

where the supremum is extended over all subsets J of the form J = [[;_,[0, u;).
Unfortunately, it seems impossible to calculate this discrepancy for a point
set if the number of points is large and the dimension s moderate (L'Ecuyer
and Hellekalek, 1998, p. 230).° Furthermore, this measure of discrepancy
has some shortcomings from a theoretical point of view, since it is not invari-
ant to some natural transformations of the unit cube. Alternative measures
can be derived by replacing the supremum norm, e.g. by the L, norm, and
the considered subsets J (Hickernell, 1998). For this paper, we employ the
centred Ly—discrepancy (CLy) proposed by Hickernell (1998), which accord-
ing to results reported in Fang et al. (2000) outperforms the discrepancy
when searching for uniform designs for at least two reasons. First, it is more
sensitive than the usual discrepancy, i.e. designs with identical discrepancy
might differ markedly in their C'L,—discrepancy. Second, employing the C'Ly—
discrepancy results in low discrepancy for all lower dimensional projections
of the point sets. Finally, Fang et al. (2000) establish a connection between
low C Ly—discrepancy and orthogonality of designs.

5This measure of discrepancy based on the supremum norm is also known as star-
discrepancy in the literature.

6 An approximation based on the optimization heuristic threshold accepting is proposed
in Winker and Fang (1997).



2.3 Low—Discrepancy Sequences and (¢, m,s)-Nets

Any point set, which has very “small” discrepancy, is called low—discrepancy
point set. There are many well-know low-discrepancy sets which are uni-
formly distributed in (0, 1)?, for example Fauré-, Halton—, and Sobol-sequences
(Press et al., 1992, pp. 300ff) and (¢, m, s)-nets . Halton—sequences describe a
class of multidimensional infinite sequences that fill the interval [0, 1). To gen-
erate a multidimensional Halton-sequence is quite easy. First, we begin with
a consecutive sequence of non-negative integers, such asn =10,1,2,--- N —1
if N replications are required. For each integer n, convert it to its repre-
sentation in the base p number system, where p is any prime number and
p > 2 (e.g. 100 is the base 2 representation of the integer 4). Thereby, for
each dimension, a different base p is chosen. Secondly, transform the base
p representation into a number in the interval [0,1) by reflection about the
decimal point. Interested readers are referred to ? for a very detailed ex-
ample. Fauré—sequences essentially are permutations of Halton—sequences,
and the Sobol-sequence is a reordering of the Halton—sequence, too (Bratley
and Fox, 1988). The low—discrepancy sequences proposed by Halton, Fauré,
and Sobol are all called (¢, s)-sequences, for which certain finite segments
form (¢,m,s)-nets . A (¢,m,s)-net is a point set in I*, for which the local
discrepancy equals zero for many subsets. More specifically, let 0 < t < m
be integers. A (¢, m, s)-net in base b is a point set x,, of ¥™ points in [0, 1)*
such that every elementary interval E in base b of volume 1/b™~* contains

exactly b® points, where an elementary interval in base b is a subinterval E
of [0,1)* of the form

E =]la:b™%, (a; + 1)b™%),

i=1

with integers a;,d; > 0, and 0 < a; < b% for 1 <i < s.

There are many methods to construct (¢,m, s)-nets ; see the survey by
?. The most commonly used methods include: direct constructions using
various properties of finite fields and polynomials over finite fields; error—
correcting codes including both linear and nonlinear codes such as Kerdock
codes; combinatorial methods including generalized orthogonal arrays; and a
method which uses linear combinations of the rows of a so—called generator
matriz, see Bierbrauer and Edel (1999) and Li and Mullen (2000) for more
details.



Obviously, (t,s)-sequences and (t,m, s)-nets are closely related to each
other. Indeed, (¢, s)-sequences provide an effective way to construct (¢, m, s)—
nets , since the existence of a (¢, s)-sequence in base b implies the existence
of a (t,m,s + 1)-net for all m > ¢. However by using techniques other than
(t, s)-sequences, we can often construct a net with a smaller value of ¢, which
means a net with more uniformly distributed points.

For example, using the method described as construction 18 in Clayman
et al. (1999), it is known that there is a (6,9)-sequence in base 2 (and there
is no known (5,9)-sequence). Hence there is a (6,m, 10)—net in base 2 for all
m > 6. In particular, there is a (6,14, 10)-net in base 2. However using the
construction method indicated in Bierbrauer and Edel (1999) and discussed
in considerable detail in Sections 4 and 5 of that paper, using generator
matrices one can have a (5,14,10)-net in base 2. A (5,14,10)-net has a
more uniform distribution of points than does a (6, 14, 10)-net.

2.4 Uniformity of Pseudo—Random and Quasi—-Monte
Carlo Point Sets

In this section we consider a number of pseudo-random and quasi—-Monte
Carlo points sets. The pseudo—random points sets will be used are: GAUSS,
UNIF, ESSL and quasi—-Monte Carlo points sets are: FAURE, HALTON,
SOBOL, TMS. The sources of the generation are listed below.

Gauss  Uniform pseudo-random number generator of GAUSS 3.2.4
UNIF Uniform pseudo-random number generator from Bratley and
Fox (1988)
ESSL Uniform pseudo-random number generator from ESSL:
8n = (a(8y_1))modm = (a™sg)modm z, = s,/m ,
where s, is the initial seed, a = 16807 and m = 23! — 1
FAURE  Fauré sequence generator from Bratley and Fox (1988)
Harton Halton sequence generator from Bratley and Fox (1988)
SoBoL  Sobol sequence generator from Bratley and Fox (1988)
TMS TMS net generator from Li and Mullen (2000)

All those points sets provide good approximations to the uniform distri-
bution. While the pseudo-random number generators are univariate by con-
struction, the quasi-Monte Carlo methods provide multivariate point sets
explicitly. For the pseudo-random number generators, higher dimensional



vectors are obtained by stacking the corresponding number of drawings in one
vector. The quality of the approximation of the uniform distribution is mea-
sured using the centred Lo—discrepancy. Table 1 shows the CLy—discrepancy
of some point sets obtained by pseudo-random number generators and quasi—
Monte Carlo methods. As the point sets provided by pseudo-random number
generators depend on the initial seed, the mean of 10 different point sets is
reported for these generators. For some instances, different (¢, m, s)-nets are
available. Then, the table provides the smallest discrepancy found for all
(t,m, s)—nets used in the simulation study in section 4.

Table 1: Centered Lo—discrepancy of Point Sets

s =10
Method N=1024 N=4096 | N=16384 | N=32768 | N=65536
Gauss | 0.715-10~2 | 0.181-10~2 | 0.452-10~3 | 0.216-10—3 | 0.107-10~3
UNIF 0.699-10~2 | 0.170-1072 | 0.425-10~% | 0.194-1073 | 0.107-1073
ESSL 0.698-10-2 | 0.170-10~2 | 0.425-10~3 | 0.194-10—3 | 0.107-10~3
FAURE | 0.121-10~2 | 0.148-1073 | 0.195-10~% | 0.845-10~° | 0.344-10°°
HALTON | 0.133-1072 | 0.204-10~3 | 0.250-10~* | 0.825-10~5 | 0.197-10~®
SoBoL | 0.832-10~3 | 0.137-10~3 | 0.194-10~* | 0.812-107° | 0.288-10~5
TMS 0.364-10~2 | 0.207-10~3 | 0.186-10~7 -1 0.509-107°

In Table 1, s is the dimension and N the number of points of the the
sample point sets. The results for these instances clearly indicate that the
C Ly—discrepancy of all quasi-Monte Carlo point sets is smaller than the
expected value for point sets obtained by Monte Carlo methods.” A clear
ranking of the quasi-Monte Carlo methods is not provided by this evidence.
Only the (t,m, s)—net with 16384 points has a slightly smaller centred Lo—
discrepancy than the other quasi-Monte Carlo point sets. However, Nieder-
reiter (1992) points out that (£,m,s)—nets yield the smallest discrepancy
bound and therefore by the Koksma-Hlawka inequality the smallest error
bound (within the class of functions of bounded variation in the sense of
Hardy and Krause) among all known constructions of point sets. Especially,
within the class of functions with rapidly converging Walsh series, Larcher
and Traunfellner (1994) have shown that digital (¢, m, s)-nets yield an error

"See also Fang et al. (2000) for a formal derivation of expectation values for C Ly of
Monte Carlo and quasi—-Monte Carlo point sets.



bound of the optimal order of magnitude. Thus, the findings of table 1 have
to be attributed either to the use of the centred Lo-discrepancy instead of
the star-discrepancy or to some shortcomings of the specific construction of
(t,m, s)—nets for these comparatively small sets.

3 Time Series Models

In the previous section we discussed different Monte Carlo and quasi-Monte
Carlo methods for generating stochastic error paths for time series models.
Furthermore, a comparison of the generated point sets based on a measure
of discrepancy has been provided. In this section, we add evidence on the
performance of the methods in both linear and non linear stochastic time
series models as they typically appear, e.g., in macroeconometric modeling
(Winker, 1999). While it is possible to obtain analytical solutions for the
linear models, the benchmark solutions for the non linear models have to
be obtained by a huge number of replications either in a standard Monte
Carlo framework or — and this is the approach followed in this paper — in
a quasi-Monte Carlo framework. We will discuss the number of replications
we use and accuracy problems in Section 4.

Tables 2 and 3 provide an overview of the models used in our simulation
setup. While models (1)-(6) are linear models, the last three models (7)—(9)
exhibit some nonlinearities. Thus, analytical solutions for the mean response
and its variance can be obtained for the first models, while the benchmarks
for the latter are obtained using Sobol sequences with a large number of
replications N. All one dimensional models are simulated over 10 time peri-
ods and all two dimensional models over 5 or 10 periods, respectively, fixing
initial values to one. Thus, for the one dimensional models, the dimension of
the error space is 10, hence 10—dimension pseudo-random or low discrepancy
points sets are needed for the simulation. Similarly, 10— or 20-dimensional
point sets will be used for the two dimensional models.

The numbers of replications used in the simulations are powers of 2,
which is a result of the construction of (¢, m, s)-nets in base 2. Thus, results
are provided for 1024, 4096, 16 384, and 65536 points, respectively. When
antithetic variates are employed, only half the number of points is generated,
and the other half is obtained by multiplying each vector € with minus one.

Of course, the accuracy of the approximations could be improved using a
larger number of replications. However, in macroeconometric modeling, the



Table 2: Models used for Simulation — I —

No. | Model Equation Parameters
(1) | AR(1) Ty = Qo + 0 Te_1 + & 0, 1, O
(2) | VAR(1) Ty = Qo+ 0nTy—1 + QoY1 + €14 Y, 01, Ol2, Oy s
2-dim. Yt = Bo + Bzt + Bays—1 + €2 Bo, B1; B2, 0c,
(3) | AR(2) Ty = Qg + 0 Tp_1 + QaZs_o + &4 0, O, g, O
(4) | VAR(2) Ty = Qg+ Tiq + QaTi_o+ ap, O, Oy,
Q3Ys—1 T QYo T €14 3, Qy4, Ogy,
2-dim. ye = o+ bizi-1+ BaTiat o, B1, B2,
B3ys—1 + PaY—2 + €2 B3, Ba, Oe,
(5) | ECM(1) Azry = ap+ 1Az + asAy 1 Qp, a1, Qg
+A (@1 — Bys1) + & A, B, 0c
(6) | VECM(1) | Az = ap+ a1Ax_y + aaAy Qp, a1, Qg
FALTe—1 — VYe-1) + €1 AL Ys Oey
2-dim. Ay = fo+ Bi1Azi1 + B2Ays Bo, B1, B,
+Ao(Tp1 — VYr1) + 25 | Ao, 0,

solution of the model for a given set of errors is often quite time consum-
ing. Therefore, the number of replications is limited by available computer
resources. The actual number of replications used in stochastic policy simu-
lation is often rather in the range 1000 to 2000 than larger than 10000 (Franz
et al., 2000). Furthermore, the gain of switching from Monte Carlo to quasi-
Monte Carlo methods is often much larger than the gain of increasing the
number of replications in a Monte Carlo setting.

4 Simulation

Already for the rather limited set of models presented in Tables 2 and 3 a
high number of qualitatively different parameter settings could be considered.
Both constraints of space and computing resources requires some selection
of models. Furthermore, the outcome of model simulation can be evaluated

10



Table 3: Models used for Simulation — II —

No. | Model Equation Parameters

(7) | VAR(1) Ty = Qo+ 0nTy—1 + QoY1 + €14 Y, 01, Ol2, Oy s
2-dim. Yt = Bo + Bzt + Bays—1 + €2 Bo, B1; B2, 0c,
min/max | z = min{z, y; }

(8) | VAR(1) |z = ap+ ouTy1 + oY1 + €1y Q, 1, A, Oy
2-dim. Yt = Po + B1ze—1 + Payr—1 + €t Bo, B, B2, Oc,
CES o ={z;" +y; "} p

(9) | VECM(1) | Azy = ap+ oAz 1+ axAy, 0y, 01, Qo
FA (T — YYr—1) + €1t ALYy Oey

2-dim. Ay = Bo+ BiAzi1 + B2Ayiy Bo, b1, B2,
oz — YY) + Eat A2, O,
1
CES ze={x; " +y; "} P

using different measures. For this first explorative analysis, we concentrate on
the bias of E(zr) for models (1) to (6) and E(zr) for models (7) to (9), where
T denotes the last simulated period.® Furthermore, the bias of the estimated
variance of zr and zr is also considered. In future research, we will also
include measures like the bias of estimated 10— and 90-percent quantiles or
the MSFE discussed in the paper by Ericcsson and Marquez (1998).

The number of time periods T defines the dimensionality of the error pro-
cess used for the simulations. So far, we use only 10—dimensional processes.
Therefore, T' = 10 for the univariate models and 7" = 5 for the models with
two stochastic shock components. Finally, the simulation outcomes depend
on the number of replications. While a high number of replications eventually
results in high quality results for all methods, we concentrate on rather small
numbers of replications as they typically appear when simulating econometric
models or estimators. Therefore, we report results for N = 4096, N = 16384
and N = 65536, respectively. Table 4 shows the bias for E(zy) in percent
for model (1). For the pseudo-random generators, the mean of the absolute

8A similar approach is chosen by Acworth et al. (1998), when comparing the perfor-
mance of Monte—Carlo and quasi—-Monte Carlo methods for option pricing.

11



bias of ten different runs is reported.

Table 4: Bias (p.c.) of simulated E(z19) for Model (1) (g = 0.1, 0. = 0.2)

Pseudo Random Numbers Quasi—-Monte Carlo Methods

o1 N GAuss | UNIF ESSL || FAURE | HALTON | SOBOL | TMS
-0.99 | 4096 | 0.5001 | 0.5084 | 1.4363 | 0.0706 | -0.1199 | 0.0149 | 0.0000
-0.99 | 16384 | 0.4605 | 0.4610 | 0.3922 || 0.0972 | -0.0459 | 0.0083 | 0.0000
-0.99 | 65536 | 0.1501 | 0.1485 | 0.1607 || 0.0054 | -0.0066 | -0.0012 | 0.0000
-0.90 | 4096 | 1.0157 | 1.0340 | 2.3534 | 0.1150 | -0.2730 | 0.0181 | 0.0000
-0.90 | 16384 | 0.6601 | 0.6631 | 0.7683 | 0.1358 | -0.1084 | 0.0127 | 0.0000
-0.90 | 65536 | 0.2422 | 0.2412 | 0.2765 | 0.0007 | -0.0167 | -0.0029 | 0.0000
-0.50 | 4096 | 2.6063 | 2.6622 | 5.7335 | 0.2872 | -1.4954 | 0.0990 | 0.0000
-0.50 | 16384 | 1.2873 | 1.2970 | 2.4894 | 0.0860 | -0.6421 | 0.0370 | 0.0000
-0.50 | 65536 | 0.7355 | 0.7407 | 1.2406 | -0.0391 | -0.1133 | -0.0072 | 0.0000

0.00 | 4096 | 1.7426 | 1.7329 | 2.7782 || 0.0861 | -1.4771| 0.1090 | 0.0000

0.00 | 16384 | 0.7956 | 0.7927 | 1.2153 || -0.0124 | -0.5336 | 0.0224 | 0.0000

0.00 | 65536 | 0.6722 | 0.6731 | 0.5722 || -0.0177 | -0.1208 | -0.0009 | 0.0000

0.50 | 4096 | 1.4046 | 1.4059 1.1047 || 0.0179 | -1.4133 | 0.0576 | 0.0000

0.50 | 16384 | 0.5487 | 0.5494 | 0.7799 || -0.0207 | -0.4590 | 0.0095 | 0.0000

0.50 | 65536 | 0.4142 | 0.4141 | 0.2831 || -0.0241 | -0.1293 | 0.0012 | 0.0000

0.90 | 4096 | 0.5447 | 0.5485 | 0.4930 || -0.0368 | -0.6581 | 0.0036 | 0.0000

0.90 | 16384 | 0.2138 | 0.2159 | 0.2554 || -0.0180 | -0.2164 | -0.0003 | 0.0000

0.90 | 65536 | 0.1636 | 0.1631 | 0.1298 || -0.0232 | -0.0653 | 0.0002 | 0.0000

0.99 | 4096 | 0.4082 | 0.4111 | 0.3987 || -0.0385 | -0.4599 | -0.0029 | 0.0000

0.99 | 16384 | 0.1845 | 0.1848 | 0.2113 || -0.0186 | -0.1510 | -0.0014 | 0.0000

0.99 | 65536 | 0.1206 | 0.1201 | 0.1130 || -0.0192 | -0.0456 | -0.0002 | 0.0000

The results for the estimated bias of E(z1) in model (1) are clearly in
favour of quasi-Monte Carlo methods. In particular, (¢, m, s)-nets provide
unbiased estimates without using antithetic variates. Therefore, in the se-
quel antithetic variates are used only for the pseudo—random numbers and
the other quasi-Monte Carlo methods. Furthermore, the speed of conver-
gence, i.e. the decrease in the bias, when the number of replications NV is
increased, is much higher for the quasi-Monte Carlo methods mirroring the
findings for the discrepancy of these point sets. Both for the pseudo-random
number generators and the Halton sequences, the bias becomes smaller, when
autocorrelation is high. For the pseudo-random numbers this finding can be

12



explained by the fact that artificial correlation stemming from their construc-
tion becomes relatively smaller when autocorrelation of the process increases.

Table 5: Bias (p.c.) of simulated variance of (z19) for Model (1) (oo = 0.1,
o. = 0.2)

Pseudo Random Numbers Quasi-Monte Carlo Methods

o1 N GAuss| UNIF ESSL || FAURE | HALTON | SoBOL| TMS
-0.99 | 4096 | 1.5927 | 1.6104 2.4209 || -0.2865 | 0.1226 |-0.1347 | -0.3434
-0.99 | 16384 | 0.8573 | 0.8663 2.0180 ||-0.2887 | 0.0407 |-0.4396 | 0.2600
-0.99 | 65536 | 0.6623 | 0.6592 0.7449 || 0.0102 | -0.0096 | 0.0238 |-0.0824
-0.90 | 4096 | 1.5637 |1.4916 2.7374 || -0.4077 | 0.2308 [-0.4753 | -0.5611
-0.90 | 16384 | 0.9292 | 0.9283 1.9133 | -0.2374 | 0.0086 |-0.7404 | 0.0575
-0.90 | 65536 | 0.4530 | 0.4513 0.6688 || 0.0302| -0.0174 | 0.0458 | 0.0318
-0.50 | 4096 | 1.1716 | 1.1780 2.9215 (|-0.1082 | -0.3710 |-1.6932 | -0.0431
-0.50 | 16384 | 1.0441 | 1.0436 1.7506 | -0.0969 | -0.1426 |-1.4697 | -0.1200
-0.50 | 65536 | 0.5836 | 0.5831 0.5430 || 0.0445| -0.0341 |-0.0077 | 0.0832
0.00 | 4096 | 2.3790 | 2.3593 2.8036 || 0.1360 | -0.3785 [-0.6623 |-0.0076
0.00 [ 16384 | 1.1960 | 1.2007 1.5163 || -0.1688 | -0.2354 |-0.1870 | -0.0020
0.00 | 656536 | 0.3141 | 0.3161 0.5072 || 0.0242 | -0.0344 |-0.0582 | -0.0005
0.50 | 4096 | 3.2600 | 3.2365 2.1190 || 0.2575| -0.9234 | 0.1708 | -0.0827
0.50 | 16384 | 0.9213 | 0.9015 1.1403 || -0.1175 | -0.5971 | 1.1219| 0.1205
0.50 | 65536 | 0.3308 | 0.3296 0.5459 || -0.0505 | -0.1182 |-0.0970 | -0.0637
0.90 | 4096 | 2.2593 | 2.2643 2.7785 || 0.9080 | -3.5490 (-2.1190 | -0.7205
0.90 | 16384 | 1.0401 | 1.0462 1.5611 | 0.0807 | -1.3127|-0.1957 | 0.5963
0.90 | 65536 | 0.4219 | 0.4223 0.8896 || -0.0735 | -0.4119 |-0.2254 | 0.2277
0.99| 4096 | 1.3713|1.4312 2.7272 || 0.9600 | -3.9162 |-2.8039 |-1.7599
0.99 | 16384 | 0.8311 | 0.8470 1.5107 || 0.1454 | -1.3521 |[-0.6654 | 0.6146
0.99 | 65536 | 0.3943 | 0.3949 0.9864 (| -0.0441 | -0.4352 |-0.2664 | 0.4673

Table 5 shows the bias of simulated variance of z19 for model (1) using
antithetic variates for all methods except (¢,m, s)—nets . The qualitative re-
sults do not change when employing original sequences.® However, the biases
for the other quasi-Monte Carlo methods become smaller without antithetic
variates, in particular for a small number of replications. For high negative
autocorrelation HALTON sequences outperform the other methods, while for

9Results are available on request.
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small negative autocorrelation FAURE and SOBOL sequences seem competi-
tive. Only for no autocorrelation of the data generating process, (t,m, s)—
nets clearly outperform the other methods, while for positive autocorrelation
FAURE sequences result in the smallest bias of the simulated variance.

Because of the strong dependency on the degree of autocorrelation, simu-
lation results for the other models are reported for three parameter combina-
tions corresponding to the cases of high negative autocorrelation (AC=-1),
almost negligible autocorrelation (AC=0) and high positive autocorrelation
(AC=1). The complete set of parameters for all 27 simulated models is pro-
vided in Tables 12 and 13 in the appendix. As the results for the different
pseudo-random number generators do not differ much, only results for the
ESSL generator are reported for models (2) — (9). Finally, for the non linear
models, when analytical solutions for the true estimates are not available,
reference values for expected value and variance are obtained by simulation.
Therefore, SoBoL—sequences of increasing length are used until the change in
these values when doubling the length becomes smaller than 1075.10

For models (1) — (6) (linear models), the bias of expectation is zero, when
using antithetic variates. Therefore, the bias of simulated E(x ) is reported
for models (7) — (9) only in Tables 6, 7 and 8. Furthermore, only results for
N =4096, N = 16384 and N = 65536 are reported.

Table 6: Bias (p.c.) of simulated E(z1) for Models (7)—(9), N = 4096

Model | AC | ESSL | FAURE | HALTON | SOBOL | TMS
7 -1 | 0.0640 |-0.0412 | -0.0105 |-0.0175 | 0.1322
7 0 | 1.6698 | 0.4347| 0.3782(-0.2699 | 0.0497
7 1 | 0.2461 (-0.4441 | -0.7357 |-0.2401 | 0.6317
8 -1 [ 0.3990 | 0.0315| -0.0538 | 0.2870 | 1.1276
8 0 | 1.0199 | 0.0062 | -0.0289 | 0.0702 | 0.0497
8 1 | 0.5591 | 0.4045| -0.0866 |-0.2812 |-0.5542
9 -1 | 0.0375| 0.0153 | 0.0126 |-0.0060 | 0.0267
9 0 | 0.0160| 0.0256 | 0.0318 | 0.0059 |-0.0079
9 1 | 0.1246 |-0.2850 | -0.2208 | 0.0283 |-0.0752

19Tn order to obtain this high accuracy up to several 100 million replications are required
depending on the model and the parameter set, while, typically, some million replications
are sufficient.
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It is clear from the numerical experiment, for N = 4096 the bias of
simulated E(z0) is smaller than 1 percent for almost all instances and point
sets. Since it differs considerably across methods for a given model, it is
impossible to derive some general conclusion. However, we observe from
Table 6, that for N = 4096 the SoBoL—sequence always results in a bias
smaller than 0.3 percent, while this upper bound is 0.45 percent for FAURE,
0.75 for HarTon, 1.15 for TMSand 1.7 for the mean of 10 replications of
the Monte Carlo sequence. Since the results of the Monte Carlo simulation
are stochastic, biases of the order of magnitude of more than 1 percent may
appear quite frequently in this setting. It should be noted that simulated
effects in a macroeconometric simulation setup are often smaller than one
percent. Consequently, the bias of Monte Carlo simulation can be larger
than the simulated effect! The SoBoL—sequences seem to be most robust in
avoiding large biases, which is confirmed by the findings for N = 16 384 and
N = 65536 with a single exception for model (8), AC =1 and N = 16 384.
Again, the (¢, m, s)net sometimes provides high quality approximations, for
the just mentioned instance even the overall best approximation, but fails for
other instances resulting in biases even larger than the mean for the pseudo—
random number generator. This puzzling result requires further analysis of
the implementation of (£,m, s)-nets to the simulation of this kind of time
series processes.

Table 7: Bias (p.c.) of simulated E(zg) for Models (7)—(9), N = 16384

Model | AC | ESSL | FAURE | HALTON | SOBOL | TMS
7 -1 | 0.0168 | 0.0141| 0.0154 |-0.0137 | 0.0330
7 0 | 0.6915| 0.0932| 0.0007 |-0.0883 | 0.1062
7 1 | 0.0936 [-0.1616 | -0.2463 | -0.0138 | 0.3392
8 -1 | 0.2033 |-0.1071 | 0.0795| 0.2360 |-0.0359
8 0 | 0.5587| 0.0022| -0.0397 |-0.0743 | 0.0724
8 1 | 0.4347 | 0.1517 | -0.1858 |-0.0037 |-0.0259
9 -1 | 0.0178 | 0.0025| 0.0023 | 0.0006 | 0.0074
9 0 | 0.0084| 0.0093| 0.0114 |-0.0011 |-0.0055
9 1 | 0.0578 [-0.0300 | -0.0040 | -0.0022 | 0.0628

Tables 9, 10 and 11 show the results of the numerical experiments for the
bias of simulated variance of x 1y or 219, respectively. Those results are based
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Table 8: Bias (p.c.) of simulated E(z19) for Models (7)—(9), N = 65536

Model | AC | ESSL | FAURE | HALTON | SOBOL | TMS
7 -1 | 0.0202 |-0.0012 | -0.0045 |-0.0180 | -0.0049
7 0 | 0.2621| 0.0053 | 0.0563 |-0.0434 |-0.0374
7 1 | 0.0589 [-0.0331 | -0.0373 |-0.0262 | 0.1186
8 -1 | 0.1231] 0.0003 | -0.0199 | 0.0090 | 0.0453
8 0 | 0.1158 |-0.0065 | 0.0051 |[-0.0319 |-0.0532
8 1 | 0.1675 [-0.0300 | -0.0466 | -0.0483 | 0.1146
9 -1 | 0.0054 | 0.0001| -0.0003 |-0.0002 | 0.0006
9 0 | 0.0029 | 0.0027| 0.0032 |-0.0004 |-0.0096
9 1 | 0.0193 | 0.0075| 0.0065| 0.0021 | 0.0623

on a larger set of instances, as the use of antithetic variates does not preclude
a bias of the simulated variance. In fact, the results for ESSLindicates a high
and persistent bias of a order of magnitude of 2 to 3 percent for N = 4096,
which decreases only slowly to about 1 to 1.5 percent for N = 16384 and 0.5
to 0.75 percent for N = 65536 corresponding to the slow convergence rate
of Monte Carlo methods.

Comparing among the quasi-Monte Carlo methods, again no clear rank-
ing is provided. However, as the number of replications is increased, SoBoOL—
sequences obtain the best approximation in more than half of all cases, while
the (£, m, s)-net obtains the best approximation only in about 20 percent of
cases for N < 16384 and only twice for N = 65536. The higher conver-
gence rate of quasi-Monte Carlo methods is also mirrored by the simulation
results, as the typical bias of the variance estimate for the SoBoL-sequences
decreases from 0.3 to 0.6 percent for N = 4096 to 0.02 to 0.06 percent for
N = 65536.

5 Conclusion
In this paper, the use of quasi-Monte Carlo methods for the purpose of sim-
ulating time series processes is analyzed. Based on theoretical results on the

discrepancy and integration error bounds, different quasi-Monte Carlo meth-
ods are compared to standard pseudo-random number generators. In partic-
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Table 9: Bias (p.c.) of simulated variance of z;y for Models (1)-(9), N

4096

Model | AC | ESSL | FAURE | HALTON | SOBOL | TMS
1 -1 | 2.7944 | -0.4764 | 0.1896 | -0.4088 | -0.5622
1 0 | 2.7065 |-0.6616 | -0.2256 | 0.1367 |-0.0069
1 1 | 2.8995 (-2.1174 | -2.7766 | 0.9096 |-0.7189
2 -1 | 2.8032|-0.2243 | -0.3940 |-0.3516 | 0.0854
2 0 | 2.6641|-0.7424 | -0.6673 | 0.4079 | 0.1208
2 1 | 3.0373 [-2.0949 | -2.0193 | 0.5902 |-0.7501
3 -1 | 2.5023 | -1.4554 | -0.0608 |-0.3141 |-0.2188
3 0 | 2.8204 |-0.1021 | -0.0163 |-0.2141 |-0.2052
3 1 | 2.4063 [-2.1100 | -2.7776 | 0.9185 |-0.8170
4 -1 | 2.5210 |-0.1623 | -0.2787 | 0.3218 | 0.7929
4 0 | 2.9123|-0.2537| -0.3728 | 0.2819 | 0.3145
4 1 | 2.1302 (-0.7898 | -0.7596 | 1.3037 | 1.3810
5 -1 | 1.9437|-1.0747 | -1.7976 | 0.0816 |-0.4028
5 0 | 2.8738| 0.1567 | -0.7299 | 0.2325 |-0.0390
5 1 | 2.5935(-2.2214 | -2.5135| 0.9678 | 1.4545
6 -1 | 2.9619 |-1.3924 | -1.2981 | 0.1421 |-1.5619
6 0 | 1.7689 |-1.8637 | -1.8625| 0.6184 |-0.6617
6 1 | 2.9302|-1.9023 | -1.9872 |-0.0194 |-2.7328
7 -1 | 2.4558 |-0.0108 | -0.2348 |-0.3215 |-0.5198
7 0 | 2.3938|-0.5135| -0.3293 | 0.0109 |-0.0099
7 1 | 2.0748 | 0.0279 | -0.0609 | 0.1218 | 0.2749
8 -1 | 2.0178 | 1.5756 | -0.0097 |-0.0473 | 0.0509
8 0 | L.0777| 0.1009 | 0.0581 |-0.7772 |-0.2259
8 1 | 1.8841 |-1.7413 | -0.5016 | 0.5591 | 1.0325
9 -1 | 2.6707 |-0.8669 | -0.6990 | 0.2843 |-1.4769
9 0 | 2.7834|-2.8761 | -3.8193 |-0.4740 |-0.9318
9 1 |22133| 04736 | 0.1313|-0.1828 |-3.0125
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Table 10: Bias (p.c.) of simulated variance of x4 for Models (1)-(9), N

16 384

Model | AC | ESSL | FAURE | HALTON | SOBOL | TMS
1 -1 | 0.7462 |-0.7415 | -0.0133 |-0.2385 | 0.0564
1 0 | 0.7390 |-0.1862 | -0.1944 |-0.1681 |-0.0012
1 1 | 1.3374(-0.1941 | -1.1119| 0.0823 | 0.5979
2 -1 | 0.6537|-0.0922 | -0.0881 |-0.2609 | 0.1592
2 0 | 0.7441|-0.2050 | -0.2109 |-0.1957 | 0.0140
2 1 | 1.1397 [-0.6124 | -0.5988 | 0.0651 | 0.2778
3 -1 | 1.1345|-1.4008 | -0.0858 |-0.1101 |-0.2342
3 0 | 1.3188|-0.4005| 0.0080 |-0.2745 | 0.2667
3 1 | 1.0918 [-0.1932 | -1.1160 | 0.0699 | 0.5860
4 -1 | 1.3799 |-0.0790 | -0.0353 |-0.1380 | 0.2750
4 0 | 1.5713|-0.1333 | -0.0915 |-0.1500 | 0.4165
4 1 | 1.0020 [-0.1802 | -0.1946 | -0.0463 | -0.0260
5 -1 | 0.7699 |-0.4100 | -0.5203 |-0.1328 | 0.0751
5 0 | 1.0681| 1.2140| -0.5749 |-0.0575 | 0.2207
5 1 | 0.9761 [-0.5779 | -0.8773 | 0.1437 | 0.4211
6 -1 | 1.5863 | -0.4540 | -0.4479 | 0.0346 | 0.5390
6 0 | 0.9082|-0.56431| -0.5339| 0.0189 | 0.2639
6 1 | 1.5390 [-0.6099 | -0.5841 | 0.1899 | 0.2885
7 -1 | 1.0582|-0.0675| -0.1829 |-0.2564 | 0.0070
7 0 | 1.1878 |-0.0742 | -0.1980 |-0.2844 | 0.1307
7 1 | 1.4323 | 0.2132| -0.2731 | 0.1257 | 0.7701
8 -1 | 0.5488 | 1.4788 | -1.1372 |-0.0829 | 0.5663
8 0 | 0.6057| 0.2424 | -0.1896 |-0.2358 | 0.0861
8 1 | 1.0049 [-0.0213 | 0.3270 | 0.3963 |-0.0940
9 -1 | 1.1215|-0.2163 | -0.1980 |-0.0081 | 0.1600
9 0 | 1.5695|-1.2004 | -1.4697 | 0.2222 | 0.8150
9 1 | 0.9568 [-0.1876 | -0.3028 | 0.2036 |-0.3860
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Table 11: Bias (p.c.) of simulated variance of x4 for Models (1)-(9), N

65 536

Model | AC | ESSL | FAURE | HALTON | SOBOL | TMS
1 -1 | 0.6406 | 0.0447 | -0.0216 | 0.0291 | 0.0307
1 0 | 0.3248 |-0.0574 | -0.0489 | 0.0249 | 0.0002
1 1 | 0.5642 (-0.2238 | -0.3705 |-0.0719 | 0.2294
2 -1 | 0.4866 |-0.0398 | -0.0237 |-0.0523 | -0.2566
2 0 | 0.3073 |-0.0626 | -0.0523 |-0.0317 |-0.0089
2 1 | 0.4159 (-0.1764 | -0.1980 |-0.0138 | 0.3009
3 -1 | 0.5937 | 0.0307 | -0.0430| 0.0456 | 0.1257
3 0 | 0.7290 | 0.0351| -0.0134| 0.0077 |-0.0414
3 1 | 0.5063 [-0.2223 | -0.3681 |-0.0684 | 0.2431
4 -1 | 0.9000 | -0.0458 | -0.0168 |-0.0464 |-0.2188
4 0 | 0.8512|-0.0587| -0.0286 |-0.0462 |-0.1984
4 1 | 0.5283 [-0.0434 | -0.0687 | -0.0488 |-0.1970
5 -1 | 0.5683 | -0.0409 | -0.1865| 0.0153 | 0.1487
5 0 | 0.3823|-0.1079 | -0.1522 |-0.0719 |-0.0829
5 1 | 0.4603 [-0.1981 | -0.3198 |-0.0713 | 0.1010
6 -1 | 0.4780|-0.1380 | -0.1322 |-0.0166 | 0.3662
6 0 | 0.6381|-0.1587| -0.1777 |-0.0155 | 0.2494
6 1 | 0.7500 [-0.1524 | -0.1933 | 0.0606 | 0.6797
7 -1 | 0.5035|-0.0296 | -0.0117 | 0.0259 |-0.2425
7 0 | 0.2954|-0.0802 | -0.0136 |-0.0532 |-0.0981
7 1 | 0.5986 [-0.2285 | -0.2099 | 0.0366 | 0.4385
8 -1 | 0.4029 | 0.2797 | -0.3062 |-0.3630 | 0.0904
8 0 | 0.1983|-0.0462 | 0.0532| 0.0213 |-0.3812
8 1 | 0.4418 [-0.0346 | 0.0885| 0.2135| 0.0917
9 -1 | 0.4034 |-0.0505 | -0.0310 |-0.0115| 0.2127
9 0 | 0.8070|-0.3937 | -0.4912 | 0.0954 | 1.3545
9 1 |0.7233 [-0.1114 | -0.1502 | 0.0477 | 0.1447
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ular, the use of (¢, m, s)—nets is motivated on a strong theoretical background.
However, the centred Lo—discrepancy does not indicate a clear ranking among
the quasi—-Monte Carlo methods, nevertheless they all behave much better
than Monte Carlo methods.

The application of Monte Carlo and quasi-Monte Carlo methods to the
simulation of linear and non linear time series models provides further evi-
dence of the superiority of quasi-Monte Carlo methods. In the case of linear
models, the bias of simulated expectation can be reduced to zero by the use
of antithetic variates. However, (t,m, s)—nets provide unbiased results in this
case without using antithetic variates. For the bias of expectation for the non
linear models and the bias of the simulated variance, the quasi—-Monte Carlo
methods are clearly superior to the Monte Carlo approaches. However, again
there is no clear ranking of the quasi-Monte Carlo methods. A superiority
of (t,m,s)-nets as could have been expected on theoretical grounds is not
found.!! Here, it is rather SoBoL-sequences, which provide the overall best
approximations.

We only concentrate on the simulated distribution of x19, y10 and 2z,
respectively, in this paper. However, further simulation might consider ex-
tending the simulation period and, in due course, the dimensionality of the
error space. Besides, investigation of the improvement of (¢, m, s)—nets is im-
portant, as one of the advantage of (¢, m, s)—nets is that with “nice” tweaking
the uniformality can be improved while all the good theoretical properties
remain the same. Such testing is now underway.

UHellekalek (1998, pp. 68f) reports on results from a comparison of good lattice point
sets and (¢, m, s)—nets for numerical integration. He also finds that despite of the nice the-
oretical properties of (t,m, s)—nets , no superiority can be detected, quite to the contrary.
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A Parameters of Simulated Models

Table 12: Parameters of Simulated Models — 1 —

Model | AC | Parameters
(].) -1 ap = O]_, o] = —0.9, O = 0.2
0 |ag=0.1,00 =0,0,=0.2
1 |apg=0.1,01 =0.9,0., =0.2
(2) -1 ap = 0.1,a1 = —0.8,012 = —0.1,0'61 =0.2
Bo =0.1,51 = —=0.2, 82 = 0.6,0,, = 0.05
0 a0:O.1,a1 :0.1,a2 :—0.1,0‘61 =0.2
Bo =0.1,51 = 0.2, 82 = 0.6,0,, = 0.05
1 |ap=0.1,01 =08, 9 =0.1,0,, =0.2
Bo =0.1,51 = 0.2, 82 = 0.6,0,, = 0.05
(3) -1 ay = 0.1,6!1 = —0.8,6!2 = —0.1,0‘6 =0.2
0 |ag=0.1,00y = —-0.5,a0 =0.5,0, = 0.2
1 |apg=0.1,01 =0.8,090 =0.1,0., =0.2
4) -1 op=0.1,0y = 08,9 = -0.1,03 =0.5,04 = 0.1,0,, =0.2
Bo=0.1,8, =-03,82 =0.2,83 = —0.5,84 = —0.3,0., = 0.05
0 |ap=0.1,01 = —0.5,00 = 04,03 =0.5,¢4 = 0.1, 0., = 0.2
Bo=0.1,8, =0.5,8: = —0.1,83 = —0.2, 84 = 0.3, 0, = 0.05
1 |ap=0.1,01 =08, 9 =0.1, 03 = —=0.5,4 = —0.1,0,, = 0.2
Bo=-0.1,6 =0.3,82 = -0.2,83 = 0.5, 84 = 0.3, 0., = 0.05
(5) -1 Jag=0.1,00 =—-09,00=0,A=—-0.1,8=0.5,0e = 0.2
0 |ap=0.1,00 =0.1,a0 =0,A=—-0.4,6 =1.0,0e = 0.2
1 Jag=0.1,0;1 =09, =0, A= —-0.1,8 =0.5,0e = 0.2
6) | -1 |ap=0.1,04 =—-08,a0 =-0.1,\; = -0.1,7=0.5,0,, =0.2
Bo =0.1,51 = —0.1,82 = —0.8, Ao = 0.2, 0, = 0.05
0 ay = 0.1,6!1 = 0.2,&2 = —0.2, )\1 = —0.5,")/ = 1.0,0‘61 =0.2
Bo=0.1,8) =—-02,8 =0.2,A2 =0.2,0., = 0.05
1 |ap=0.1,01 =0.8,00 =0.1,\; = —0.1,y =0.5,0,, = 0.2
Bo =0.1,51 = —0.1,8, = —0.8, Ao = 0.2, 0., = 0.05
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Table 13: Parameters of Simulated Models — IT —

Model

AC | Parameters

(7)

-1 ay = 0.1,6!1 = —0.8,6!2 = —0.1,0‘61 =0.2
Bo=0.1,B = —0.2, 3, = 0.6, 0, = 0.05
0 o :O.l,a1 :0.1,a2 = —0.1,0‘61 =0.2
Bo=0.1,B = —0.2, 3, = 0.6, 0., = 0.05
1 |ap=0.1,01 =0.8,0 =0.1,0,, =0.2
Bo=0.1,B = —0.2, 3, = 0.6, 0., = 0.05

-1 ay = 0.1,6!1 = —0.8,6!2 = —0.1,0‘61 =0.2
Bo=0.1,8, = —0.2, B, = 0.6, 0., = 0.05, p = 10
0 ay = 0.1,6!1 = 0.1,6!2 = —0.1,0‘61 =0.2
Bo=0.1,8, = —0.2, B, = 0.6, 0., = 0.05, p = 10
1 |ag=0.1,01 =0.8,9 =0.1,0,, =0.2
Bo=0.1,B = —0.2, 8, = 0.6, 0., = 0.05,p = 10

1 [ag=0.1,0; = —0.8,a2 = —0.1, A = —0.2,7 = 0.5, 0,, = 0.2
Bo=0.1,8; = —0.2, 82 = —0.7, Ay = 0.05, 0, = 0.05, p = 10
0 | =010 =—0.1,00 = 02,2 = —0.1,7 =0.2,0,, = 0.1
Bo=0.1,8, = —0.2, B = 0.1, Ay = 0.05, 6, = 0.05, p = 10
ay = 0.1, a1 = 0.8, g = 0.1, )\1 = —0.2,’)/ = 0.5, Ogy = 0.2
Bo=0.1,8 =0.2,8, = 0.7, Ay = 0.05, 0, = 0.05, p = 10
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