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The traditional three-step procedure for correcting for heteroskedasticity uses a con-

sistent but biased estimator for the variances �2t in enacting the second step. An

estimator is developed here that is unbiased in the presence of heteroskedasticity.

Its behavior is examined along with the traditional estimator and another known to

be unbiased in the absence of heteroskedasticity. The behavior of these corrective

methods is also examined when the form and arguments of the skedastic function are

misspeci�ed. This is accomplished using Monte Carlo studies of several situations of

interest.

1. Introduction

Heteroskedasticity has occupied econometricians for a long time, and with good reason, for, as we shall see,

there are situations in which its presence, even in small samples, can render ordinary least squares (OLS)

highly ine�cient. We consider the regression context

y = X� + "; E""
T = �; (1)

where y is a T -vector, X is a T � K data matrix, � is a K-vector of unknown parameters and � �

diag(�2
1
; � � � ; �2T ). A function gt(z;�) specifying the �

2

t as functions of variates z and parameters � is called

the skedastic function, and we shall assume it takes the form

E"
2

t � �
2

t = g(zTt �); (2)

where zTt is the tth row of Z, a T � p matrix of data that could include columns of X, � is a p-vector of

unknown parameters, and, while the argument of g is linear in �, g itself can be any twice continuously

di�erentiable function (g 2 C2).

Of the two practical issues associated with heteroskedasticity, testing and correction, the former has

of late been put on quite solid grounds with Davidson and MacKinnon's (1993) test based on arti�cial

regressions (see also MacKinnon (1992)). Earlier tests were either ine�cient (Goldfeld-Quandt, (1965))

or required an exact speci�cation of the skedastic function g (Breusch and Pagan (1979), Glejser (1969))



and possibly an assumption of Normality. By contrast, the test based on arti�cial regressions requires no

assumtion of Normality, is the same regardless of the form of g in (2) as long as it is C2, and, as such, has

admirable generality. However, if one rejects the null of homoskedasticity using this test, then any corrective

action will require a full speci�cation of the skedastic function g.

In usual practice, corrective action is taken using a three-step procedure. In the �rst, OLS of y on X

is run to obtain residuals e = (e1; : : : ; eT )
T , which are recognized to be consistent estimators of the "t. In

step two, a regression based on a relation between e2t and g(z
T
t �) is used to obtain an estimate �̂ of �, from

which, in step three, correction takes place using feasible generalized least squares (FGLS) in the form of

bFGLS = (XT
�̂
�1X)�1XT

�̂
�1y; (3)

where �̂ � diag
�
g(zT

1 �̂); : : : ; g(z
T
T �̂)

�
: Three convenient forms for g, assumed in Breusch and Pagan (1979),

are linear, square, and exponential, i.e., (zTt �), (z
T
t �)

2, Ez
T

t
�. In these cases, the second step, estimating

�, is carried out by the following regressions, respectively:

linear (zT
t
�) : e

2

t = zTt �+ vt (4a)

square (zT
t
�)2 : jetj = zTt �+ vt (4b)

exponential Ez
T

t
� : ln e

2

t = zTt �+ vt: (4c)

In this paper, I exercise these corrective procedures by Monte Carlo studies in various situations of

interest. I also add to the literature a form for the regressors in step two that is potentially better suited

to small-samples. Whereas the e2t are consistent estimates of the �2t = g(zTt �), they are not unbiased.

Under the null of homoskedasticity, it is well known that ~e2t � e
2

t=(1 � ht) is an unbiased estimator of

E"
2

t = �
2

t � �
2 for all t, where ht is the t

th diagonal of the projection matrix H � X(XTX)
�1

XT . Of

course, when correcting for heteroskedasticity, this null has been rejected. So, in the next section, I derive

an unbiased estimator ê2t of �2t when there is heteroskedasticity. In the Monte Carlo studies of subsequent

sections, the behaviors of three regressors for step-two, e2t ; ~e
2

t ; and ê
2

t , are compared. Unfortunately, we shall

see that the new estimator ê2t does not fare as well as its author would have hoped.

In the next section, the unbiased estimator ê2t of �2t is derived. In Section 3, the three test data sets

are described along with an overview of the Monte Carlo procedure employed. Section 4 reports the basic

results. Section 5 examines an important special case where the heteroskedasticity is proportionate to a

single variate. Section 6 examines the behavior of the corrective methods when the skedastic function is

misspeci�ed. Conclusions are o�ered in Section 7.
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2. An Unbiased Estimator of �2

t
.

It is well known that, if one estimates (1) by OLS, the regression residuals e are related to the disturbance

term " by

e = [I�X(XTX)
�1

XT ]" � [I�H]" �M"; (5)

where the projection matrices H and M are de�ned by context. And when " is spherically distributed, i.e.,

� = �
2I, we have

V (e) � EeeT = EM""
TM = �

2M; (6)

the last equality holding due to the idempotency of M. Thus, for the tth element of e, we have

Ee
2

t = (1� ht)�
2
; (7)

where ht is the t
th diagonal element of H = X(XTX)

�1

XT . Thus

~e2t �
e
2

t

(1 � ht)
(8)

provides an unbiased estimator of �2 for all t in the traditional OLS context.

In the event, however, that there is heteroskedasticity and � = diag(�2
1
; � � � ;�2T ), we have

V (e) � EeeT = EM""
TM =M�M

= � ��H�H� +H�H; (9)

and bit of algebraic manipulation veri�es that

Ee
2

t = �
2

t � 2htt�
2

t + (h2t1�
2

1
+ � � �+ h

2

tt�
2

t )

= �

2

t � 2htt�
2

t + htt�
2

t

(h2t1�
2

1
+ � � �+ h

2

tt�
2

t )

h
2

tt�
2

t

= �
2

t

�
1 + ht( t � 2)

�
; (10)

where, in line with convention, we rename htt to be ht, and de�ne

 t �

P
h
2

tj�
2

j

ht�
2

t

: (11)

This last term will be recognized for each t to be a weighted average of the (�2j=�
2

t ) since
PT

j=1
h
2

tj = ht due

to the idempotency of H.

Thus, in the case of heteroskedasticity,

e
2

t�
1 + ht( t � 2)

� (12)
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is an unbiased estimator of �2t . Unfortunately,  t contains the unknown �
2

t and so cannot be used as stands,

but it can be estimated in as part of a four-step procedure. Thus, in step 1, regress y on X to obtain the

OLS residuals e. In step 2, �rst use the e2 in the normal fashion to obtain an estimate �̂ for the argument

of the particular skedastic function g being assumed. Then use the resulting g(zTt �̂) to provide estimates �̂2t

of the �2t , which in turn can be used in (11) to provide estimates of the  t as

 ̂t �

P
h
2

tj�̂
2

j

ht�̂
2

t

: (13)

From these we derive the transformed OLS residual squares

ê

2

t �
e
2

t�
1 + ht( ̂t � 2)

� (14)

to be used as estimates of (12). In step 3, the ê2t are used, again in the normal fashion, to obtain an estimate

^̂
� for the argument of the particular skedastic function g being assumed. Then, in step 4, �̂ is estimated as

the diagonal matrix of the g(zTt
^̂
�) and used in (3) to obtain the �nal FGLS estimator of �.

We turn now to Monte Carlo studies to see just how well this rather busy procedure performs as well

as to learn more in general about the process of correcting for heteroskedasticity.

3. The Data and Monte Carlo Procedure

Three basic data sets are used for the Monte Carlo experiments that follow.

3.1 The Data Sets. The �rst is a real economic data set taken from pages 365-66 of Pindyck and

Rubinfeld (1991) and comprises 114 observations on three series giving monthly prices, production, and

stocks of heating oil over the period 1979-01 { 1988-06. These series, along with an intercept term, become

the X data for a set of experiments that will be denoted \Rubin." These data are relatively smooth, showing

some mild cyclical activity but no major trends or discrepancies of level.

By contrast, the second data set, which will be referred to as \Mix," comprises three series generated to

be a mixture of large and small values. This is seen from the followingMathematica code used to generate

a data set of size n.

GenerateMixData[n_]:=

Block[{i,data},

data=Table[0.0,{3},{n}];

SeedRandom[180037];

Do[

data[[1,i]] = Random[Real, {3,6}];

Switch[Random[Integer,{1,2}],

1,

data[[3,i]] = Random[Real,{1,10}];

data[[2,i]] = Random[Real,{-1.0,1.0}],
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2,

data[[3,i]] = Random[Real,{60,100}];

data[[2,i]] = Random[Real,{-10,10}]

],

{i,n}

];

Prepend[data,iota[n]]

]

The ith observation for the three variates is drawn randomly. However, while variate one comes from the

same population across all observations, variates two and three are chosen randomly to be from either a

\large-" or a \small-"magnitude population. A constant term is prepended in the last line, iota[n] being

a vector of n ones. The seed is �xed at the outset so that the data set is repeatedly reproducable. This

population allows one to explore the behavior of heteroskedasticity that is related to the magnitude of the

entities involved, as might be the case, for example, if one speci�es the variance of investment behavior to

vary with the capital value of the �rm.

The third data set is generated to have a trended element, and is referred to, not surprisingly, as \Trend."

Its construction can be seen from the followingMathematica code to generate a set of Trend data of size n.

GenerateTrendData[n_]:=

Block[{i,data},

data=Table[0.0,{2},{n}];

SeedRandom[3775909];

data[[2,1]] = 1 + Random[Real, {-.5,.5}];

data[[1,1]] = 1;

For[i=2,i<=n,i++,

data[[2,i]] = i + Random[Real, {-.5*i,.5*i}];

data[[1,i]] = data[[2,i]]-data[[2,i-1]]+Random[Real,{-3,3}]

];x

Prepend[data,iota[n]]

]

Starting with initial conditions for observation 1, the second variate in subsequent observations increases

with a strong trend component, while the �rst variate moves roughly as a �rst-di�erence. Again, a constant

variate of ones is prepended and an initial seed guarantees reproducibility of the data set for �xed n. This

pattern is typical of many economic time series, and, unlike the Rubin and Mix data, is nonstationary.

3.2 The Monte Carlo Procedure. For each of the Monte Carlo experiments, the zt and � are �rst

de�ned for use in the three skedastic functions (4). For each skedastic function, 5000 replications are made

for each of three sample sizes, 20, 114, and 456, representing small, medium, and moderately large data sets.

In each case, the y data are generated from (1) with " being generated as independent Normals with mean

zero and variances determined by the appropriate skedastic function. For each replication, estimates of �

are obtained for each of four correction methods:
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(1) no correction for heteroskedasticity, �̂ in (3) is �2I: OLS of y on X,

(2) FGLS, where �̂ is estimated in the second step using e2t from (5),

(3) FGLS, where �̂ is estimated in the second step using ~e2t from (8), and

(4) FGLS, where �̂ is estimated in the third step using ê2t from (14).

In the basic experiments, the corrective model employed is the one appropriate to the way the data were

generated; that is, if the data were generated using a square skedastic model (4b), then the square model is

employed in the estimation of �, etc. Later experiments explore what happens if the form of the corrective

model is misspeci�ed. However, the basic experiments do examine what happens if the variates involved in

the generation of the heteroskedasticity (the arguments zt of the skedastic function) are not known exactly.

In the Rubin model, the zt and xt data are the same; that is, all the variates in X are used in generating

the heteroskedasticity. In the Mix and the Trend models, however, only a subset of the X data is used

for the zt data. For these models, separate Monte Carlo experiments are conducted under the `ignorance

assumption,' that all the X data could be involved in zt when correcting for the heteroskedasticity, and

under the `knowledgable assumption,' that the exact speci�cation of zt is known.

There are Monte Carlo runs, then, for each of three di�erent skedastic functions (4), three di�erent

sample sizes (20, 114, 456), and four di�erent corrective methods (uncorrected, e2t , ~e
2

t , and ê
2

t ). Each run

results in 5000 estimates bi of �, which can be used to calculate a sample mean-square-error matrix

S �
1

5000

5000X
i=1

[bi � �][bi � �]
T
: (15)

A sample covariance matrix, using �b instead of � could have been used instead, but would have produced

no meaningful di�erences in result. In each and every case, the sample mean �b was an excellent estimate of

� to within three or four signi�cant digits | consonant with theory, which notes these estimators all to be

unbiased. For each situation, we can also calculate the exact variance-covariance matrix of the estimator in

question, i.e.,

V �

� TX
t=1

�

�2

t xtx
T
t

�
�1

; (16)

where �2t is de�ned for the appropriate skedastic function by (2), xTt is the tth row of X, and T is 20, 114, or

456, depending on sample size. Evaluation of the di�erent corrective methods is then based on comparing

the Relative Generalized Mean Square Error (RGMSE), that is, comparing the ratio of determinants

jSj

jVj
: (17)

6



As is well known, special care is required in correcting for heteroskedasticity in the linear model. It

is quite possible for particular instances to produce very small or even negative estimates of the variance.

Some e�ort is made to pick �s to minimize this e�ect. However, the skedastic function is de�ned for this

model to set �̂2t = :03 for all such occurances less than .03.

In the tables that follow, the RGMSEs for the four di�erent correction methods (no correction, e2t , ~e
2

t ,

and ê2t ) are listed in each case in order from best (least) to worst (largest). Since the corrective methods

can be ordered di�erently from situation to situation, it proves necessary to have a means for identifying

a RGMSE value with a particular corrective method. To this end, the following key is used: the RGMSE

values for the uncorrected OLS method are printed using the regular roman type face, the method using e2t

has values printed in the italic face, the method using ~e2t has values in bold face, and the method using ê2t

has values in a di�erent font altogether looking like this. A key (uncorrected, e2t . ~e2t , ê
2) is provided at

the bottom of each table to facilitate this identi�cation.

4. The Basic Results

In this section we exmine the basic results for the three data sets, Rubin, Mix, and Trend.

4.1 Rubin Data. We begin with the basic Rubin results shown in Table 1. In this case, the zt in (4)

are the xt (the rows of the Rubin X data), and � = (1;�:01; :005; :02). Thus, all of the variates in X are

involved in the determination of the skedasticity. Examine �rst the results for the square skedastic function.

For the smallest sample size, 20, the uncorrected (simple OLS) method has the smallest RGMSE of 1.32, the

method using e2t is next best with a RGMSE of 1.84, the method using ~e2t (a simple ht adjustment) follows

with a RGMSE of 2.04, and the newly proposed method using ê2t (additional  t adjustment) comes last with

a RGMSE of 3.33. For a moderate sample size of 114, this order changes, and the e2t and ~e2t methods do

best, followed closely by ê2t , and uncorrected OLS comes last. This order is preserved at the largest sample

size of 456, but there is no practical di�erence among the three corrections, all of which outstrip uncorrected

OLS. We can conclude in this instance that some correction is helpful for moderate to large sample sizes,

but for small sample sizes either no correction or the simplest e2t correction is best.

In the case of a linear skedastic function, a somewhat similar story arises, except that corrective e�orts

beyond uncorrected OLS do not help much until the largest sample size, and even here uncorrected OLS does

realtively well. I would judge that correction for heteroskedasticity in this linear case is basically unnecessary.

In any event, the simplest correction e2t is better than the other two.

For the exponential case, uncorrected OLS still reigns for small sample sizes, where we note that the ê2t

correction is very poor indeed. For moderate to large sample sizes, however, correction helps considerably
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over OLS. While ~e2t is best, e
2

t is very close. Again, the simplest correction is adequate.

4.2 Mix Data. The basic Mix data results are reported in Table 2. In this case, the zt that generate

the heteroskeasticity in (4) include only the intercept and fourth variate of the X data, and � = (1:0; :02).

We recall that for these data, the fourth X variate comes from two separate populations, large and small,

so that there will be `high'- and `low'-variance observations. Two sets of results are reported in Table 2. In

the �rst set, labelled \All Variates," it is assumed that, in e�ecting the correction, the exact X variates used

in generating the heteroskedasticity are not known, so the step estimating � employs them all. This clearly

should lead to a loss of power for the corrective procedure. In the second set, labelled \Exact Variates," it

is assumed that the variates involved in generating the heteroskedasticity are known.

The All Variates results here for each skedastic function are very similar to those reported above for

the basic Rubin data. For small samples, the uncorrected OLS method is best, although it is now somewhat

more ine�cient with a RGMSE of over two. This remains the case for the linear skedastic function in the

moderate sample size of 114, but, for all other cases, one or the other of the corrective methods proves best.

Again, the e2t method is either best or not far behind the ~e2t method.

The Exact Variates results are a very di�erent story. Here one or another of the corrective methods

is best even with the smallest sample size of 20. And, for the �rst time, the more sophisticated correction

methods, ~e2t and ê
2

t , become best for the larger samples sizes, but not by very much. Indeed, there is nothing

in these results to indicate any real advantage to corrective methods beyond the simplest, e2t .

It would seem that, when one knows the exact nature of the skedastic function, i.e., its proper form

and variate inclusion, that some correction is warranted over uncorrected OLS regardless of sample size. If

the proper form for the skedastic function is known, but not the variate inclusion for zt, simple correction is

warranted for moderate to large sample sizes, but uncorrected OLS is best for small samples.

4.3 Trend Data. The basic Trend data results are reported in Table 3. As for the Mix data, only a

subset of the X data are used for the zt in generating the heteroskedasticity: an intercept and the trended

third variate; here � = (1:0; :005). Again, results are reported for the inclusion of All Variates and for

Exact Variates in e�ecting the step estimating �. The results for All Variates are very similar to those just

reported for the Mix case above. Basically, uncorrected OLS is best for small samples (20), while some form

of correction is bene�cial for moderate to large samples. The correction that proves best varies a bit, but,

for the most part, they all do pretty much equally well, so there is little reason to use anything beyond the

simplest correction, e2t . A di�erent story arises in the Exact Variates results. In the Mix case reported

above, uncorrected OLS was dominated at all sample sizes. Here, however, we see that uncorrected OLS
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does very well for small and even moderate sample sizes. Only in the square model does correction help at

the 114 sample size. By the time the sample size gets to 456, however, correction of some sort is bene�cial

and notably superior to uncorrected OLS. The form of the correction again makes little di�erence.

5. Proportionate Skedasticity Results

In the preceding Monte Carlo studies, the heteroskedasticity is generated as a linear combination of two

or more of the X variates, including an intercept term. In the studies reported here, the heteroskedasticity

is generated (in the context of the Mix and Trend models) as a function of one of the X variates alone.

This is a case often assumed in econometric analysis. For ease of reference, I shall refer to this situation as

the proportionate case, but there would be a truly proportionate relation (for either variance or standard

deviation) only for the square and linear models, not for the exponential model. In the Mix model, the

heteroskedasticity is made to depend only on the fourth X variate, the one that aquires large and small

values for di�erent observations. In the Trend model, the heteroskedasticity depends only on the trended

variate. Once again, in both these cases, the results are reported for using All Variates and Exact Variates

in the step estimating �.

It should be noted that when the skedastic function is either square or linear in this proportionate case,

the three corrective methods, e2t , ~e
2

t , and ê
2

t , give exactly the same results. Thus only two RGMSE values

are published for these situations, one for uncorrected OLS (in roman face) and one for the three corrections

(in italic face).

5.1 Mix Data: Proportionate. The proportionate Mix data results are reported in Table 4. The

results for All Variates in the square skedastic model are immediately remarkable. It is quite clear that

correction for heteroskedasticity when the skedastic function is the popularly assumed square model can be

highly problematic, even for large sample sizes, when there is ignorence of the exact variates involved in the

generation of the heteroskedasticity. All three of the corrective methods as well as uncorrected OLS do very

poorly, showing highly in
ated GRMSEs. A glance at the results for Exact Variates shows that knowledge of

the exact variate involved is very important in this case. With knowledge of the exact variate involvement,

any of the three corrective methods is highly e�ective at any sample size. The uncorrected OLS results, of

course, retain their same poor showing regardless of any such knowledge and are clearly to be avoided in

the case of the proportionate square model. That better knowledge of variate involvement should produce

lower-variance estimates for the corrective methods is to be expected, but I am surprised at the extent of

the di�erence observed here and the fact that it appears to a�ect only the square model so.

No such problem plagues either the exponential or linear models. For the exponential model using All
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Variates, uncorrected OLS fares slightly better in the small sample, but fares worst for medium to large

sample sizes, where ~e2t does best | but only slightly so over the other corrective means. In the linear model,

~e2t does best | but only marginally so as the sample size increases | and uncorrected OLS comes in last

for all sample sizes.

When the exact variate is known, all the corrective methods prove superior to uncorrected OLS for all

sample sizes, a result similar to what was found for the basic Mix data above. It is of interest to note that

the most sophistocated correction, ê2t , does best for larger sample sizes, but only marginally so. For the

small sample, both ~e2t and ê2t show some advantage. Again, however, the advantage is not so great as to

warrant the added complication involved in their computation: the simple e2t correction does well too.

It seems appropriate to conclude that, in the proportionate case, some correction is superior to uncor-

rected OLS, although in the square model, this is a superiority is that of bad against worse.

5.2 Trend Data: Proportionate. Table 5 presents the results for the Trend data with proportionate

heteroskasticity. In this instance, there are three sets of results. The �rst is for All Variates (no restrictions

on variate involvement in the step estimating �), the second set for Partial Variates (only the intercept and

the trend variate are used in the step estimating �), and the third set for Exact Variates (only the trend

variate is included in the �-estimating step). In addition, in the Exact Variate set, a second �gure for the

456-observation sample size is included. This will be explained shortly.

We note again in the results for All Variates for the square model that the ine�ciency of not knowing

the proper variate involvement produces extreme results | and the variance increases with sample size. This

is similar to the behavior for the square model for the Mix data. To examine this behavior, a Partial-Variate

group is added, where the estimates of � are made under the assumption that only the intercept and the

trended variate are involved in the generation of the heteroskedasticity. This meaningful prior information

helps considerably, and, for small to moderate samples the various corrective mechanisms are much better

than uncorrected OLS. However, for large sample sizes, uncorrected OLS regains superiority, and, overall, the

RGMSEs are very large. It is clear that the absence of exact knowledge of the variates involved in generating

the heteroskedasticity hurts, particularly in the square model. Things settle down when the exact variate

involvement is known, and all corrective methods prove superior to uncorrected OLS even at the smallest

sample size. However, note that the RGMSE continues to grow with sample size. To examine whether this

is the result of the nonstationary nature of the trend, the 456 sample results are re-examined by cycling the

114 data four times rather than by continuing the trend for all 456 observations. It can be seen here, and for

the exponential and linear cases, that this does indeed check the growth of the RGMSE, but this statistic

does not fall with sample size.
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The situation is much improved in both the exponential and linear models, where the results tend

towards the patterns we have seen emerging in other situations: uncorrected OLS tends to be best for the

small sample size, but correction seems warrented for medium and large samples sizes, and there is not much

to suggest the superiority of any one corrective method over another.

6. Misspeci�ed Tests

In the preceding runs, the corrective skedasticity functions are correctly speci�ed to match the generating

skedasticity function. That is, if the data are generated with, say, an exponential skedasticity function, the

correction also employs an exponential function. The question naturally arises how the corrections fare if

the form of the skedastic function is misspeci�ed, and we examine this issue here for the three data sets.

The data are generated in turn with one of the three skedasticity models while the corrections are e�ected

with the other two.

6.1 Rubin Data: Misspeci�ed Table 6 reports the results for misspeci�ed skedasticity corrections in

the context of the Rubin data. In the top tableu of the table are the results for the case where the data are

generated with a square skedasticity model and corrected with exponential and linear skedasticity functions.

The misspeci�cation as exponential is seen to produce surprisingly good results for all sample sizes, but

particularly for moderate and large sample sizes, where all three correction methods outperform uncorrected

OLS. With the linear misspeci�cation, uncorrected OLS surpasses all corrective methods until the largest

sample size, at which point e2t performs best, but not much better than uncorrected OLS.

When the data are generated with the exponential model, misspeci�cation as square produces acceptable

results. Again, uncorrected OLS seems best here until the largest sample size, where any of the corrective

methods seem preferable. It is quite clear that no linear corrective method is desirable relative to uncorrected

OLS.

When the data are generated with the linear model, uncorrected OLS again is preferable to either square

or exponential misspeci�cations, but e2t or ~e2t are very close competitors in both cases. The general weight

of the evidence is, not surprisingly, that one is better o� using uncorrected OLS than in misspecifying the

correction skedasticity function, although misspecifying the square with the exponential and vice versa is not

too bad. Misspecifying either the square or exponential models with linear is clearly to be avoided, although

misspecifying linear with either square or exponetial is not that bad.

6.2 Mix Data: Misspeci�ed. Tables 7 and 8 examine the results of misspecifying the Mix data. In

Table 7, the skedasticity is generated using two variates, the intercept and the Mix variate, the variate that

takes high and low values for di�erent observations. These results are very similar to those reported above
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for the misspeci�cations with the Rubin data. Table 8 reports the results where the heteroskedasticity is

generated only with the Mix variate, the so-called proportionate case. Here the results are quite di�erent and

warrant attention. The e�ects of misspecifying the square model as exponential are seen to be devastating.

This is clearly a situation to be avoided. Misspeci�cation as linear in this context is not good either, but

not nearly as bad as exponential. Note that the three corrective methods produce the same results here.

The exponential model misspeci�ed as square is also to be avoided. Here, however, uncorrected OLS

does fairly well. The situation is not as bad with a linear misspeci�cation, where uncorrected OLS seems to

in
ate RGMSE only by a factor of 2. The linear model misspeci�ed as either square or exponential is again

to be avoided, regardless of sample size.

6.3 Trend Data: Misspeci�ed. Table 9 reports the results of the trend model with corrective

misspeci�cation. For these data, we examine only the proportionate case where the heteroskedasticity

depends on the single trend variate. These results are seen to be very close to those for the proprotionate

Mix data just reported in Table 8.

7. Conclusions

There are two areas of conclusions for this study: a comparison of the corrective methods e2t , ~e
2

t , and ê
2

t ,

and an examination of the e�ects of misspecifying the skedastic function. There is some interplay between

the two.

7.1 Comparing the Corrective Methods. The following conclusions are indicated in comparing the

behavior of the three corrective methods along with uncorrected OLS:

� For small samples (20 observations), uncorrected OLS is very acceptable and often dominates any form of

correction. The only situation in which this may not the case is when the exact speci�cation of the skedastic

function, both its arguments and form, is known. By in large, correction is not indicated for small samples.

� For moderate and large sample sizes (114 and 456 observations) correction becomes worthwhile.

�When correction is worthwhile, however, there appears to be little value in using anything but the simplest

correction e2t . When corrections based on either ~e2t or ê
2

t are better, they are typically marginally so. There

is little reason to worry about having additional weapons in the arsenal.

� The previous conclusion is a rather discouraging result for the value of the new unbiased correction, ê2t .

There are situatons in which this corrective method does best, but never better enough to warrant the extra

e�ort in computing it. Basically, when uncorrected OLS does best, ê2t tends to do worst, and when ê2t does

best, e2t or ~e
2

t are essentially just as good.
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7.2 Examining Misspeci�cation of the Skedastic Function. The lessons here for practice, if any,

are rather messy. There are two relevant types of misspeci�cation: one can misspecify the variates that

are involved in generating the heteroskedasticity, i.e., the arguments of the skedastic function, and one can

misspecify the form of the skedastic function.

� The �rst form of misspeci�cation has been examined in the context of the Mix and the Trend data,

where results are given for the use of All Variates in the second/third-step estimates of � and for the use

of Exact Variates. It is clear that the inclusion of irrelevant variates in this step can cause substantial

in
ation in the RGMSE for small and moderate sample sizes, and in some instances even in larger samples

sizes. (This phenomenon seems, for some reason, to be particularly problematic for the square model with

heteroskedasticity generated proportionately to a single variate | see Tables 4 and 5 | but estimated using

All Variates.) It should be noted that this form of misspeci�cation is examined only by including irrelevant

variables, not by excluding relevant ones.

� The second type of misspeci�cation, that of the form of the skedastic function, can be rather beneign

in some situations and quite harmful in others. If the generation of the heteroskedasticity includes a con-

stant component (an intercept term in �), the use of a misspeci�ed skedastic function can be strangely

forgiving. Only misspecifying exponentially generated heteroskedasticity as linear causes real problems. In-

deed, functional misspeci�cation seems to be most deleterious in the proprotionate case, when the actual

heteroskedasticity generation involves but a single variable. Here the e�ects of the misspeci�cation can be

disasterous, even for large sample sizes. Further, it appears that there is no simple lesson, like \ignore

correction unless you know for sure the proper form of the skedasticity function," for uncorrected OLS does

not do well in the presence of a heteroskedasticity generated with a square skedastic function.

� Correction for heteroskedasticity clearly does best when both the proper arguments and form of the

skedasticity function are known. But this is an empty conclusion since misspeci�cation is probably the

rule. Thus, further research is warranted in dealing with the issue. A speci�cation test for the form of the

skedasticity function is high on the list. The use of an encompassing model is an obvious thought, as would

be a method that compares the estimated FGLS variances of bFGLS in (3) across the di�erent skedastic

functions, picking the one with the best looking standard errors.
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Table 1: Generalized MSE relative to true

Rubin Data

Model/Sample Size 20 114 456 20 114 456

Square: 1.32 1.20 0.99 Exp: 3.01 1.38 1.08

1.84 1.21 0.99 3.21 1.39 1.08

2.04 1.34 0.99 3.87 1.43 1.09

3.33 1.47 1.49 8.61 4.27 4.31

Linear: 1.04 1.08 0.99

2.25 1.49 0.99

2.57 1.55 0.99

4.99 1.77 1.04

key: uncorrected, e2, ~e2, ê2



Table 2: Generalized MSE relative to true

Mix Data, with Intercept

All Variates Exact Variates

Model/Sample Size 20 114 456 20 114 456

Square: 2.29 1.27 1.03 1.23 1.09 1.00

2.32 1.28 1.03 1.25 1.09 1.00

2.79 1.33 1.03 2.06 1.09 1.00

7.75 2.42 2.36 2.29 2.42 2.36

Exp: 2.13 1.32 1.02 1.56 1.06 0.97

2.64 1.32 1.02 1.58 1.06 0.97

2.67 1.34 1.02 1.78 1.06 0.97

4.54 2.03 2.03 2.13 2.03 2.06

Linear: 1.16 1.19 1.08 1.07 0.98 1.04

1.77 1.21 1.08 1.07 0.98 1.04

2.05 1.23 1.08 1.11 0.98 1.04

3.21 1.27 1.26 1.16 1.19 1.26

key: uncorrected, e2, ~e2, ê2



Table 3: Generalized MSE relative to true

Trend Data, with Intercept

All Variates Exact Variates

Model/Sample Size 20 114 456 20 114 456

Square: 0.91 1.08 1.08 0.91 1.03 1.06

1.23 1.09 1.08 1.08 1.03 1.06

1.23 1.10 1.08 1.08 1.03 1.06

1.61 1.13 2.18 1.22 1.13 2.18

Exp: 1.00 1.01 1.10 1.00 1.01 1.08

1.61 1.12 1.10 1.35 1.04 1.08

1.62 1.12 1.10 1.35 1.04 1.08

1.94 1.13 2.89 1.49 1.04 2.89

Linear: 0.99 1.04 1.07 0.99 1.04 1.05

1.34 1.09 1.07 1.16 1.04 1.05

1.38 1.10 1.08 1.17 1.04 1.05

1.58 1.11 1.25 1.26 1.04 1.25

key: uncorrected, e2, ~e2, ê2



Table 4: Generalized MSE relative to true

Mix Data, Proportionate

All Variates Exact Variates*

Model/Sample Size 20 114 456 20 114 456

Square: 285 35K 1.2e6 0.94 1.01 1.00

291 55K 1.4e6 2938 35K 31K

467 72K 1.5e6

2938 279K 1.0e7

Exp: 2.13 1.32 1.02 1.77 1.66 1.62

2.64 1.32 1.02 1.79 1.66 1.62

2.67 1.34 1.02 2.09 1.72 1.63

4.54 2.03 2.02 2.13 2.03 2.03

Linear: 2.97 1.35 1.20 0.92 0.97 1.02

3.37 1.36 1.20 8.19 12.85 13.16

4.37 1.38 1.20

6.24 5.43 5.78

key: uncorrected, e2, ~e2, ê2

* The three corrections give same results for Square and Linear cases



Table 6: Generalized MSE relative to true

Rubin Data: Misspeci�ed

Generated Square, Misspeci�ed as

Exponential Linear

20 114 456 20 114 456

1.32 1.36 1.03 1.32 1.47 1.28

2.52 1.37 1.03 8.98 8.70 1.32

2.84 1.40 1.04 10.81 11.56 1.47

6.28 1.47 1.49 47.66 21.35 1.49

Generated Exponential, Misspeci�ed as

Square Linear

20 114 456 20 114 456

3.01 4.17 1.33 3 4 4

3.20 4.27 1.34 677 3706 4825

3.56 5.33 1.45 832 5168 5759

6.54 17.16 4.31 3991 5608 5890

Generated Linear, Misspeci�ed as

Square Exponential

20 114 456 20 114 456

1.04 1.08 0.99 1.04 1.08 1.04

1.60 1.20 0.99 2.29 1.39 1.05

1.72 1.21 0.99 2.48 1.39 1.05

2.53 1.25 1.04 5.04 1.42 1.05

key: uncorrected, e2, ~e2, ê2



Table 7: Generalized MSE relative to true

Mix Data, with Intercept: Misspeci�ed

Generated Square, Misspeci�ed as

Exponential Linear

20 114 456 20 114 456

2.29 1.37 1.07 2.29 2.42 1.37

2.57 1.37 1.07 3.45 2.86 1.38

2.59 1.39 1.07 5.06 3.07 1.42

4.40 2.42 2.35 10.22 3.67 2.36

Generated Exponential, Misspeci�ed as

Square Linear

20 114 456 20 114 456

2.13 1.21 1.01 2.13 2.03 1.49

2.28 1.22 1.01 6.87 5.66 1.52

2.63 1.32 1.01 14.53 6.47 1.62

6.74 2.03 2.02 45.42 9.98 2.03

Generated Linear, Misspeci�ed as

Square Exponential

20 114 456 20 114 456

1.16 1.10 1.07 1.16 1.19 1.11

1.60 1.10 1.07 2.19 1.25 1.11

1.86 1.11 1.07 2.21 1.25 1.11

3.16 1.19 1.26 3.58 1.27 1.27

key: uncorrected, e2, ~e2, ê2



Table 8: Generalized MSE relative to true

Mix Data, Proportionate: Misspeci�ed

Generated Square, Misspeci�ed as

Exponential Linear*

20 114 456 20 114 456

3e3 35e3 31e3 5.43 30.88 28.15

9e3 16e4 17e4 3e3 3e4 3e4

10e3 16e4 17e4

15e3 17e4 17e4

Generated Exponential, Misspeci�ed as

Square* Linear*

20 114 456 20 114 456

2.13 2.03 2.02 1.47 2.03 2.03

67.49 7e3 9e3 2.12 4.04 4.02

Generated Linear, Misspeci�ed as

Square* Exponential

20 114 456 20 114 456

7.51 12.86 13.16 8.19 12.85 13.16

8.19 38.13 43.55 33.44 59.92 63.00

40.29 61.06 63.29

50.57 64.90 64.34

key: uncorrected, e2, ~e2, ê2

* The three corrections give same results for Square

and Linear cases.



Table 9: Generalized MSE relative to true

Trend Data, Proportionate: Misspeci�ed

Generated Square, Misspeci�ed as

Exponential Linear*

20 114 456 20 114 456

59 269 1213 2.82 6.10 13.80

20e4 49e4 4368 59 269 1214

26e4 53e4 4383

21e5 76e4 4452

Generated Exponential, Misspeci�ed as

Square* Linear*

20 114 456 20 114 456

1.00 1.01 2.89 1.00 1.01 2.89

51 2105 8074 2.83 3.86 4.68

Generated Linear, Misspeci�ed as

Square* Exponential

20 114 456 20 114 456

2.61 4.48 6.40 3.14 4.48 6.40

3.14 8.23 19.29 222 222 25.95

270 238 26.09

585 260 26.34

key: uncorrected, e2, ~e2, ê2

* The three corrections give same results for

Square and Linear cases.



Table 5: Generalized MSE relative to true

Trend Data: Proportionate Cases

All Variates Partial Variates Exact Variatesa

Model/Sample Size 20 114 456 20 114 456 20 114 456 456b

Square: 10.01 45 1215 5.55 42 1215 0.9 0.95 1.08 1.02

10.50 62 1603 5.91 49 1636 59.01 269 1215 264

21.97 190 2090 6.28 168 1829

59.01 269 5240 59.01 269 6935

Exp: 1.00 1.01 1.10 1.00 1.01 1.08 1.00 1.01 1.96 1.06

1.61 1.12 1.10 1.35 1.04 1.08 1.56 1.86 1.96 1.91

1.62 1.12 1.10 1.36 1.04 1.08 1.71 1.88 1.98 1.91

1.94 1.13 2.89 1.49 1.04 2.89 1.77 1.92 2.89 1.93

Linear: 1.01 1.10 1.15 1.01 1.06 1.11 0.95 1.00 1.05 1.03

1.07 1.11 1.15 1.04 1.06 1.11 3.14 4.48 6.40 4.68

1.09 1.11 1.16 1.05 1.06 1.11

1.10 1.70 3.22 1.06 1.70 3.22

a The three methods give the same results for Square and Linear Cases
b 114 data cycled four times, see text


