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1 Introduction

Determining estimates using global optimum of a maximum likelihood function or a nonlinear least squares

function is very useful. The global minimum of a least squares function gives a consistent estimate [13].

While a local maximum can serve as a consistent estimate for a maximum likelihood function instead of

the global maximum, the global maximum should be the most likely candidate [7].

Finding the global optimum can be challenging. The value located by a deterministic algorithm, such as

Newton's method, will depend on the starting point used. Some starting points will lead to the global

optimum while others will lead to a local optima. If there are a large number of local optima, �nding the

global optimum, in the absence of any other information, will largely be a matter of luck. Random search

strategies are discussed in Sec. 2. A particular type of e�cient random search, simulated annealing, is

discussed in Sec. 3. A second type of e�cient random search, genetic algorithms, is discussed in Sec. 4.

Sec 5 considers evolutionary strategies, yet another search method and Sec 5.1 discusses a random search

method combined with a deterministic search method. A list of the sources of the software used in this

paper is given in Sec. 6. These algorithms are applied to di�cult problems in Secs 789. Conclusions are

presented in Sec. 10.

2 Random Search Strategies

Classical deterministic algorithms �nd minima depending on the starting point of the search. They may

fail to converge or they may converge to a local rather than global minimum. Random search strategies

o�er methods that can avoid local minima in favor of the global minimum. Consider a search space such

as the one shown in Fig. 1. A simple random search algorithm might be

1. Use random number generator to create point x in the search space.

2. Compute f(x).
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3. Use random number generator to create a new point x0 in the search space.

4. if f(x0) < f(x), x = x
0.

5. if convergence criteria met stop, else go to 3.

The problem with this search algorithm is that it retains no information except for the location of the

best point ever found. If we are near the global minimum, we would like to concentrate the search in

that region as shown in Fig. 2. A possibility is to reduce the search space and search near the current

best point. However, this strategy will tend to become trapped in a region near a local minima. What

we need is an algorithm that concentrates the search at promising locations, yet avoids being trapped at

local optima.

�

�

�

�

Figure 1: A Simple Search

� �

��

Figure 2: A Concentrated Search
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3 Simulated Annealing (SA)

Suppose we have somehow concentrated our search near the region of x1 as shown in Fig. 3. If the search

is totally restricted to be close to x1 we will be trapped in a local minima, particularly if we adopt a rule

that says only accept a movement to a point that gives a smaller function value than the current best

value. Simulated Annealing (SA) avoids becoming trapped at a local minima by occasionally allowing

uphill moves (to x2 or x3) but hopes to converge to the global optima by always allowing downhill moves.

In the neighborhood of the global optimum, however, uphill moves should be discouraged. Suppose we

have function values f(x) and f(x0). Then we will move from x to x0 with probability8<
:

1 if f(x0) < f(x)

1
C exp

�
�f(x0)�f(x)

T

�
otherwise

(1)

where C is a normalizing constant and the parameter T is called temperature in the SA literature. SA

was developed by Metropolis [19] by using an analogy to the thermodynamics of cooling and annealing

metals. If heated metals are cooled slowly enough, nature �nds the minimum energy state for the system.

If cooled to rapidly, it will not reach this state but be trapped in a higher energy state (perhaps becoming

brittle).

If T has a large value in Eq. 1 then there is a high probability of uphill moves thus escaping local minima.

As T is reduced, uphill moves become less likely and the search is concentrated where it is hoped the

global minimum is located. Also note that large uphill moves (f(x0)� f(x)) are discouraged.

There is also the problem of how to determine new search points. A possibility is to use

x
0 = x+ g(T )z (2)

where g(T ) is an increasing function of T and z is some random number generator. In this case

reductions in temperature also has the e�ect of concentrating the search near what is hoped to be the

global minimum. This research uses the SA program developed by Go�e, Ferrier, and Rogers [9]. Note

that a number of decisions must be made. What should the original temperature be? When should it

be reduced? How much should it be reduced? What probability distribution should be used for z? How

much and when do we reduce the step size control g(T )?

3.1 Numerical Recipes (NR)

Press et al. [22] have combined a SA algorithm with the the Nelder�Mead simplex [21] algorithm. A

simplex in an n dimensional parameter consists of (n + 1) points which do not lie on a hyperplane,

together with every possible convex combination of these points. An example of a simplex for a two

dimensional parameter space is shown in Fig. 4. We are only interested in the vertices of the simplex. The

Nelder�Mead algorithm is described next and will be followed by the a description of the modi�cations

of Press et al.

Let
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XX1 X2 X3

f(X)

Figure 3: Uphill Moves
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Figure 4: The Nelder�Mead simplex in two dimensions

xh be the vertex with the highest function value,
xs be the vertex with the second highest function value,
xl be the vertex with the lowest function value function value,
xc be the centroid of all vertices except xh ,

The location of a new vertex is determined as follows:

1. Re�ect xh through the centroid using some re�ection factor � > 0, that is compute

x0 = (1 + �)xc � �xh:

2. If f(xl) � f(x0) � f(xh) then replace xh with x0 and return to step 1.

3. If f(x0) < f(xl) expand the simplex using an expansion factor � > 1 and compute

x00 = �x0 + (1� �)xh:
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(a) If f(x00) < f(xl), replace xh with x00 and return to step 1.

(b) If f(x00) > f(xl), replace xh with x0 and return to step 1.

4. If If f(x0) > f(xs) contract the simplex. Let � have some value between 0 and 1.

(a) If f(x0) < f(xh), compute

x00 = �x0 + (1� �)xc:

(b) If f(x0) > f(xh), compute

x00 = �xh + (1� �)xh:

(c) If f(x00) < f(xh) and f(x00) < f(x0), replace xh with x00 and return to step 1.

(d) If f(x00) > f(xh) or f(x00) < f(x0), reduce the size of the simplex and return to step 1.

Press et al. consider that the standard SA algorithm to be ine�cient in that it may allow uphill moves

when perfectly good downhill moves are available. This situation can arise when the algorithm is trying to

maneuver through a narrow valley or when it is near a minimum. Consider any step in the Nelder�Mead

algorithm where a comparison is made. At such a point, a positive random perturbation proportional

to the temperature is added to the function value of any previously computed vertex and a positive

random perturbation proportional to the temperature is subtracted from the function value computed

at the proposed new vertex. Note that when the temperature is small, as it would be near the end

of the algorithm, that the perturbations will have almost no e�ect and the Nelder�Mead algorithm

will predominate. Adding and subtracting positive quantities from the function values computed at the

vertices assures that downhill moves are always allowed and that uphill moves are occasionally allowed

hence the similarity to SA.

4 Genetic Algorithms (GAs)

Genetic algorithms (GA's) mimic evolutionary processes. A point in the parameter space is called an

individual. Each individual has a �tness value that is the value of the function at the point. Individuals

produce o�spring (new individuals at di�erent points in the space). The most successful of these individ-

uals, those with the best �tness values, survive and produce yet other o�spring. It is hoped that o�spring

in a region near a local minima will eventually die out and that the surviving o�spring will group near

the global minimum.

4.1 Representation of points in GA's

It is customary to represent a point in the parameter space with binary vectors (called chromosomes).

The value of x1 could be represented by

v1 = (bn�1; bn�2; � � � ; b1; b0)
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where bi (called a gene) can take on values of zero or one. If the search space for x1 is restricted to the

interval [a; b] the conversion from the binary vector to a �oating point value is given by

x1 = a+

�n�1X
i=0

bi2
i

�
b� a

2n � 1

For example, suppose the search is to cover the interval [1; 8] along x1 using an 8 bit binary vector, then

v1 = (00000000) gives x1 = 1:000000

and

v1 = (11111111) gives x1 = 8:000000

while

v1 = (01111110) gives x1 = 4:486275

and

v1 = (11111110) gives x1 = 7:972549 :

4.2 GA's and GA Operators

Broadly speaking, GA's operate in three stages � selection, crossover, and mutation [20]. A GA begins

with an initial population of individuals with di�erent �tness values. Some of these individuals are selected

for reproduction. Those individuals with good �tness values are given a large probability of reproduction,

those with average �tness values an average probability of reproduction, and the rest a small probability

of reproduction. Not all of the individuals with good �tness values are selected nor are all of those with

poor �tness values ignored.

The individuals which are selected for reproduction produce o�spring using the GA operators of crossover

and mutation. The o�spring then constitute the new population and the process is repeated. While

mutation follows crossover in the process, it is easier to understand and will be discussed �rst. Each bit

in the binary vector is given a probability changing value. Suppose we have (using the examples in Sec.

4)

v1 = (11000000) gives x1 = 6:270588 :

Now suppose b6 is meets the criterion for change. The operation of mutation changes the value of b6
producing

v
0

1 = (10000000) gives x1 = 4:513725 :

Crossover combines the chromosomes of two individuals to produce two new individuals. Suppose the

representation of the parents are

v1 = (b7; b6; b5; b4; b3; b2; b1; b0)
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and

v2 = (c7; c6; c5; c4; c3; c2; c1; c0)

A position is selected at random in the binary vector, say i = 3, then the genes with indices i <= 3 are

interchanged to produce

v
0

1 = (b7; b6; b5; b4; j c3; c2; c1; c0)

and

v
0

2 = (c7; c6; c5; c4; j b3; b2; b1; b0)

5 Evolutionary Strategies (ESs)

GAs originated in the United States while the development of another biological paradigm , Evolutionary

Strategies, occurred in Europe. GAs were developed to be domain independent while ESs were developed

with a continuous domain in mind [20]. GAs seem to have been most successful in discrete optimization

problems. ESs use �oating point vectors while classical GAs use binary vectors. Recent work with

�oating point GAs suggest that a �oating point representation may be faster, provides higher precision,

and greater consistency from run to run [20].

Classical GAs represent, say, a problems in a three dimensional space (xa; xb; xc) with a binary represen-

tation

v = (an�1; � � � ; a0; bn�1; � � � ; b0; cn�1; � � � ; c0):

We confess, as a matter of taste, that we feel somewhat uncomfortable with this representation and

prefer, for continuous problems one that more nearly matches that domain. So, for this research, we

have used an ES developed by Schwefel [23].

ESs use the same concepts of selection, cross-over, and mutation that are used in GAs. The ordering is

di�erent. The ordering in GAs is selection, cross-over, and mutation. In ESs it is mutation, cross-over,

and then selection. In ESs, an initial population is created, which then generates o�spring. In a (�; �)
strategy � parents produce � children of which the best � are selected to produce the next generation.

In a (� + �) strategy � of the �+ � individuals are selected. The (�+ �) strategy retains the current

best values of the population. Unlike GAs, all individuals in the parent population, �, are selected for

reproduction.

ESs represent individuals as (x; �) where x = (x1; x2; � � � ; x3) is a vector describing the location of the

individual in the search space and � = �1; �2; � � � ; �n) is a vector used to control movement in the space.

Mutations are given by

x
0 = x+N(0; �)

where N(0; �) is a vector of independent, Gaussian distributed random numbers. Mutation is also applied

to the standard deviation by, say,

�
0 = �LN(0; �(�))
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where �(�) is a controlling parameter that becomes smaller in the vicinity of a minimum and LN() is the
lognormal distribution.

Unlike GAs, every member of the population has an equal probability of being selected to produce

o�spring by crossover. Consider a population with � parents

(x1; �1); � � � ; (x�; ��)

which produce an o�spring

((xq11 ; � � � ; x
qn
n ); (�q11 ; � � � ; �qnn ))

with qj = 1; qj = 2; � � � ; qj = � with probability 1=�. Another possibility is to assign the average values

of the elements of pairs of parents to the o�spring

((x11 + x
2
1)=2; � � � ; (x

1
n + x

2
n)=2); (�

1
1 + �

2
1)=2; � � � ; (x

1
n + x

2
n)=2)):

Schwefel [23] devised a means of correlating the mutation parameters, �j, so that mutations need not be

made along coordinate directions, but can occur in the most promising direction. This allows mutations

to proceed along valleys which are not orthogonal with respect to the coordinates.

5.1 A hybrid method (AS)

Stochastic optimization methods can serve as front ends for traditional deterministic optimization meth-

ods. In this case the stochastic method serves to provide the deterministic methods with, hopefully, good

starting points.

The Royal Statistical Society at one time published a series of statistical algorithm in its journal Applied

Statistics. Algorithm AS 298 [2] is a hybrid minimization technique using simulated annealing and any

minimization routine supplied by the user. AS 298 uses all of the points visited at the �nal temperature

plus the best point found as starting points for the traditional minimization routine. Algorithm AS 319 [14]

served as the user supplied minimization routine in this research. Algorithm AS 319 is a variable metric

quasi-Newton method with approximate gradients computed using forward di�erences. It is claimed that

the algorithm is designed to permit maximum likelihood estimation of functions of complex form and has

a reasonable chance of obtaining the global optimum in every trial of a Monte Carlo simulation [14].

6 Software sources

Dorsey and Mayer examined the performance of several optimization methods on a number of functions,

including econometric functions [3]. They conclude that stochastic methods tend to perform better

than deterministic methods on di�cult econometric functions. They considered a GA and a simulated

annealing algorithm in their research. One of the econometric functions they examined, a disequilibrium

model, is also considered in this paper. The data for the disequilibrium model and the code for the GA
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can be found at

http://www.bus.olemiss.edu/dorsey/dorsey.htm. The simulated annealing algorithm they used is

that of Go�e et al. [10] which is discussed below.

Dorsey and Mayer's code is based on an schema developed by Holland [12]. Dorsey and Mayer conclude

that stochastic methods are more reliable that deterministic methods except for small problems that have

no more than four dimensions. They also conclude that their version of the genetic algorithm is more

reliable than the simulated annealing method of Go�e et al.

Go�e et al. [10] have coded a basic simulated annealing algorithm and applied it to a simple economet-

ric model. This version of the algorithm is not elaborate, but does have a very nice output interface.

This allows a user to view the progress of the algorithm. If the progress does not seem satisfactory

the user can stop the program and change the parameters of the algorithm to see if the change im-

proves performance. This feature is most useful. The code for this implementation can be found at

http://netlib2.cs.utk.edu/opt/simann.f

The code for the ES is contained in a disk accompanying Schwefel's book and a hardcopy version of the

code is presented in the book itself.

The AS algorithms can be located in the Applied Statistics folder at the Statlib web site http://lib.stat.cmu.edu/.

7 A Disequilibrium Model

Economists usually assume that markets are in equilibrium, that is, that supply and demand are equal.

This is probably a reasonable assumption for many goods such as commodities. However, given the time

period over which much economic data is collected (often a quarter of a year or longer), it is not possible

to determine whether the markets are in equilibrium. In some cases, such as the purchase of housing, the

market can be in disequilibrium for long periods of time. Disequilibrium models present interesting and

di�cult estimation problems. The econometrics of such functions was �rst studied by Fair and Ja�e [5]

and re�ned by Fair and Kelejian [6], Hartley and Mallela [11], and Mayer [18]. Here we concentrate on

the formulation by Maddala and Nelson [17] because it was selected by Dorsey and Mayer [3] as an item

in a test suite of particularly di�cult optimization problems faced by econometricians.

Suppose that the demand equation is written as

Dt = �1X1t + ut;

while the supply equation is

St = �2X2t + vt;

where Dt is the quantity demanded, St is the quantity supplied, X1t and X2t are matrices of independent

variables, �1 and �2 are vectors of parameters to be estimated, and ut and vt are error terms. What

makes the disequilibrium model interesting is that consumers cannot be forced to buy more than they

want nor can they buy more than is o�ered. So the quantity actually purchased (Qt) will be the lesser
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of supply or demand:

Qt = min(Dt; St):

What makes the problem even more interesting is that one may not be able to determine whether the

quantity purchased is from the supply equation or from the demand equation. How, then, can the

parameters �1 and �2 be estimated? One of the models considered by Maddala and Nelson [17] and

Maddala [16] and used by Dorsey and Mayer [3] is considered in this section.

While the underlying model consists of two linear equations, the estimation problem is a di�cult nonlinear

one. The nonlinearity arises because we cannot determine whether a given value Qt applies to the supply

or to the demand equation. Instead we can determine only the probability that it came from one or the

other of the equations. The probability that the observed value is a point on the demand equation is

�t = P (Dt < St)

= P (�1X1t + ut < �2X2t + vt)

= P (ut � vt < �2X2t � �1X1t):

If the error terms are assumed to be independent and normally distributed, for example, then

�t =

Z (�2X2t��1X1t)=�

�1

1
p
2�

exp(�u2=2)du;

where �2 = �
2
1 + �

2
2. A similar relation holds for P (St < Dt).

Let g(Dt; St) be the joint density of D and S. If an observation is a point on the demand equation, the

conditional density of Qt is [16]

g(Qt j Qt = Dt) =

R
1

Qt

g(Qt; St)dSt

P (Qt = Dt)

=
1

�t

Z
1

Qt

g(Qt; St)dSt;

and if the observation is a point on the supply equation,

g(Qt j Qt = St) =

R
1

Qt

g(Dt; Qt)dDt

P (Qt = St)

=
1

1� �t

Z
1

Qt

g(Dt; Qt)dDt:

The unconditional density of Qt is

G(Qt) = �tg(Qt j Qt = Dt) + (1� �t)g(Qt j Qt = St)

=

Z
1

Qt

g(Qt; St)dSt +

Z
1

Qt

g(Dt; Qt)dDt:
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Suppose that the error terms ut and vt are independent so that g(Dt; St) = g1(Dt)g2(St). In this case

the unconditional density simpli�es to

G(Qt) = g1(Qt)

Z
1

Qt

g2(St)dSt + g2(Qt)

Z
1

Qt

g1(Dt)dDt

= g1(Qt)G2(Qt) + g2(Qt)G1(Qt);

where g1 and g2 are density functions and G1 and G2 are distribution functions. The log-likelihood

function is

L =
nX
t=1

log G(Qt);

where n is the sample size. If it is assumed that the error terms are normally distributed, then

h1t =
Qt � �1X1t

�1
;

h2t =
Qt � �2X2t

�2
;

g1t =
1

p
2��1

exp(�h21t=2);

g2t =
1

p
2��2

exp(�h22t=2);

G1t =

Z
1

h1t

1
p
2�

exp(�u2=2)du;

G2t =

Z
1

h2t

1
p
2�

exp(�u2=2)du;

Gt(Qt) = g1tG2t + g2tG1t:

Note that while we desire to maximize the likelihood function, in practice we will minimize the negative

likelihood function. This approach allows us to speak in terms of minimization, which is more common

practice. Also note that the variance terms are parameters that must be estimated.

Table 7 gives parameter estimates and the value of the log likelihood function for the disequilibrium

model of housing starts considered by Maddala and Nelson [17]. The estimates for the parameters the

model that are shown in this table are TT = time trend, SH = stock of houses, MR(-2) = the mortgage

rate lagged two periods, PDF(-1)= moving average of private deposit �ows lagged one period, BG(-2) =

moving average of borrowing by savings and loan associations from the Federal Home Loan Bank lagged

two periods. The dependent variable Q is the observed number of housing starts. Of particular interest

is the sign of the mortgage interest rate coe�cient in the demand equation. The original solution in

Table 7 is the best result obtained by Maddala and Nelson. GA solution 1 is the best result obtained by
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Dorsey and Mayer using the GA. GA solution 2 is the result Dorsey and Mayer found using a quadratic

hill climbing method with GA solution 1 as a starting point. They note change in sign on the coe�cient

and that the sign should be negative, the mortgage rate being a price variable in the demand equation.

Their conclusion is that the demand equation is mis�speci�ed. The research presented here suggests

that Dorsey and Mayer have located a local rather than the global maximum.

Variable Original solution GA solution 1 GA solution 2

Demand constant 223.740 436.333 429.464

TT 2.520 0.457 10.615

SH -0.002 -0.035 -0.130

MR(-2) -0.90 0.178 0.328

Supply Constant 15.550 5.058 7.788

TT -0.153 -0.164 -0.161

PDF(-1) 0.053 0.055 0.054

BG(-2) 0.053 0.056 0.055

MR(-1) 0.093 0.108 0.014

�
2
1 350.000 2.090 0.321

�
2
2 80.200 88.922 88.641

Log-likelihood -459.618 -454.476 -452.449

Table 1: Results for the disequilibrium model of housing starts reported by Dorsey

and Mayer. The original solution is that of Maddala and Nelson. GA 1 and GA 2

are solutions computed by two genetic algorithms reported by Dorsey and Mayer

Table 2 shows the results for the disequilibrium model using the evolutionary strategy with three di�erent

conditions. ES solution 1 is the solution given for an arbitrary starting point. ES solution 2 and ES

solution 3 both use the the best value found using the SA routine of Go�e et al. (shown in Table 3).

ES solution 3 employed a �+ � strategy while ES solution 2 employed a (�; �) strategy. ES solution 3

did not improve on the results of Go�e et al., but ES solution 2 wandered from this point. This suggests

that retaining the best individuals, letting them reproduce, and living until a better individual replaces

them can be a successful strategy. Note that this depended on a very good starting point, however.

Table 3 shows the results for SA, GA, and NR for the disequilibrium model. As mentioned in the previous

paragraph, ES did not �nd a particularly good optimum until it was provided with the best result from the

SA routine of Go�e et al. The GA algorithm is that of Dorsey and Mayer which used a larger parameter

search space that Dorsey and Mayer used. The expanded search space produced better results than they

found using the GA in their research. The NR routine used the starting point suggested by SA. While

this may suggest that the SA routine tended to produce better results than the other techniques, this is

not necessarily so. SA did not give particularly good results until using a starting point suggested by NR.

But then NR gave better results later using the new results from SA as a starting point. This, in turn,

suggested the expanded search space for GA. Note that in all cases, the mortgage rate variable now has

the expected sign. This suggests that Dorsey and Mayer located a local rather than global variable and

the conclusion that the model is mis�speci�ed is too hasty. Finally it must be mentioned that AS never
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Variable ES solution 1 ES solution 2 ES solution 3

Demand constant 374.680 445.874 1159.725

TT 0.755 0.240 7.737

SH -0.007 -0.003 -0.066

MR(-2) -0.435 -0.549 -1.792

Supply Constant -38.341 0.013 -20.895

TT -0.055 0.075 -0.168

PDF(-1) 0.062 0.055 0.043

BG(-2) 0.072 0.061 0.049

MR(-1) 0.127 0.061 0.152

�
2
1 9.285 8.466 5.925

�
2
2 9.925 10.117 9.789

Log-likelihood -449.605 -446.718 -437.155

Table 2: Results for the disequilibrium model of housing starts using Evolutionary

Strategies

really was successful in any attempts to estimate the parameters of the disequilibrium model.

8 GARCH models

Lately much e�ort has been devoted to the estimation of nonlinear time series models. A class of models

that has seen a great deal of use are those that model changes in the variance of a time series. These

models are useful in studying the determinants in changes in the variance of such economics variables as

the in�ation rate, exchange rates, and equity price variability for example.

A simple autoregressive model can be written as

yt =

nX
i=1

�iyt�i + �t (3)

where y is the dependent variable, � a vector of parameters, and �t a normally distributed error term

with zero mean and constant variance. We consider, however, the situation where the variance of the

error term is not constant. Such may be the case for in�ation rates, exchange rates, and stock market

indexes. The GARCH model [1] is a popular representation of such a situation, where the error process

is modeled by

�t = �t

p
ht

and �t is a random process with zero mean and variance equal to one.
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Variable SA GA NR

Demand constant 1159.725 1105.39 1160.638

TT 7.737 18.1 7.754

SH -0.066 -1.509 -0.006

MR(-2) -1.792 -0.219 -1.794

Supply Constant -20.895 14.629 -20.764

TT -0.168 -0.15 -0.169

PDF(-1) 0.043 0.052 0.043

BG(-2) 0.049 0.054 0.049

MR(-1) 0.152 0.093 0.151

�
2
1 5.925 0.072 5.911

�
2
2 9.789 9.192 9.806

Log-likelihood -437.155 -452.955 -437.156

Table 3: SA, GA, and NR results for the disequilibrium model of housing starts.

The GA solution uses the code of Dorsey and Mayer but a di�erent parameter

space.

A general model of the variance process is

ht = �0 +

pX
i=1

�ie
2
t�i +

qX
j=1


jht�i + Æzt (4)

where zt is a vector of exogenous variables and

et = yt �
nX
i=1

�̂iyt�i

and �̂i are estimates of the parameters of the autoregressive model. The log likelihood function for such

a model is [1]

L = �
T � 1

2
log(2�) �

1

2

TX
t=k

log ht �
1

2

TX
t=k

e
2
t

ht

where k is a value equal to the maximum lag in the system.

One of the interesting features of the optimization problems is that ht must be positive de�nite. Negative

values are not sensible mathematically or statistically. One approach is to constrain all the parameters

of the variance equation to be positive [4]. This is not desirable. This would require that an increase in

the value of any of the variables in the variance equation to always cause an increase in the value of the

variance. This places unreasonable restrictions on the behavior of economic and �nancial systems.

For this research we investigated
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yt = �0 + �1yt�1 + �2yt�2 + �3yt�3

ht = �0 + �1e
2
t�1 + �2e

2
t�2 + 
1ht�1 + 
2ht�2

+Æ1z1;t + Æ2z1;t�1 + Æ3z2;t + Æ4z2;t�1 + Æ5z3;t + Æ6z3;t�1

where yt it the monthly return for the S&P 500 stock market index, z1;t is the ratio of German to US

short term interest rates at time t, z2;t the ratio of UK to US short term interest rates at time t, and

z3;t the ratio of Japanese to US short term interest rates. The short term interest rates are annualized

nominal rates of interest on three month government securities.

The short term interest rates are annualized nominal rates of interest on three month government

securities. This model was suggested by Gerety and Leachman [8]. They graciously supplied the data

used.

The hybrid method did not produce an acceptable result in any of 200 runs and none of these results

are reported here. Table 6 give the best results for a number of runs with di�erent starting points using

the Regression Analysis of Times Series (RATS) statistical package, a widely used econometrics software

package. RATSs uses deterministic maximum likelihood algorithms. There is very little consistency

between the signs of the coe�cient estimates produced by the di�erent runs suggesting that the likelihood

function may be characterized by multiple local maxima. This is reinforced by examining the values of

the likelihood function produced by RATS and the values produced by random methods.

The best solution for all methods is that given by the SA method shown in Table 4. This result could

not be produced from a random starting point, however. This result was produced using the best NR

result as a starting point for the SA method.

Table 5 gives results for the ES. ESa was the best solution found in 200 runs using arbitrary starting

points. ESb is the best solution found in 200 runs using the best solutions from the NR method as a

starting point and letting the best individual live forever. ESc also used the NR result as a starting point,

but parents always die in this version. Note that in the ESc case that ES wanders away from the best

point.

Table 7 gives the results for three runs of the GA. GA 1 and GA 2 give the largest value of the likelihood

function, but neither one is as good as the best result from NR, ES, or SA. While the value of the

likelihood function is approximately the same for GA 1 and GA 2, hardly any of the parameters have

the same sign. Examination of the signs of the estimates for all of the methods does not show any

consistency. This can be taken as evidence that the likelihood function has multiple optima.

9 Kowalik's equation

Kowalik [15] function serves as an example of a nonlinear least squares estimation problem. The objective

function is
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Variable NR solution ES solution SA solution

Constant(mean equation) 0.006 0.005 0.006

US returns(-1) 0.198 0.293 0.338

US returns(-2) 0.036 -0.110 0.014

US returns(-3) -0.043 0.053 0.029

Constant(variance equation) 0.006 0.004 0.005

�
2
t�1 0.133 0.174 0.062

�
2
t�2 0.007 0.018 0.032

ht�1 -0.450 -0.654 -0.376

ht�2 -0.428 -0.333 -0.822

Ger/US int. rate 0.001 -0.009 0.003

Ger/US int.rate(-1) 0.002 -0.005 -0.001

UK/US int. rate 0.002 0.009 -0.003

UK/US int. rate(-1) -0.006 -0.007 0.000

J/US int. rate 0.000 -0.002 -0.0584

J/US int. rate(-1) 0.000 0.001 0.001

Log-likelihood 724.584 710.273 726.840

Table 4: Results for the volatility model of United States equity returns by

Gerety and Leachman. NR is the Numerical Recipes solution, ES the evolutionary

strategy solution, SA the simulated annealing solution
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Variable ESa ESb ESc

Constant(mean equation) 0.005 0.006 0.007

US returns(-1) 0.293 0.198 0.184

US returns(-2) -0.110 0.036 0.244

US returns(-3) 0.053 -0.043 -0.353

Constant(variance equation) 0.004 0.006 0.006

�
2
t�1 0.174 0.133 0.073

�
2
t�2 0.018 0.007 0.062

ht�1 -0.654 -0.450 -0.845

ht�2 -0.333 -0.428 -0.566

Ger/US int. rate -0.009 -0.001 -0.005

Ger/US int.rate(-1) 0.005 0.002 0.005

UK/US int. rate 0.009 0.002 0.005

UK/US int. rate(-1) -0.007 -0.006 -0.007

J/US int. rate -0.002 0.000 -0.001

J/US int. rate(-1) 0.001 0.000 0.001

Log-likelihood 710.273 721.945 682.712

Table 5: Results for the volatility model of United States equity

returns by Gerety and Leachman. ESa is the evolutionary strat-

egy solution found by starting with an arbitrary point retaining

the best solution, ESb uses the NR solution as a starting point

also retaining the best solution, and ESc uses the NR solution as

a starting point but does not retain the best solution.

17



Variable RATS1 RATS2 RATS3

Constant(mean equation) 0.004 0.000 0.006614

US returns(-1) 0.245 0.353 0.213129

US returns(-2) -0.066 0.088 -0.13232

US returns(-3) -0.009 0.056 0.036214

Constant(variance equation) 0.003 0.002 0.000563

�
2
t�1 0.211 0.083 -0.04118

�
2
t�2 0.024 0.034 -0.03066

ht�1 -0.681 0.111 0.374663

ht�2 0.019 0.269 -0.53744

Ger/US int. rate 0.000 0.005 0.000151

Ger/US int.rate(-1) 0.001 -0.006 -0.00148

UK/US int. rate 0.000 -0.007 0.001189

UK/US int. rate(-1) -0.001 0.007 0.000687

J/US int. rate -0.004 -0.003 -0.0006

J/US int. rate(-1) 0.003 0.003 0.000561

Log-likelihood 676.465 664.966 646.8787

Table 6: Results for the volatility model of United States equity returns by Gerety

and Leachman. Results from the RATS package with di�erent starting points

Variable GA 1 GA 2 GA 3

Constant(mean equation) 0.002 0.006 0.002

US returns(-1) 0.275 0.263 0.303

US returns(-2) -0.093 0.000 0.015

US returns(-3) 0.001 -0.001 0.076

Constant(variance equation) 0.002 0.006 0.001

�
2
t�1 0.173 0.000 0.052

�
2
t�2 -0.063 0.003 -0.154

ht�1 0.000 -0.281 -0.082

ht�2 0.045 -0.806 0.036

Ger/US int. rate 0.002 0.000 -0.018

Ger/US int.rate(-1) -0.003 0.000 0.015

UK/US int. rate 0.000 0.000 0.026

UK/US int. rate(-1) 0.000 -0.003 -0.021

J/US int. rate 0.000 -0.001 -0.006

J/US int. rate(-1) 0.000 0.001 0.006

Log-likelihood 715.759 714.713 695.160

Table 7: Results for the volatility model of United States equity returns by Gerety

and Leachman. Results from the genetic algorithm of Dorsey and Mayer
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i ai b
�1
i

1 0:1957 0:25
2 0:1947 0:5
3 0:1735 1
4 0:1600 2
5 0:0844 4
6 0:0627 6
7 0:0456 8
8 0:0342 10
9 0:0323 12
10 0:0235 14
11 0:0246 16

Table 8: Constants for Kowalik's function.

Estimate RATS 1 RATS 2 RATS 3

x1 0.1941 0.2069 0.2104

x2 0.1601 -0.0707 -5.5319

x3 0.1231 0.2509 -3.8819

x4 0.1202 -0.0225 -2.3026

Table 9: Results from the RATS package for Kowalik's function

f(x) =

11X
i=1

 
ai �

x1(b
2
i + bix2)

b
2
i + bix3 + x4

!2

with values for a and b given in Table 8.

The global minimum for this function is x = (0:1928; 0:1908; 0:1231; 0:1358). This function has some

features which make it di�cult for traditional minimization methods. It tends to su�er greatly from

round-o� error in the vicinity of the global minima [23].

This function was estimated using the nonlinear least squares program in RATS. If starting points were

chosen close to the global minimum it consistently converged to an improper value. When given a

starting point equal to the global minimum, Rats produced the the results shown in column RATS 1 in

Table 9. At a starting point such as x = (0; 0; 0; 0) RATS produced the results shown in column RATS

2. A starting point of x = (1; 1; 1; 1) produced the results in column RATS 3.

The hybrid method did not converge in any of 200 runs. This is not too surprising given the round�o�

error near the minimum and is consistent with the results for RATS 1 in Table 9. NR did not converge
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Estimate GA ES SA

x1 0.1928 0.1928 0.1928

x2 0.1909 0.1924 0.1907

x3 0.1232 0.1235 0.1231

x4 0.1358 0.1365 0.1357

Number converged 200 194 200

Table 10: Results for Kowalik's function for GA, ES and SA.

Number converged is the number of runs that converges out of

200 total runs. The values shown for the estimates are for the

best function value for the 200 runs.

in any of 200 runs either. NR, unlike the other methods, is not con�ned to search in a particular region.

This led to NR wandering very far from the global minimum. One such result was (approximately)

x = (:1; 1:0e34;�1:0e34; 1:0e20) NR never converged to the same location twice if there was any

change in the starting position.

The other techniques performed quite well on Kowalik's function as shown in Table 10. GA and SA both

converged to the same location in each of 200 test runs. ES converged in 194 out of 200 runs. The

values shown for the parameter estimates are those that gave the minimum function value for the 200

runs for each technique. SA and GA gave values closer to the value given by Kowalik.

10 Conclusions

No single method used in this research proved clearly superior. One recommendation frequently made

is to use the results of a random search method for a starting point in a deterministic method. This

research suggests that this is not always sound. The hybrid method did not perform well in this research

and failed completely for the Garch model and Kowalik's function.

This research also suggests that it is worthwhile to use more than one method. An experimental approach,

where di�erent combinations of techniques are tried, produced the best results.
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