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Abstract: We present an algorithm to solve N-person discrete-time LQ games exactly, and
discrete-time non-linear quadratic games approximately by means of an appropriate lineari-
zation procedure, where N>2. Among the different solutions of these dynamic games are
open-loop and feedback Nash and Stackelberg equilibrium and Pareto-optimal solutions,
where the derivation of each of these solutions is explained in detail in the present paper.
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1. Introduction

Dynamic game theory serves as mathematical instrument to illustrate questions of
strategic interdependences between policy makers, in particular in the analysis of
possible advantages of international policy coordination. Different solution con-
cepts are distinguished in the literature on dynamic games according to the infor-
mation patterns and the strategy spaces of the players, which correspond to the
degree of commitment assumed for the players (see, e.g., Basar and Olsder (1995),
Dockner and Neck (1988), Leitmann (1974), Mehlmann (1991), Petit (1990)).
Therefore, we distinguish between non-cooperative and cooperative solution
concepts of dynamics games. In the former case we exclude binding agreements
between the players, while these agreements are assumed to be established and to
hold in the latter case. Among non-cooperative solutions we distinguish between
Nash equilibrium solutions, where no player can improve her (his) performance by
one-sided deviations from the equilibrium strategy, and Stackelberg equilibrium
solutions, where the players have asymmetric roles. For the Nash and for the
Stackelberg equilibrium solution of a dynamic game additional assumptions con-
cerning the information pattern of the players can be made. These assumptions
specify the informational basis of each player’s decision. Here, we consider open-
loop information patterns, where the player’s strategies depend only on the initial
state of the dynamic system, and feedback information patterns, where the strate-
gies depend on the current state of the system (but not on the initial conditions).
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According to the interpretation of the distinction between open-loop and feedback
Nash equilibrium solutions suggested by Reinganum and Stokey (1985), with the
open-loop information pattern, each player can be imagined to commit herself
(himself) at the initial period a priori to all future actions she (he) will take (“path
strategies™). In the feedback information pattern, players can be imagined to ob-
serve the current values of the state variable and to react upon them by choosing
their actions according to a “decision rule”, i.e., a strategy specified at the initial
period which makes the values of the control variables dependent on the current
values of the state variables at each (future) point in time.

We present an extension of the algorithm OPTGAME 1.0 (Hager et al.
(2000)) for the calculation of the approximate solutions of discrete-time non-linear
quadratic games. l.e., the objective function is assumed to be quadratic in the de-
viations of states and control variables from their respective desired target-values,
and will be optimized for a pre-specified period of time subject to a nonlinear
autonomous system. The extension is solely done with respect to the number of
players. Where OPTGAME 1.0 restricts the number of players to two, OPTGAME
2.0 allows the calculation of the feedback and the open-loop Nash and Stackelberg
equilibrium solutions, and the cooperative Pareto-optimal solutions for an arbitrary
number of players.

We present the discrete-time (non)-linear-quadratic dynamic game form in
Section 2, give a detailed description of the elements of the algorithm OPTGAME
2.0 in Section 3, and conclude the present paper with a short summary of the in-
sights generated in the previous Sections in Section 4.

2. The Game-Theoretic Problem

OPTGAME 2.0 approximates solutions for game-theoretic problems with a quad-
ratic objective function and a non-linear dynamic model in discrete time. Thus, for
the calculation of the non-cooperative solutions we consider the following in-
tertemporal quadratic loss functions of the players 7, (i =1...., N},

T denotes the terminal period of the finite planing horizon. Hence, the control
variables, u;(7,1) U=1...,v), are not considered in the optimization. X, de-
notes an r-dimensional stacked “state” vector consisting out of #,-dimensional
state variable (summarizing the information available about the dynamical system),
the »; -dimensional control variable accessible for player 1, the #n,-dimensional
control variable accessible for player 2, the »3-dimensional control variable ac-
cessible for player 3, etc.,



Xt
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X, = 1({+1) , F=Engt+mt..tay. (2)

UN(+1) ) g
X, (i=1...,N) denotes the r-dimensional stacked “desired targets” vector which
contains the “ideal levels” of the state and control variables for either of the play-
ers,
it

= Uil(e+1) F=ng+ R ... +thy

Xip = . L . (3)
: i=1...,N

UiN(e+1) ),y

Furthermore, the penalty matrices are defined as

Qi’; 0 0
0 Q,’E‘ 0 : F=ng+n+...+0
. i(z+1) s T N 4
Qu=| 0 .0 ©oi=1...,N “)
0 0 u
Qi) )y,

The matrices Qj, Ql.u(lm), ..., and Q;l(;vﬂ) describe the penalties for deviations of
the state variable, x;, in time period ¢, and the control variables,
Ui(r41) > UN(r+1)> I time period £+1 from their desired target values. Note that
the matrices containing the penalties for failing the desired control values are as-
sumed to have full rank.

For the calculation of the cooperative (Pareto-optimal) solution we modify
the objective functional to be

T

N
J(T) =i Ly (T)+.c+py Ly (T)= Z{MLU +o iy Ly ZH;‘ =1. (5
i1 i1

The dynamic system — which may be an economic model — is assumed to be given
by a system of nonlinear difference equations,

xp = it X ungs wapse g, 1), t=1...T, (6)

where we have the initial condition, x(0)=x(; Furthermore, y, (¢=1,...,T), de-
notes a g-dimensional vector of non-controlled, exogenous variables. f'is a vector
valued function, where f“( )(j=1,...,n,) denotes the o component of /.

The assumption of a first-order system of difference equations in (6) is not
really restrictive, as higher-order difference equations can be reduced to systems of
first-order difference equations by suitably redefining variables as new state variables



and augmenting the state vector. Also the assumption of a quadratic objective func-
tion, although of a special form, can be interpreted as a second-order Taylor-series
approximation to a more general objective function. Thus, the class of problems to be
solved by our algorithm OPTGAME 2.0 is rather broad.

3. Elements of the Algorithm OPTGAME 2.0

The algorithm OPTGAME 2.0 starts from computing a tentative path of the state
vector from the nonlinear system equations — using the Gauss-Seidl algorithm -
with a given tentative path for the control variables. Then the algorithm linearizes
the system equations at the reference values obtained before, replacing the nonlin-
ear autonomous system by a linear non-autonomous one. Then, the algorithm cal-
culates numerically the Nash, Stackelberg, and Pareto-optimal solutions of non-
linear, quadratic deterministic games (with a finite planing horizon) under open-
loop and feedback information structure following prior work from Hager et al.
(2000), Hathaway (1992), and Chow (1975).

Note that the term “OPTGAME” denotes both, the computer algorithm and
its implementation, where the implementation part consists of a set of procedures
which are implemented in the programming language GAUSS. GAUSS is a high
level matrix programming language specializing in commands, functions, and
procedures for data analysis and statistical applications. This interplay is of special
interest for the application of OPTGAME 2.0 in the field of optimal short-run and
long-run fiscal policies towards the European Monetary Union. Furthermore,
GAUSS includes a variety of routines which perform standard matrix operations,
e.g. routines to calculate determinants, matrix inverses, decompositions, eigenval-
ues and eigenvectors, and condition numbers.

Input of the algorithm for ¢=1,...,7 and i, j=1,...,N:

- length of the planing horizon T

- system function f

- initial values of the state variables x(0)=x
- path of exogenous variables not subject to control Vs

- weighting matrices of objective function Qi

- target path for state variables Xy

- target path for control variables Ujjz
Output of algorithm for ¢=1,...,7 and i=1,...,N :

- optimal path of the state variables x:

- 5types of optimal paths for the control variables u;

- quadratic loss functions evaluated along the optimal paths J; (T)



3.1 Linearization of the System Equations

In most game-theoretical models the system dynamics of the form (6) are a con-
venient starting point. For the calculation of the Nash, Stackelberg, and Pareto-
optimal equilibrium strategies, however, the state-space representation will be
more adequate. This representation does not include x, at the right-hand side of
the implicit function (6). According to Neck and Matulka (1992) and following
Chow (1975) it is easy to show how to eliminate x, in the course of a linearization
of system (6).

With the given exogenous non-controlled vector, y,, assumed tentative control
paths, #u;, (i=1,..., N), (which are determined either by historical values or by
foregoing optimization procedures), and the lagged tentative state vector, x,_;,
(starting with x(0)=x( ) the autonomous non-linear system (6) can be solved
for all ¢ using the numerical Gauss-Seidl approximation (a well-known non-
linear equation-solving method), and, thus, one derives a reference path for the
state vector over the entire time horizon. That is, that for known values of
X,_q, Uy .-, up; and y, we can compute a value x, such that

f/—f(frflr)_fzﬁlrr7721!---117/\%)’1):0: t=1..T, (7)
by straightforward application of the Gauss-Seidl technique.
Then, we linearize the vector-valued system function, f( ), numerically
around the reference values, X, ;, x;, 4y, ..., uy; , and the given reference

path y,according to the first Taylor approximation and gain the following ap-
proximate non-autonomous system equations:

N
x,:A,x,_1+ZBj,uj,+s,, t=1....T,
J=1

8)
Xy = x(O),

where we have defined the n, x ng-matrix A4,, the ng xn;-matrices B;, (for
i=1,...,N ), and the #, -dimensional vector s, , as

9
A, = ([n_\_ ~F, )1 Fy . ((] 0))
B, :=(1nS—Fx’)1FZ,M, i=1,...,N, r=1,...T,
o
So=F - AT - Y By, (1)
j=1

where [ denotes the ng x ng identity matrix. Here, and in what follows, we
require that the first and second derivatives of the system function with respect
to x;_, X, 4y, ..., Uy, S, exist and are continuos, and we use the following



abbreviations: r, ~ denotes an ng x ng -matrix where its elements are defined

() i=L...ng
(Fx/fl),'j: 0 . , t=1L..T, (12)
F, denotes an n x ng -matrix where its elements are defined by

or’ i=1...,n
(Fx/)l].:J;T’S), ) 5’ t=1....T, (13)

F,,, denotes an ng xny-matrix (k =1,...,N ) where its elements are defined

by

i -
(Fu ):af (_), l,_l""’ns, t=1...,T, k=1,...,N. (14)
ke 7y au/{l j=Ll...n

Hence, it has to be assumed that the term “ 7/ — F, ” is non-singular. The matri-
ces and vectors defied above are time-dependent functions of the reference paths
along which they have been evaluated. If these paths change, the matrices will
change too.

3.2 Computation of the Equilibrium Solutions

In a deterministic optimal control setting, the solutions obtained, e.g., by the appli-
cation of the minimum principle or the dynamic programming method, equal.
Though deterministic dynamic game models can be solved by using essentially the
same techniques as for solving deterministic optimal control models, the choice of
the solution technique determines the qualitative results of the game, i.e., the in-
formation pattern. E.g., the application of the minimum principle generates the
open-loop solutions, while the application of the dynamic programming technique
determines the feedback solutions. Hence, using the appropriate optimization tech-
nique corresponding to the desired information structure of the game yields so-
called Riccati equations which can be solved by backward integration. The termi-
nal conditions for the Riccati matrices can be defined easily as already shown by
Kendrick (1981) in control theory.

Furthermore, for the solutions derived in Sections 3.2.1 - 3.2.4 we need to de-
fine the so-called feedback matrices, G;, and g; (for i=1...,Nand t=1,....T),
which are described separately for each solution concept below. By further sub-
stitution of these feedback matrices into linear relations in the preceding state
variable, x, ;, we are able to derive the values of the optimal control variables
expressed in feedback form, u;,



N " t=1...,T,
Uy =Gix_1 +8is , (]5)
and the optimal state values, x;k ,
(16)

for each player by forward iteration, i.e. for #=1,...,T , using the initial values of
the states, x( = x(0), where

* *
xp = Kyxp+k,

N

K, =A,+ZBJ-,Gﬂ, t=1,...T, (17)
j=1
N

k=504 ) Bigo (=1,...,T. (18)
J=1

3.2.1 The Feedback Nash Equilibrium Solution

The feedback Nash equilibrium solution is generated using the dynamic program-
ming (Jacobi-Hamilton-Bellman) technique, which is discussed in Kydland (1975)
and Oudiz-Sachs (1985). The dynamic programming solution in the two-
dimensional case, i.e. N =2, is derived in de Zeeuw and van der Ploeg (1991),
Hatheway (1992) or Hager et al. (2000).

PROPOSITION 1

The solution of the feedback Nash game with N players is given by the following
procedure: Starting with the quadratic tracking form of the objective function (1)
for the terminal period =7 and proceeding by minimization of the cost-to-go
function step by step towards the initial node, the Riccati equations, H;, and #;,,
can be solved recursively backwards in time, i.e. t =77 -1,...,2,

N
r roy.
Hi() = Ky Hy K, +Q,-)E,,1) +2Gﬂ Q' Gt (19)
J=1
Hir =0jr,
N
’ — ! u; (-
hi(i-1) = K, (hyg = H gk )+ Qi?,_l)xi(t—l) + ZG][ Qi (”jiz — &t ) (20)
J=l
hir = Oir¥ir,

using definitions (17) and (1 8), yielding Riccati matrices for either of the players
i(i=1...,N), where the feedback matrices are determined by the equations
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Gy =—@ﬁ’) Bi Hi E A, (21)

Yo N
gir = _@Z' ) By, (HitEtFt _hit)+uiit ) (22)
where
-1
N -1
u; !
E, = 1+ZBJ,(QJ.,’j By H, | ,and (23)
J=1
N 1
~ u; '
F,=s, +ZBJ-,[uJ-j, +(Qﬂ’j B, hj,j. (24)
J=1
For proof see Appendix.

The solution of the equations (19) and (20) yields the Riccati matrices which
define the feedback matrices determined by the equations (21) and (22). Then
equations (15) describe a linear relation between the optimal control actions of the
players in dependence from the previous state variables. With the Riccati matrices
and the feedback matrices the system equations can be solved by forward iteration,
which determines the optimal equilibrium solution paths for state and control vari-
ables.

3.2.2 The Open-Loop Nash Equilibrium Solution

Conceptually, the open-loop Nash solution can be viewed as follows: From the
initial state each of the policy-makers chooses optimal values for her (his) controls
for the entire duration of the planing horizon under the assumption that the other
sovereign policy authorities act in a similar fashion. Policy decisions are per-
formed simultaneously by all players. Thus, in the beginning of the game each of
the players makes a binding commitment to stick to a chosen policy. As long as
these commitments hold (and by construction they do), the solution is optimal in
the sense that non of the players can improve her (his) welfare by one-sided devia-
tions from the equilibrium path. The open-loop Nash solution is generated using
the minimum principle as illustrated for the two-dimensional case, i.e. N =2, in
Basar and Olsder (1995), de Zeeuw and van der Ploeg (1991), Hatheway (1992) or
Hager et al. (1999).

PROPOSITION 2

The solution of the open-loop Nash game with N players is determined in the fol-
lowing way: Definition of the (current value) Hamiltonian function with the state
equations and the objective function for each player and appropriate differentiation
yields the adjoint equations and the necessary conditions for the control variables.



Under the assumption of a linear relation between the co-states and the states,
Riccati equations are derived which can be solved by iterating backwards in time,

Hi1)=A; Hy E A, +Q,-)E,,1)’ Hir =0ir, (25)

hi(e-1) = 4 (hig + H i E Fy )_Q;H)z"(”l)’ hir ==OirXir, (26)

yielding the Riccati matrices for either of the players i(i=1,...,N), where the
feedback matrices are determined by the equation (21) and equation (22), with
(23) and

N -1
~ u; 4
F, =5, +ZBJ-,[ujﬂ —(Qj/j B, hj,j. (24%)
J=1

For proof see Appendix.

3.2.3 The Pareto-Optimal Solutions

We will derive the Pareto solution in a similar way as the feedback Nash equilib-
rium solution in Section 3.2.1 using the dynamic programming technique with the
only difference that a convex combination of the players’ objective functions
(equation (5) with the quadratic tracking form of the objective function (1)) is to
be optimized. The appropriate application of the minimum principle, however,
would yield the optimal cooperative solution as well - as this corresponds to a
classical optimal control problem.

PROPOSITION 3

The solution of the cooperative dynamic game with N players is given by the fol-
lowing procedure: Starting with the objective function (5) for the terminal period
t =T and proceeding by minimization of the cost-to-go function step by step to-
wards the initial node, the Riccati equations, /{, and 4, can be solved recursively
backwards in time, i.c. ¢t =77 -1,...2,

2
Hyy= K H K+ P+ Gy PG, (27)
Hy = Pf, a i
B = K, (= Hik )+ P2+ Gy (P g i) (2)
hy = Pf', "

with the definitions (17) and (18), where



N N
o Pa=Yom0% BT=D 0% (29)
J=1 J=1

N
P[ : ZM]Q
J=1
N N N
Pr= Y QX Pu= D w Qi BF =) w05%, . (30)
Jj=1 Jj=1 J=1

For i=1,...,N the feedback matrices are determined by the equations

Gy = _(Pit )_lBiI’HIEIAM (3 1)
gir = _(Pi )_1 Bil’(HlEIFI - )+ (Pit )—115” > (32)
where
N -1
E=| 1+ B, (P, ) '8, 1, | and (33)
J=1

v
F, :=st+ZBjt(Pjt>IQBjt ht+ﬁjt) (34)
=1

For proof see Appendix.

3.2.4 The Feedback Stackelberg Equilibrium Solution

Another kind of non-cooperative game is the Stackelberg game. The feedback
Stackelberg equilibrium solution is derived similar to the feedback Nash equilib-
rium solution with one drastical difference, however: While the actions of the
players are performed simultaneously for feedback Nash, the players act in a hier-
archical way in a Stackelberg game. This leads to the additional consideration of
the reactions of the followers (players i=2,..., N) to the announced strategy of
the leader (player 1) which results in an asymmetric game. Of course, this constel-
lation of a single leader and N-/ followers is only one possible scenario, but it
turned out to be sufficient for the purpose of economic modeling in the field of
optimal fiscal and monetary policies towards EMU.

This kind of hierarchical game may be relevant if one of the players owns a
dominant position, i.e. the feedback Stackelberg equilibrium solution may be
imagined to be valid if the leader (player 1) announces her (his) decision rule,
u), =01\x,_1 ), whereas the followers (players i=2,...,N ) base their actions on
the current state and on the decision of the leader according to the reaction func-
tions, u;, =¢;\x,_1,uy, i =2,...,N ). (Note that the followers play feedback Nash
among each other.) The leader in turn considers the reaction coefficients,

10



Ouj, [Ouy, ,i=2,...,N), as rational reactions of the followers in the optimization
process (see, e.g., de Zeeuw (1984), or de Zeeuw and van der Ploeg (1991)).

PROPOSITION 4

The equilibrium solution of the non-cooperative Stackelberg game with a single
leader and N-7 followers is given by the following procedure: Again the principle
of dynamic programming is used to derive feedback matrices and Riccati equa-
tions which are calculated backwards in time and determined by equations (19)
and (20) — in total analogy to the feedback Nash solution. The calculation of the
feedback matrices, however, results in

N -1
. — "oy U, !
Gy =-M,| B, Hy, - E (Bt HyBj + R Oy )(Qj/) By HjEq |4y,
J=2

7

N
— ! u;: — . 1 1
gy =—M, Z(Bz lesz +le Qlt’/ j(”]jz - @7}) sz (Hther _hjl )j

Jj=2

N
— — ! U
-M,| B, (HIISI _hlz)_Qlutlullz _ZRJ: Ql/ulj,
J=2
andfor i=2,.... N,
S
Gi = —@Z” ) By Hyk, (At + BltGlt): (37)
RS
&ir = Ujit —(Q,-l," ) Biy (HyE(Fy + By gy )= hir ). (38)
where for i=2,...,N,
Ou; YL
8_” =Ry = _@z' ) Bj HyEr By, (39)
Uy
N
B, =By + Y ByRy ., (40)
J=2
-1
N
— J— ’ u;
M, =| B, H;B, ‘*Q]l;l +Z(le Q1,’/ Rjzj ) (41)

J=2

11



-1

N -1
u; '
E, = I+ZBJ-,(QJ./j By H, | ,and (42)
Jj=2
N 1
~ u; !
F,=s, +ZBJ.,[ujj, +(Qﬂfj B, hj,]. (43)
J=2
For proof see Appendix.

3.3  The Open-Loop Stackelberg Equilibrium Solution

Contrary to the feedback Stackelberg strategy, the open-loop Stackelberg game
assumes that the leader (player 1) announces her (his) strategy for the entire plan-
ing horizon. This means that all players base their actions only on the initial state,
xo. Hence, the open-loop Stackelberg equilibrium solution may be derived in
analogy to open-loop Nash — with the additional assumption of the asymmetric
information structure of the game, however. The leader makes binding commit-
ments about future policy actions, where the followers’ rational reaction functions
are taken into consideration. Note that, because the leader forces her (his) strategy
to the followers, the leader is always better off (while the followers are worse off,
respectively), compared to open-loop Nash equilibrium solution.

PROPOSITION 5

The solution of the open-loop Stackelberg game with player I as leader and play-
ers i=2,...,N as followers is given by the following procedure: Starting with the
terminal conditions

QIXT ijT Q/){/T lerflT
x X ~

= Q00 and e = PN (a)
Ong 0 0 ONTXNT

the Riccati matrices,
— =\ _
H, | =4, (I—H,E,j H, 4,+0. (45)

— = _1 _
h_y =4, (I—H,Et) [H, F,+h,}—th_l, (46)

can be solved by backward integration, where

12



N
40 0 s,+ZBﬂL7jj,
‘ =

A4, = 0 A _O , and ]?, = . 0 , (47)
0o . 0 )
0 0 4, :
0
u 1 ' Uy 1 ' uy 1 '
B 0, ) By B\ ) By - BniQyi ) Bwm
_ 1
o Byloi) B, 0 0 . (48)
uﬁ; 1 )
BniON) ) B 0 0
On On% - 9w O ¥y,
— x cee x ivs
O = Q:21 0 ) 0 . and  gf = Qz;:xzr . (49)
Ql){ft o - 0 Q/){/t)?Nt
The generalized state vector is given by
= -1 — e =
% :(I—E,H,j (A, X v E b +F,), (50)
and control is determined by
_ w Y,
uy Uy v ) Bu 0 0
~ 1 '
u u :
Lm0 ) a0 ). ()
: ) : 0 0
u u 1 '
Nt NNt 0 0 @X[}’v) BNI

For proof see Appendix.

4. Conclusions

OPTGAME 2.0, an algorithm to solve N-person discrete-time LQ games exactly
and discrete-time non-linear quadratic games approximately by means of an ap-
propriate linearization procedure, is presented in this paper as an extension of
Hager et al (2000). The application of this technique of solving intertemporal
optimization problems with an arbitrary number of decision-makers yields a real
improvement with respect to decision-making support in the field of economics.

13
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Appendix

Proof of PROPOSITION 1

To define the Riccati matrices for the terminal period we start with the quadratic
tracking forms of the objective functions, (1),

1 ’ 4 ~ 15 4 ~ [20,”.,71,
Ly =5X, QuXy =Xy QX +5 Xy Qi Xy,

in period ¢ =T, and determine the terminal conditions for the Riccati matrices,

Hi =0ir
hi = Q;“T}Z;T i=1,...,N. (42)
e =1%r O %ir

Then, the objective functions of the players 7 (i =1,...,N ), which are the cost-to-go
functions for the terminal period, may be written in the following form,

LiT :%xT’HiTxT —xT’hiT + 7, i=1...,N, (A3)
where the constants, ¢;7 (i=1,..., N), are without relevance for further calcula-
tion. The state vector in the terminal period, x7, can be derived due to the system
equations (8) by the use of the optimized state vector of the preceding period in
time, x7_y, and the control variables, u,(7_1),\z=1,...,.v ), which were optimized
the period before. Hence, the minimization starts with period 7 —1 using Bell-
man’s principle of optimality. The optimal cost-to-go functions, J i(r-1)> for time
period =7 —1 are given by the minimization with respect to u;7 (i=1,...,N):

i) = min Uir) | i=1..,N. (44)

L

To perform the minimization we have to replace the state in period 7, x7, by the
right hand side of the system equation (8), and we yield for i=1,....N,

N N

_1 E E

JI‘(T*]) = 5 A]'X'['fl + Bj/uj/ + Sr HI"/V A’['.X];l + B./-]'Z/lj]' + Sy |—
J=1 J=1
'
N
- AT'XT—I + E BjTujT + 87 I’l,'T +cir+ (AS)

J=1

+ X]‘—I’Qi(’l'—l)XT—l - X’I'—I’Qi(l'—l))?i(l'—l) + %)N(i(l’—l)’Qi(’l'—l))?i(l’—l}

15



Then, we can carry out the minimization of the cost to go function (45) with re-
spect to the controls which delivers the first-order conditions for the control vari-
ables for i =1,...,N . These conditions can be transformed and be rewritten to be

@ ) lT TxT h ) BlThT +QIT = I.ZL‘..,N. (A6)

The Nash equilibrium for the control variables, u;7 (i =1,...,N), is determined by
the intersection of the N hypothetical reaction functions (A46). With the optimal
control variables, u;7 (i =1,...,N), depending on the state variable, x;, however,
we may write xy as a linear function of the pre-period state variable x;_; using
the system equations (8). This also illustrates the evolution of the system using the
corresponding Riccati matrices. Thus, we can derive the Nash equilibrium in a
simpler way, namely by substitution of the optimal state vector x; by a function
of xp_; using equation (46) and solving for x; gives the optimized state vari-
able for the terminal period 7"as a function of xp_;:

xp = Ep(Apx_y + Fr) (47)
where

Ep = 1+Z ( oy
u 1 4
FT_ST +Z T ”]JT"'( JTj BjTth . (A9)

The replacement of the optimal state vector, x;, in (46) according to (47) with
(48) and (A49) yields the Nash equilibrium values for the controls.

-1

) Bir Hyr | and (48)

uip = Gipxp_y +gir i=1,....N, (410)

where

(Q ) By HirEr Ay (411)
__@;:T) By (Hip By Fr = h )+ Ui(r) (412)

which can be interpreted as optimal linear feedback rule for each of the players
ii=1...,N). The linear form results from the quadratic structure of the cost
function, the fact that mixed penalties are not allowed according to the definition
of the corresponding matrices, (4), and the linearity of the system equations ().
With (410) and the feedback matrices, (411) and (412), we can determine the
optimal state vector, x;, as a linear function of x7_; . Due to the definitions (17)
and (18), the optimal state vector may be expressed by

x; :KTxT—l +kT. (/“3)
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Note that from now on we omit the asterisks to simplify notation. For the deriva-
tion of the Riccati matrices of time period 7-/ we have to re-substitute the opti-
mized state vector (A13) and the optimized control vectors (A410) into the cost-to-
go function (A45), where

X7-1 X7-1 / 0
u Girxr_ + G

X = 1:7 _ 17 7:1 817 _ 37 Xy + gl:T _ (A14)
uny GyrX71 + &NT Gyr ENT

Then, we collect all terms containing x;_; and identify the Riccati matrices for
T —1 by comparison with the equation

Jl.(Til) :%xr,l Hi(rayxr-1 = X7 h,-(T,l) +Ci(r1)s i=L...,N (AIS)

to be defined as follows,

1 1
Hi(r-1) = Kr HpKp + Gle Oi(r-1) G§T . (416)
Gyr Gnr
hi(r-1) = Ky (g —Hirkr )
Iy 0 I )
- G§T Qi(r-1) g? + G§T Qi(T—l)/\N/ i(r-1):
Gnr gnr ) \Onr

System Equations, (A416) and (A17), can be solved recursively in time to obtain
the Riccati matrices for period 7-/ as a function of the Riccati matrices of the
terminal period 7. This procedure can be extended straight forward to period
t=T -2 and generalized to any other period =1 by induction. Note that the
existence and uniqueness of the solutions of the Riccati equations for all periods
tefl,...,T{ of the linear-quadratic game can readily be verified according to
Basar and Olsder (1995). O

Proof of PROPOSITION 2

The solution of the open-loop Nash game with N players is given by the applica-
tion of Pontryagin’s minimum principle (see, e.g., Basar and Olsder (1995)) to
perform the minimization of each player’s loss function, (1), subject to the system
equations, (8), the initial conditions, and the assumption that the other players act
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identically. Note that for all further calculations ¢t € {l,...,7 +1}. For i (i=1...,N)
we define the (current value) Hamiltonian function using the state equations and
the objective function for each player,

My = % (Xt—l - )?i(t—l)) Qi(r1) (Xt—l - )?i(t—l) )+

, N (418)
X | Apxig +ZBjt”jt+st s
J=1

where A; is a ng-dimensional row vector, the vector of the so-called costate
variables for player i(i=1...,N). Appropriate differentiation yields the adjoint
equations and the necessary conditions for the control variables. The costate equa-
tions may be derived by performing the derivative of the stacked state vector, (2),
with respect to the adjoint variables of each player i(i=1,..., V),

M) =4, i+ Q7 (61— Fien)) i=1...,N. (419)

Then, we derive the Hamiltonian minimizing condition. Since we know that
Ai(r+1) =V =1, V), we can express the first order conditions for the controls
as hypothetical reaction function for the players i (i=1...,N):

R ’ )
u,,:ui,,—@jj') Bi, M, i=1...,N. (420)

We assume a linear relationship between the adjoint and the optimal state vari-
ables, i.e. ;; =H;x, +h;, (i=1...,N) with the Riccati matrices 4, and #;,
respectively. The costate variables, A, (i=1,...,N), can be substituted into the
hypothetical reaction functions, (420), yielding

R
ul-, :17”'[ —@;”) Bit (Hitx, +hit ), izl,...,N . (AE])

Then, the optimal state equation follows from the substitution of (421) into (8),
where we rearrange the resulting equation with respect to x,, which is already
determined by equation (46). To solve (46), we generate the Riccati matrices for
each time period r<il,...,7T}. This can be done in the following way: Substitute
Nig=Hyx,+h,(i=1..,N) with (46) into the equations for the costates,
(A419), and rearrange them with respect to x,,q,

i(r-1) = Hiforyio + higr), i=1...,N, (422)
where

Hi1) =4 HyEL A4, +Q’_)EH): i=L..,N, (423a)

hi(—1) = Ay (H i B Fy + hy ) — Q,-T,fo’?f(f—l)’ i=1..,N,and  (424q)
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N

-1
~ u; !
Fr=sr+ E BJ-T[uJ-jT —(Qj;j By thj. (425)

J=1

Now, the Riccati matrices may be solved backwards in time. Using A;(741) =V
equations (423a) and (424a) can be determined for the terminal period as,

Hi =01, i=1..,N, (423p)
hir ==Qir¥%ir i=l...N. (424b)

After we calculated the Riccati matrices by iterating backwards in time, the opti-
mal state variable can be determined by forward iteration. For the sake of compari-
son we want to write down the open-loop solution in feedback form. This form is
already determined by equation (A410), where the feedback matrices are deter-
mined by the equations (A11) and (412). O

Proof of PROPOSITION 3

To determine the Riccati matrices for the terminal period =T we can expand the
loss function for the terminal period according to (5) with

_1 ! X ! X 1~ ! X .
Lip =%xp Qfpxp —xp Q¥ +1%7 O %y, i=1...N, (426)

in the following way,

N N
Jr =leuijT, Zl:uj 1. (427)
J= J=

In analogy to feedback Nash ,(A427) can easily be re-written — since for the termi-
nal period, =17, there are no penalties for the control variables. Then, we may
derive the terminal condition for the Riccati matrices,

hr = ZMJ'Q;T)?]T = ﬁf(, (A28)
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where we use the definitions (29) and (30). Hence, the objective function, which
is the cost-to-go function for the terminal period, may then be written in the fol-
lowing form,

JT :%xT,HTxT —xT,hT tcr, (A29)

where the constant c¢; is without any relevance for further calculation. Similar to
feedback Nash, the optimization starts at ¢ =7 — [ with the minimization of the
cost-to-go function (where we use again the definitions (29) and (30) to simplify
notation),

Jroy=Jr 45 Xl Proy Xpo =Xpoy Prog+
(&L B (430)
t3 Z Ry (1) o)X i) |-
J=1

with respect to u;7 (i=1,..., N), which delivers the first-order conditions for the
control variables for i=1,..., N, in analogy to feedback Nash. These conditions
can be solved by performing the derivative of the stacked state vector, (2), with
respect to the control variables of each player i(i=1,...,N):

N N
Bir (Hpxr —hr )+ ZM;Q?’T uir — ZHJ-Q?’T%'T =0. (431)
Jj=1 Jj=1

(431) can be solved for any control vector, u;7 (i=1,..., N ), and can be written
as (where we use again the definitions (29) and (30) to simplify notation),

up =Py B (Hpxp —hp)-Br)  i=hoN. (432)

Hence, we receive by substitution that

xy =Ep(dpxp_y + Fr) (433)
where

N -1

ET =1+ ZBJT (P]T )71 BjT,HT , and (A34)
J=1
N

FT =87 + ZB]T(P]Tyl JT hT +PjT)' (A35)
J=1

Replacement of the optimal state vector x, according to (433) with (434) and
(435) in (A32) yields the Nash equilibrium values for the controls. Since mixed
penalties are not allowed according to the definition of the corresponding matrices,
(4), the control variables of the opponents, U \J =Ll = Lit L N), do not
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occur in the corresponding equation for ;7 , and we receive a linear relation be-
tween the control variables of player i, w;p (i=1,...,N), and the state variables
x7_1 . This may be described by equation (410),

uir =Grxry +gir, i=1....N,

where
G =—(Pr)” By HrEr Ay, (436)
gir ==(Pr )" QBIT, (HrErFr —hy )- Py ) (437)

With (410) and the feedback matrices, (436) and (437), we can determine the
optimal state vector x; as a linear function of x7_;, and due to the definitions
(17) and (18) it may be expressed by equation (A421),

*
X7 = KTxT—l +kT .

We omit the asterisks from now on to simplify notation. As for feedback Nash,
also for the derivation of the Riccati matrices of time period 7-1 we have to re-
substitute the optimized state vector (421) and the optimized control vectors
(410) into the cost-to-go function (430) and collect all terms containing x7_; .
By comparison with the equation

_ 1 1 ’
Jra=5xp g Hyaxp g —xp g by +cpq, (438)

we can identify the Riccati matrices for 7-1 as

1 1
Hr =Ky HrKp + G;lT Pr_ GiT . (439)
Gyr Gyr
1 0 1
hyy ==Ky (Hpkp —hy )= Gir Pr_y giT + G;lT Proy.  (a440)
Gyr gnr) \Gnr

Equation system (439) and (440) can be solved recursively in time to obtain the
Riccati matrices for period 7-1 as a function of the Riccati matrices of the terminal
period 7. This procedure can be extended straight forward to period 1 =7 -2 and
be generalized to any other period ¢ by induction. Hence, the Riccati equations are
given by
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N

Hi =K, HK +PY + ) Gy PG Hp=Pf, (441)

Jt
Jj=1
! /v ’
By =K, (b= H ik )+ B+ G, (Py—Pugy)  hp=PF, (442)
J=1
and can be solved by backward iteration. O

Proof of PROPOSITION 4

Note, that two different optimization problems occur in the derivation of the
Stackelberg game. The first one determines the rational reaction of the followers
(players i=2,....N ), u;, =¢;\x,_1,uy, ) i=2,...,N), to the announced decision
rule, u;, = ¢1(x,_1 ), of the leader (player I). Note that the followers play feed-
back Nash among each other. The second optimization problem determines the
optimal action of the leader, given the rational reactions of the followers in form of
the reaction coefficients, ou;, /ouy, ,(i=2,....,N).

The first optimization problem

To define the Riccati matrices for the terminal period 7 we follow the calculation
of feedback Nash according to the dynamic programming principle and start with
the quadratic tracking form of the objective function (1) for the followers,

t=1,...,T,
i=2,...,N,
in the terminal period ¢ =7 . This yields, in analogy to Proposition 1, the first-

order condition for the followers with the terminal conditions for the Riccati matri-
ces,

1 ! ! ~ 1 —~ ’ i~
Lip=5X; OQuXy =X QuXig +5 Xy Qi Xip (443)

Hir =Qir
hip = O Xir i=2,...,N. (444)
Gir :%fiT OirXir

The Nash equilibrium solution for the control variables, w7 (i=2,...,N), as a
function of the control of the leader, w7, is determined by the intersection of the
N-1 hypothetical reaction functions (445). With the optimal control variables,
w;r (i=2,...,N), depending on the control of the leader, u;7, and on the state
variable, xp, in equation (A445), we may write the state variable x; as a linear
function of the pre-period state variable x;_; using the system equations (8).
Thus, we can derive the Nash equilibrium strategy of the followers by substitution
of the optimal state vector x7 (u;7 ) by a function of x;_; (u;7 ) with the equation
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VI /
Ui =y — @,ur') Bir (HiTxT - hir ) i=2,....N, (A45)

where we receive after rearranging and solving for x the optimized state variable
for the terminal period 7 as a function of the optimal control of the leader, w7 :

xp = Er(dpxr_y + Bypwyr + Fr), (446)
where
N -1 , -l
Ep=|1+ ZBJT(Q;’;j Bjr H;r| ,and (447)
=2
N u, ) '
Fp=sp+ Y By [ﬁjﬂ + (Qj;j Bjr thj. (448)
Jj=2

Replacement of the optimal state vector x; according to (446) in (445) yields
the Nash equilibrium values for the controls u,7 (i=2,...,N):

N
uip =gy —@,ui) By (Hig Ep(Arxp_y +Bypuyy + Fr)=hip ). (449)

Hence, we receive a relation between the control variables of the followers, the
announced strategy of the leader, and the state variables x;_;. This may be de-
scribed by the following equation,

wir =Wirxp +Vir + Ripuyr | i=2,...,N, (450)
where
u; 1 4 .
Wi =-\0r% ) By HirEr Ar, i=2,...,N, (451)
~ u; 1 ! R
Vip =ty =\07k ) By (Hyp EpFr —hyp), i=2,...,N, (452)
ou: _ 1 '
Ry = a”’T - —@;}) By H Ep By, i=2,..N. (452)
ur

Since the reaction coefficients for the terminal period can be solved with the reac-
tion functions of the followers as a function of the announced strategy of the
leader, and the state variables x7_;, the reaction coefficients become the deriva-
tive of (A449) with respect to w7, and are defined by equation set (452).

The second optimization problem
The objective function of the leader, which is the cost-to-go function for the termi-
nal period, may then be written in the following form,

Lir = $xp Hipxp —x7 hip +eir. (453)

23



The terminal conditions for the Riccati matrices are given by

X
HlT :err
X~
hr :QlTxlT: (A54)
1z x>
cir =5 %ir Q-

In total analogy to Proposition 1, the minimization starts with the period 7 —1
using Bellman’s principle of optimality. The crucial difference between the first-
order condition for the optimal control variable, w7, and the corresponding equa-
tion for feedback Nash is, however, the occurrence of the terms containing the
reaction coefficients, Ou,;p /0ujp (i=2,...,N), in the feedback Stackelberg game.
Solving the first order condition for the first control variable with respect to u;p
weighted by the penalty for failing the desired control value makes the functional
relationship more obvious:

N
By (Hypxp = iy )+ Opt(uyr —iyyr )+ ZRJT 0y} (ujT —uyr )= 0, (455)
J=2
where
B N
BT :BlT +ZBJTRJ.T . (A56)
J=2

We proceed to solve equation (A55) with respect to 17 by using the reaction
functions of the followers (A449) with (A450)—(452), for replacement when cal-
culating the state equations,

xp =YX | +Bruy +Z, (457)

where

N N -1

u; !

Y=A; + E ByWp=|1- E BJ.T(QJ.;j By HEr |47,  (458)
j:z j:2

N
Z=ST +ZBJTVJT =
j=2

v
o
~ u;
=s7 +ZBJ‘T(”1'1‘T —@,-T) Bir (Hir Er Fr _hiT)j’
Jj=2

and E7 is defined by equation (447)and 7 by equation (A448). For W;; de-
fined by equation (450)and V;; by equation (A51), the optimal control variable
for player 1 may be simplified written as

(459)
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uyp =Girxrg +8ir (460)

N -1
—_— —_— 14 u; u . r
Gir =—Mr| By Hyr ‘Z(BT HirBjr +R;r Q7 j(Qﬂrj Bjp HrEr |Ap Az, (461)
J=2

_— r 1 14
u; \[ u;
gir =-Mrg z (BT Hir Byt +R;r erj)(ujjT _@1'7) B;r (HjTETFT _th)j

=2
! ,(462)
N
o - BRI
~Mr| By (Hypsp —hyr )- Oy _ZRJ‘T O uyr |,
=2
1
v
— — ru
My =| By Hyp By + Oy} +Z(RJ‘T Q]]j"RjTj , (463)
=2

which can be interpreted as optimal linear feedback rule for player 1. Immediately
from (A449) follows that

N
GiT 2—@77&)7 BiT HiTET(AT +BITG1)’ i=2,..‘,N, (A64)
N
&ir =T —@?f) Bir (HirEr(Fr +Birgip )=hir), i=2,...,N .(465)

All the rest happens in total analogy to the calculation of the feedback Nash equi-
librium solution. Hence, see (A13)—(A417). 0

Proof of PROPOSITION 5

The solution of the open-loop Stackelberg game for the followers (players
i=2,...,N) is given by the application of Pontryagin’s minimum principle (see,
e.g., Basar and Olsder (1995)), because the followers play open-loop Nash among
each other. The leader in turn faces a non-classical optimal control problem be-
cause the decision-maker has to take the dynamics of the optimal decisions of the
followers (which are expressed by the costate equations) into account. Thus, from
the point of view of the leader the application of the minimum principle has to be
altered in the following way: In contrast to open-loop Nash, the leader has to con-
sider N state vectors, where the additional state vectors are equivalent to the
costate vectors of the followers. Note that for all further -calculations
refl,....T+1j.
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The first optimization problem

We define the (current value) Hamiltonian function for the followers — with the
state equations, the objective function, and the given action of the leader — ac-
cording to Basar and Olsder (1995), for i=2,...,N:

Q}/[;l:%(Xl —)?i,)Qi/(Xz _)?il

, N : (466)
+hi(r1) | A + Z B (1)t j(r+1) + 5141
J=1

where A; (i=2,...,N) are ng-dimensional row vectors, i.e. the vectors of the
costate variables for the players /=2,..., N. Analogous to open-loop Nash, ap-
propriate differentiation yields the adjoint equations and necessary conditions for
the control variables. First, the adjoint equations are derived as

’ ~ Mi(r+1) =0,
Mip = Aps1 Mi(r41) +0ii (x, = %), l_( ) (467)
i=2,...,N.
Since we know that Ai(r41) =V U=2,,09), performing the Hamiltonian mini-
mization we derive the first order condition for the actions of the follower as hy-
pothetical reaction function,

Y1 ; )
uit:u,i,—(gj;f) Bj, M i=2,....N. (468)

The second optimization problem

According to de Zeeuw (1984) the rational behavior of the followers is expressed
in terms of the costates, determined by equations (467). Therefore, the leader has
to deal with a system of state equations including the adjoint systems of the fol-
lowers. Hence, for the first player we define the (current value) Hamiltonian func-
tion according to Basar and Olsder (1995, p.371),

@74,:%(X,—)71,)’Q1,(X, _)?1’)+

N
+M(r+1) | A1 X + Bi(er1)i(r41) + Z E (41X (1) + Fran |+ (469)
Jj=2
/\/ ’ ’
+ Z M (4/+1 7\‘1'(1+1) + Q}Ct (x, - fjt ))

J=2

where Ay, is the costate variable with respect to the state vector, x;, and
Air i=2,...,N) represent the costate variables with respect to the “additional
state vectors”, A;; (i=2,...,N), and where
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~ 1 ;

Ejt :_Bit ll;’ ) Bit B l'zl,n., N . and (A70)
N

Fy=s,+) By . (471)
Jj=2

Appropriate differentiation of (469) (see Basar and Olsder (1995, p.371)) yields
the control,

B WY,
uy =ury -9 ) B Mus (472)

and the adjoint equations,

v
Mi(e-1) = A Ay + fo,_l) (xt—l - fl(r—l))Jr Z Q;(,_l)M J(t-1); (473)
J=2
Ai(r+1) =0,
and
Mie = A1) + Eihne i=2,...,N. (474)

Now we may rewrite the state equations using the equations (468) and (472) as
well as the definitions (470) and (A471):

v
1 ’ ~ ~
X, =Ax g+ Blt(”llt - @1“}) By, Mlzj+ ZEﬂM‘z +F. (475)
J=2

Finally, with the equations (467), (473), (474), and (A475) we obtain a system
of 2N coupled difference equations. N of these equations may be solved by for-
ward iteration, the remaining ones by backward iteration. To solve the system we
have to de-couple the 2N equations and specify the initial and terminal condi-
tions, respectively. This yields the system (A476):

¢ to be solved by forward iteration

X, 4 0 -~ 0 X;g E, Ey - Ey )\ E[
A |_| 0 40 N ) | B 0 - 0 || Ay K

: 0 .0 : : Do : : :
A1ne 0 - 0 4 /IJN(H) E e 0 o 0 N\ Ay 0
—_— ~ - ~ — -
X A Xt Er A 7

¢ to be solved by backward iteration
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Ai(-1) 4, 0 0 | A1
A2(1-1) 0 4, 0 | A
: : 0 0
AN(-1) 0 0 4, )\ An
%/_/ %’1—/
Ag E' A

Q=) Py = Qv | X Q1) ¥ 1(-1)

G 00 e | QiR
vy 0 0 JAen) Q™)
%/—/ —_
0’ o
where
_ N
Fomst Y i ()
J=1

Note that x, and A, can be seen as supplementary state and costate vector of the
leader, respectively. Now, we have to solve a N-point boundary problem, where
the initial condition for the state, x,, and the terminal condition for the costate,
A; , are required. The initial condition for the vector x, is already given by
xo = x(0). The missing initial conditions for Ay; (i=2,..., V) can be obtained by
the definition A;(0):=0 (i=2,...,N) according to de Zeeuw and van der Ploeg
(1991) or Dockner and Neck (1988). Hence,

X X0
%o = k}z = ? . (478)
My )y L0

The terminal condition for the supplementary costate can be defined using condi-
tions (467) and (A473),

A =0f 31 —qf . (479)

Now we proceed in analogy to open-loop Nash. We assume again that the supple-
mentary state and costate vectors are related linearly, A, = H, X, + A, , which al-
lows to derive Riccati equations to yield Riccati matrices for all periods recur-
sively backwards in time.

h =H, [Z, %+ E A, +Ej+h, (480)
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may be rearranged and solved with respect to A,. Substitution into the costate
equation yields

i = Zt’ (1 - HtEtjil (Ht A %+ H, Ft + ht)+§t{l X1 -y (481)
Consequently, the lagged Riccati matrices may be identified by

Ho =4 ([—H,E,le, 4,405, (4824)

by = Zt, (1 - HtEt)_l[Ht Ft + ht]_ i1 (483a)

The terminal conditions for the Riccati equations are determined as

x X X
QlT Q2T QNT

Hy = Q?T O Y (4825)
A
Ol ¥ir

hy = - QfoZZT : (4835)
Q;\CTT.fI\TT

Substitution into the equation for the calculation of the supplementary state vector
yields

~ -1 — = =
X =[1—E,H,j [A, X +E Ry +F,j. (484)

Finally, we summarize the derivation of the open-loop Stackelberg solution:
Starting with the terminal conditions, (4826) and (4836), the Riccati matrices,
(482a) and (A483a), can be solved by backward integration. The state as well as
the optimal control values may be calculated by forward integration as described
by equation (A484), and by

- -1
w (i) [e)'s, 0 0
~ _/ '
u u u .
e . 0 ( 2:2) By 0 (H,x, +h,). (485)
: 0 0
~ —/ !
u u
Nt ]th 0 0 (QX»;) By,
u; u; s
O’II
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