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Abstract

After the so-called Asia crisis in the summer of 1997 the �nancial

markets were shaken by increased volatility transmission around the

world. Therefore, in this paper we will analyse the daily exchange

rates in New York, Germany, and Japan for the period of 2 years

(June 21, 1996 to June 22, 1998). We estimate a VAR-GARCH in

mean model and estimate the multivariate volatility e�ects between

the time series. We are also interested in the question of whether or

not the volatility of the 3 exchange rates will feed back on the re-

turns of the exchange rates. Using the marginal likelihood criterion

for model selection we choose a VAR-GARCH-M (1,1,2,2) model. The

model is estimated using MCMC methods and the coe�cients show a

quite rich transmission pattern between the �nancial markets. Com-

paring the predictive densities we see that the VAR-GARCH-M model

produces forecasts with much smaller standard deviations.

Keywords: GARCH and VAR-GARCH-M models, MCMC models,

posterior and pseudo marginal likelihoods, model selection.
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1 Introduction

The analysis of the international �nancial system and the connection of mar-

kets have become a major topic in �nancial econometrics in recent years.

The availability of daily data and the connectedness of �nancial markets

have inspired analysis of the transmission mechanism in terms of mean and

variances between time series (see ergo Engle et al. 1990). In the present

paper we want to examine the exchange rates of Japan, Germany and the

US. We estimate a multivariate VAR-GARCH-M (short: VARCH in mean)

model to explore the relationships in the returns and the conditional vari-

ances (also called volatilities). The ARCH in mean structure is used to �nd

out if the volatilities feed back into the mean equations. Since conditional

variances can be interpreted as temporary increases or decreases in uncer-

tainty, it would be not surprising to �nd that daily returns react to the

changes in uncertainties in di�erent international markets.

For the estimation approach we have chosen a Bayesian MCMC (Markov

Chain Monte Carlo) method (see Gelfand and Smith 1990) since reliable

methods for the likelihood estimation of the VARCH-M model seem to be

di�cult to obtain in closed form (see Liu and Polasek 1999). Furthermore,

the MCMC approach allows us to introduce new concepts and to �nd exact

(small sample) results for characteristics of the dynamic process, like the im-

pulse response function or the predictive distributions.

In section 2 we introduce the basic VAR-GARCH-M model and in section 3

we present the estimation results. We show how the Gibbs sampler and the

Metropolis step for the ARCH parameters are implemented in the simulation

using the full conditional distributions. The program is available in BASEL

package (see Polasek 1998). The lag orders of the model are estimated by

the posterior marginal likelihood or the pseudo marginal likelihood criterion,

since the method by Chib (1995) is not e�ciently applicable.

The estimated model shows that there is a rich interaction pattern between

the coe�cients of the mean equation and the volatility equations. The

ARCH-M coe�cients exhibit a substantial reaction to volatilities and all

the impulse response functions have a quick decay. The predictive distribu-

tions are compared to the usual VAR approach and they show considerable

improvements. In a �nal section we conclude our approach.
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2 Estimation and model selection

The modeling of �nancial time series has been enriched by the class of ARCH-

M processes which were introduced by Engle, Lilien and Robins (1987). But

with more processes to choose from, like stochastic volatility models or heavy

tail distributions, model choice has become a more complicated problem. In

this paper we suggest using the posterior and pseudo marginal likelihoods as

model choice criteria for multivariate time series models.

The following section describes the VAR-GARCH-Mprocesses from a Bayesian

point of view (see also Pelloni and Polasek 1998).

2.1 The VAR-GARCH-M model

To describe the interactions of returns and conditional variances in a VAR

model we extend the univariate ARCH-M model of Engle et al. (1987) to

the multivariate case. Thus, we de�ne a VAR(k) model of dimensionM , i.e.,

the VAR(k)-GARCH(p,q)-M(r) model, in the following way:

ylt = �l0 +
MX

m=1

kX
i=1

�lmi ymt�i +
MX
m=1

rX
i=1

 lm
i hmt�i + ult (1)

with heteroskedastic errors ult � N [0; hlt]; l = 1; : : : ;M: The conditional

variance is parameterized as

hlt = �l0 +
MX
m=1

(
pX

i=1

�lmi hmt�i +
qX

i=1

�lmi u
2
m;t�i); (2)

where the parameters for each l are satisfying the stationarity condition

MX
m=1

(
pX

i=1

�lm +
qX

i=1

�lmi ) < 1; (3)

with all coe�cients being positive: �lm0 > 0, �lmi � 0, �lmi � 0 and m; l =

1; : : : ;M:

The equation (1) can be written as

yt = �0 +
kX
i=1

�iyt�i +
rX

i=1

	ivechHt�i + ut = �t + ut; (4)
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where yt = (yt1; : : : ; ytM)0 is an M � 1 vector of observed time series at

time t, �i (i = 1; : : : ; k) and 	i (i = 1; : : : ; r) are �xed M � M coe�-

cient matrices, �0 = (�10; : : : ; �M0)
0 is a �xed M � 1 vector of intercept

terms, �t = (�1t ; : : : ; �
M
t )0 is the M � 1 vector of conditional means and

ut = (ut1; : : : ; utM)T is an M � 1 vector of error terms.

The above model is rewritten as a multivariate regression system

Y = BX+	~H+U; (5)

where the coe�cient matrices are de�ned as

B = [�0;�1; : : : ;�k](M�( ~Mk+1)); 	 = [	1; : : : ;	r](M�
~Mr):

The regressor matrices are

X = [x0; : : : ;xT�1](T�(1+ ~Mk));
~H = [~h0; : : : ; ~hT�1]( ~Mr�T )

with

xt =

0
BBBBBBBB@

1

yt
�

�

�

yt�k+1

1
CCCCCCCCA
; ~ht =

0
BBBBBB@

vechHt

�

�

�

vechHt�r+1

1
CCCCCCA
;

and ~M = M(M + 1)=2. We now show that the conditional structure of

the proposed VARCH-M model makes the MCMC and the Gibbs sampler

convenient to apply in blocks of the parameters.

The Bayesian VAR(k)-GARCH(p,q)-M(r) model is then given by

Y � NT�M [BX+	~H; diag(H1; : : : ;HT )]; (6)

vechHt = �0 +
qX

i=1

�ivech(ut�iu't�i) +
pX

j=1

�jvechHt�j;

and the prior distributions are chosen from the families of normal distribu-

tions, hence

B � NM�(1+ ~Mk)[B�
;�B�


 IM ]; (7)

	 � NM�
~Mr[	�

;�	�

 IM ];
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where all of the hyper-parameters (which are denoted with a star) are known

a priori. The joint distribution for the data Y and the parameters � =

(B;	;A;�) is with A = (�0;�1; : : : ;�q) and � = (�0;�1; : : : ;�p)

p(�;Y) = N [YjBX +	~H; diag(H1; : : : ;HT )]

�N [BjB
�
;�B�


 IM ] �N [	j	
�
;�	�


 IM ]

�

pY
i=0

N [�ij�
�

i ;��i] �
qY

i=1

N [�ij�
�

i ;��i]: (8)

Thus, we can derive the following full conditional distributions (f.c.d.) for

the MCMC simulation process.

2.2 The full conditional distributions (f.c.d.)

a) The f.c.d. for the regression coe�cients B

The full conditional density can be written as

p(BjY; �c) = NM�(1+ ~Mk)[B��
;DB��

]; (9)

D�1
B��

= IM 
��1
B�

+ < x
0

tH
�1
t xt >;

B
��
= DB��

[vec(�B�
B
�
+ < x

0

tH
�1
t ~yt >)];

where ~Y = Y �	~H and �c = (	;A;�) denotes a vector of all parameters

save the arguments of the full conditional distribution.

b) The f.c.d. for the regression coe�cients 	

The f.c.d. is given by

p(	jY; �c) = NM�
~Mr[	��

;D	��
] (10)

with

D�1
	��

= IM 
��1
	�

+ < x
0

tH
�1
t xt >;

	
��
= D	��

[vec(�	�
	

�
+ < x

0

tH
�1
t ~yt >)]
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and ~Y = Y �BX.

c) The f.c.d. for the GARCH coe�cients

For the f.c.d. of �i and �i we use the Metropolis-within-Gibbs step with

a normal distribution which is obtained by an iteration proposal given by

vec�i � N [vec�̂i; �̂�i
];

vec�i � N [vec�̂i; �̂�i
];

and the f.c.d. is given by

p(�;�jY; �c) =
TY
t=1

N [ytj�t;Ht] (11)

with �t given in (4) and the normal distribution being proportional to

N [ytj�t;Ht] / jHtj
�1=2expf�

1

2
(yt � �t)

0H�1
t (yt � �t)g:

Note: If H = diag(H1; : : : ;HT ) is a TM � TM ,W a r�T , and V a T � k

matrix, then we de�ne the special matrix

< wtHtvt >rM�kM = (W
 IM )diag(H1; : : : ;HT )(V 
 IM )

=

0
B@

P
tw1tHtvt1; : : : ;

P
tw1tHtvtk

: : :P
twrtHtvt1; : : : ;

P
twrtHtvtk

1
CA :

2.3 Model selection

For the order selection of the VAR-GARCH-M model we suggest using the

posterior marginal likelihood of Aitkin (1991) evaluated numerically with

the MCMC output and the pseudo marginal likelihood criterion for compu-

tational reasons as in table 1.

Following Gelfand and Dey (1994) we de�ne the pseudo marginal likelihood

function via the conditional predictive ordinates (CPO's)

PsML =
TY
t=1

CPOt =
TY
t=1

f(ztjZ[t])
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with Z[t] = (y1�p; : : : ; yt; "1�q; : : : ; "t) the conditioning set and where the

CPO's can be calculated from the MCMC output f�j; j = 1; : : : ; Lg by

f(ztjZ[t�1]) '

PL
j=1[�

T
k=t+1f(zkjZ[k�1];�j)]

�1

PL
j=1[�

T
k=tf(zkjZ[k�1];�j)]�1

(12)

with

f(ztjZ[t�1];�j) = N [ztj0;H
(j)
t ]; t = 1; : : : ; T:

3 Estimation results

In this section we present model estimates for our three dimensional VAR sys-

tem. We have analyzed the exchange rates from 3 countries: The US$/DM,

US$/Yen and DM/Yen from June 21, 1996 until June 22, 1998 (see �gure 1).

The exchange rates are transformed to returns (�rst di�erences of the log-

arithms) and are perfectly collinear. Nevertheless, if contemporaneous re-

gressors are excluded, a 3-dimensional VAR-GARCH-M can be estimated,

since the conditional covariance matrix is also estimated as a parameteriza-

tion of past observations and is not freely estimated. Also, we use informa-

tive prior information of a rather simple form: B
�
= 0, 	

�
= 0:01EM�

~Mr,

A
�
= 0:01EM�(1+ ~Mp), ��

= 0:01EM�
~Mq, �B�

= 0:01I, �	�
= 0:01I,

�A�
= 0:01I, ���

= 0:01I, where I is the identity matrix and E is a matrix

of ones.

The model has been estimated using the Gibbs-Metropolis algorithm for a

Bayesian vector ARCH model. The model selection by two marginal likeli-

hood criteria in table 1 gives the same result. The stationarity of the returns

was checked by classical unit root tests and the Bayesian method as in Po-

lasek and Ren (1997).

1) US$/DM exchange rate, �rst di�erences of logs (posterior standard devi-

ations are given in parentheses)

US$=DMt = 0.079 + 0.270 U=D
�1� 1.4067 U=Y

�1 + 0.047 D=Y
�1�

(.215) (.184) (1.070) (.217)

�1.714 hU=D� 0.0608 hU=Y� 1.040 hD=Y

(1.225) (0.168) (1.126)
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2) US$/Yen exchange rate, �rst di�erences of logs

US$=Y ent = �0.015 + 0.811 U=D
�1� 0.007 U=Y

�1� 0.012 D=Y
�1�

(.165) (.607) (.190) (.117)

�0.269 hU=D + 0.532 hU=Y + 0.532 hD=Y

(.132) (.259) (.259)

3) DM/Yen exchange rate, �rst di�erences of logs

DM=Y ent = 0.072 � 0.404 U=D
�1� 0.030 U=Y

�1 + 0.440 D=Y
�1�

(.192) (.300) (.194) (.385)

�0.067 hU=D+ 0.039 hU=Y + 0.750 hD=Y

(.210) (.187) (.625)

The �rst equation shows that the returns of the US$/DM exchange rate

are negatively inuenced by their own lags and positively inuenced by the

DM/Yen returns of the last period.

The US$/Yen returns are negatively inuenced by their own returns from

the previous period. For the DM/Yen returns we �nd that the coe�cients

of all other past returns have posterior t values which are smaller than 1,

but there is a negative GARCH-M e�ect of the US$/DM volatility of the

previous period. The t ratio is close to 2 and the negative coe�cient implies

that a higher conditional variance (i.e. uncertainty) in the US$/DM returns

has a dampening e�ect on DM/Yen returns.

This interpretation of the lag 1 coe�cient structure in the 3-dimensional ex-

change rate returns model shows a simple pattern of connections. This rather

simple pattern is also present in simple decays of the impulse response func-

tions (see Hamilton 1994). While the US$/Yen returns are quite insensitive

to shocks in their own or other past returns, the impulse response functions

of the US$/DM returns and the DM/Yen returns react with opposite sign

e�ects: a positive shock in the US$/DM returns leads to a negative response

on DM/Yen returns and vice versa. Only the decay rate for shocks is di�er-

ent. Shocks in the US$/DM and DM/Yen returns culminate on the second

day and die out more slowly.

8



4 Conclusions

We have estimated a 3-dimensional model for exchange rates in the US,

Germany and Japan. We found that a multivariate ARCH-M model is better

than traditional VAR and VAR-GARCH models. We suggest estimating the

model by MCMC models and comparing them by the posterior or pseudo

marginal likelihood criterion. Both criteria point to the same model as the

best: a lag 1 order for the autoregressive component, a lag 1 order for the

ARCH-M component and a VARCH(2,2) model for the conditional variances.

The one step ahead prediction of the VAR-GARCH-Mmodel shows a smaller

variance than the VAR predictions (see table 2) and is also better in terms of

the MSE (see Polasek 1999). In summary we conclude that simple extensions

of the traditional VAR model, which incorporates volatilities as explanatory

variables, seem to play an important role in �nancial econometric models.

One hypothesis for this phenomenon is that volatilities play an important

role in the speci�cation and formulation of uncertainty for exchange rates on

a daily basis. In a further paper we report an extension of these results on

stock market returns (see Polasek and Ren 1999).
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k r p q posterior pseudo

marginal likelihood marginal likelihood

1 1 1 1 -4011.5323 -13.3142

2 1 1 1 -3827.6512 -13.6476

1 2 1 1 -3686.5379 -13.5332

1 1 2 1 -4275.6836 -13.9061

1 1 1 2 -3490.5725 -13.1242

1 1 2 2 -3153.7863* -13.1011**

2 1 2 2 -3647.5625 -13.4572

2 1 1 1 -3809.1132 -13.7971

2 1 2 1 -4011.5239 -14.0116

2 2 2 2 -4152.6732 -14.5109

Table 1: The marginal likelihood for the VAR(k)-GARCH(p,q)-M(r) model

(for y1t = US$/DM, y2t = US$/Yen, y3t = DM/Yen)
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VAR-GARCH-M VAR

mean Std. error mean Std. error

US$/DM -0.1923 0.1752 -0.2482 0.3362

US$/Yen 0.6301 0.2451 0.8583 0.4511

DM/Yen 1.2306 0.2173 1.1224 0.5263

Table 2: The mean and standard error of the one step ahead forecasts for

exchange rates returns with the VAR(1)-GARCH(2,2)-M(1) model

from June, 21, 96 to June, 22, 98
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Figure 1: Daily exchange rates for US$/DM, US$/Yen and DM/Yen from

June, 21, 1996 to June, 22, 1998, �rst row: daily exchange rates, second row:

�rst di�erences of logs.
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