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The Blanchard and Kahn’s conditions in macro-econometric
models with perfect foresight 1

Jean-Pierre Laffargue
(CEPREMAP et TEAM-CED) 2

Abstract: Many recent macro-econometric models assume perfect foresight. This choice was made
possible by the development of simulation algorithms, which are powerful and easy to use. However, the
existence and the uniqueness of a solution for these models are not warranted a priori. Blanchard and Kahn
established local conditions for these properties, which are easy to check, in terms of eigenvalues computed
at the steady state of the model. However, these conditions can only be used on linear models, with
coefficients independent of time, and with exogenous variables taking constant values after some date.
Unfortunately, macro econometric models are non-linear, their linear approximation has coefficients which
change over time, in the long run many variables grow at positive and different rates, and these models may
present an hysteresis. This paper explains how to overcome these difficulties, and apply the Blanchard and
Kahn’s conditions on this kind of models. Our results can also be applied to the study of the stability of more
traditional macro-econometric models, which assume adaptive expectations, and where the current state of
the economy does not depend on the future states foreseen by the model.

Classification JEL: C3

0. Introduction

Many recent macro-econometric models assume perfect foresight, for instance the
multinational model of the IMF, Multimod Mark 3, or the model of the European
Commission, Quest 2. This choice was made possible by the development of simulation
algorithms which are at the same time powerful and easy to use. For instance, an efficient
relaxation algorithm was implemented by Juillard (1996) in the software Dynare which
works under Gauss, and by Juillard and Hollinger in the command Stacks of Troll.
However, the existence and the uniqueness of a solution for such models are not a priori
warranted

Blanchard and Kahn (1980) established local conditions for the existence and uniqueness
of a solution, which are especially easy to check in terms of eigenvalues computed at the
steady state of the model. However, these conditions only apply to linear models, the
coefficients of which do not depend on time, and such that the exogenous variables can
be assumed to be constant after some time.

Thus, we are very far from the features of large macro-econometric models. To be able to
use the results by Blanchard and Kahn we must first require that the model determines a
balanced growth path. It is not necessary that this path represents a realistic
approximation of a recent past of future, and we know that industrialized and developing

1 The ideas developed in this paper came progressively to us while we were working to the building of the multinational
model of Cepii and Cepremap, Marmotte. Thus, they have much benefited from discussions with my colleagues of
Cepii: Loïc Cadiou, Stéphane Dées and Stéphanie Guichard. The comments by Antoine d'Autume, Michel Juillard and
Pierre Malgrange on a preliminary version were extremely helpful. This paper benefited of a grant from the
Commissariat Général du Plan. We want to thank all these persons and institution, while assuming all responsibilities
for the weaknesses of our research.
2 Cepremap, 142 rue du Chevaleret, 75013 Paris. Tel : 01.40.77.84.26. Email :jplaffarg1@cybercable.fr



06/06/00Page 2 sur 20

economies do not grow in the neighbourhood of a balanced growth path3. We just want,
for the model to be economically consistent, that he can generate after an horizon which
may be in a distant future, a reasonable balanced growth path4.

When this condition is satisfied, we can compute the linear approximation of the model
around its balanced growth path, and we can require that the solution of the model tends
to this path when time increases indefinitely. This condition will be called stability in the
absolute difference. However, some of the coefficients of the linear approximation appear
as geometric functions of time, and we cannot apply the results by Blanchard and Kahn.
However, we can apply them if we put all the variables on a common trend. If this trend
has a zero growth rate, we will say that the model has been written in reduced variables,
and that we require its stability in the relative difference. If the growth rate of the common
trend is the highest balanced growth rate present in the model, we will say that we have
written the linear approximation of the model in expanded variables, and that we require
its stability in the expanded difference. In both cases, we can apply the results by
Blanchard and Kahn. If they are satisfied for the model written in reduced variables and
for its linear approximation written in expanded variables, then the model determines a
unique solution stable in the absolute difference.

The first section presents the results by Blanchard and Kahn, with its extension to the
case of hysteresis, which was developed by Giavazzi and Wyplosz (1986). In the second
section we present a very simple example, which allows us to investigate some difficulties
which are met in macro-econometric models, but which were not considered by Blanchard
and Kahn. The third section uses a richer example: the endogenous growth model by
Lucas, which includes all the difficulties we want to face in this paper. After these two
examples we can give a complete theoretical treatment of the problem in section 4.

1. The Blanchard et Kahn's conditions: A reminder 5

A dynamic linear model with perfect foresight and with coefficients independent of time
can always be written in the following form:

(1) tttt UyCyCyC =++ +−−
2

110
1

11 , 1≥t , with 0C invertible.

To get this form we may have to introduce artificial variables to eliminate variables
appearing with a lag or a lead greater than one, and to prevent a given variable from
appearing simultaneously with leads and with lags. The endogenous variables belong to
one of the three mutually exclusive classes which follow: 1n variables appear in a
contemporary or lagged form; They are denoted as predetermined. 2n other variables

3 For example, Maddison ( 1996 ) shows that for all industrialized countries over the period 1973-1991, productive
capital increased at a faster rate than production. Foreign trade also increased faster than output, and the various sectors
of the economy exhibited very contrasted trends.
4 The horizon after which we can reasonably assume that the economy follows a balanced growth path is high, let us say
20 years for a model poor in demographic variables, much more for a model richer in this respect. Thus, the economists
who consider that a model must be Keynesian in the short term and neo-classical in the long-run, and who interpret the
long-run as the system of equations which defines the balanced growth path, may create a misunderstanding by their
readers. The neo-classical long-run, that is the horizon when all the nominal rigidities can be neglected, is a much nearer
horizon, a few years, and it has no reason to exhibit smooth dynamics. Of course, thisa fortiori implies that the
balanced growth path of the model must be neo-classical.
5 We followed in this section the presentation of our paper of 1990.
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appear in a contemporary or led form; They are denoted as anticipated. The 3n last
variables only appear in a contemporary form; They are denoted as static. These three
categories of variables constitute at time t the column vectors 1

ty , 2
ty and 3

ty . The piling

up of these vectors in the order: 2
ty , 3

ty and 1
ty defines the vector of the endogenous

variables ty of dimension: 321 nnnn ++= .

Let us denote by: 2
0C , 3

0C and 1
0C the three matrices with respectively 2n , 3n and 1n

columns. The concatenation of these matrices gives the matrix 0C : )( 1
0

3
0

2
00 CCCC = . Let

us make the change of variables: 11
tt yx = , 2

1
2

+= tt yx , 33
tt yx = , and let us denote the piling

up of these vectors in the order: 3
tx , 1

tx , 2
tx , by tx . Then, the model can be rewritten:

(2) tttt UxCCCxCxC =++ −−− )( 1
1
0

3
0

2
1

2
0

1
11 .

In general, for 1
1−tx and 2

1−tx given, equation (2) does not determine a unique value for tx :
To get this absence of uniqueness it is sufficient that some anticipated variables appear in
a led form always in the same linear combination. However, it is possible to make a series
of eliminations and transformations of anticipated variables to put the model in the case
where the uniqueness of tx is warranted6. Thus, it is not restrictive to consider, in the rest
of the section, the system, which could a priori look more specific:

(3) ttt hAxx += −1 , 1≥t .

We assume that all the static variables were eliminated; Then, the dimension of vectors

tx and th is 21 nn + , and A is a square matrix with the same dimension. The difficulty with
system (3) is that, if it is justified to assume that the initial value of the predetermined
endogenous variables: 1

0
1
0 yx = is given, we cannot make the same assumption for the

initial values of the anticipated endogenous variables: 2
1

2
0 yx = . However, it seems justified

to require that if th is permanently fixed at a constant value h , then there exists a unique
path for the endogenous variables which tends to a finite value, which is the steady state
of system (3), let be: hAIx 1)( −−= . We will see that this condition, which we will call

stability of the model, implicitly defines 2
0x .

We will assume now that matrix A can be reduced to a diagonal form7. We will denote by

1Λ the diagonal matrix of the '
1n eigenvalues of absolute values less than or equal to 1,

6 Sims (1997) and Juillard (1999) give a solution to this problem. It rests upon the computation of generalized
eigenvalues based on a generalized decomposition of Schur. Then, the variables with a lead which can be eliminated are
as many as there are infinite eigenvalues. Juillard used this method in its Gauss software, Dynare (Juillard, 1996), and
with Hollinger in the command Lkroot of Troll.
7 This means that if we have a multiple eigenvalue, we can associate to it the same number of eigen vectors as its order
of multiplicity. This assumption can be removed at the cost of a heavier presentation, which we have preferred avoiding
(see the paper by Blanchard and Kahn).
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and by 1W the matrix of dimension )( 21
'
1 nnn + of the associated left eigen vectors8. We can

deduce from (3):

(4) ÿ
=

−Λ+Λ=
t

j

jt
t hWxWxW

1
1101

'
11 .

We make assumption 1H that h is not orthogonal to any of the rows of 1W . Then, for

txW1 to be bounded, there must not exist any eigenvalues of absolute value equal to 1 in

1Λ . We define 2Λ and 2W in a similar way for the eigenvalues with absolute values larger

than 1, of number '
2n . We make assumption 2H that 22W , which is the matrix built with the

'
2n last columns of 2W , is regular, and we denote by 21W the matrix built with the other

columns of 2W . We deduce from (3):

(5) )(
1

220222 ÿ
=

−Λ+Λ=
t

j

jt
t hWxWxW .

For txW2 to be bounded, the expression between brackets must tend to zero when t

increases indefinitely, let be:

(6) ÿ
∞

=

−Λ−=
1

2202
j

j hWxW .

This condition is also sufficient, because in this case txW2 can be written:

(7) ÿ
∞

=

−Λ−=
1

222
i

i
t hWxW .

The value of 1
0x and relation (6) constraint the initial state of the economy 0x . For a value

of this vector verifying these restrictions, equations (4) and (5) determine a unique path
converging toward the steady state of model (3) (the square matrix got by piling up 1W

and 2W is regular and it can be easily checked that (3) is satisfied). For 0x to exist and be

unique, it is necessary and sufficient that: '
22 nn = .

Proposition 1 (Blanchard et Kahn (1980)). Under assumptions 1H and 2H , the necessary
and sufficient condition for equation (3) to determine a unique and stable path, is that
matrix A has as many eigenvalues of absolute values smaller than 1 as there exist
predetermined endogenous variables, and as many eigenvalues of absolute values larger
than 1 as there are anticipated variables.

8 An eigenvalue of multiple order appears in1Λ as many times as its order of multiplicity, and a basis of the space

generated by its eigen vectors appears in1W . The same rule will be used later with 2Λ and 2W .
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We can make a more general assumption than 1H , which is that there can exist

eigenvalues of absolute value equal to 1, if h is orthogonal to the eigen vectors related to
these eigenvalues. In general, this property results from exclusion relations in the
structural form of the model. So, we can require that it is satisfied for all the vectors h
having an economic meaning. Then, Proposition 1 stays valid, if we consider that 1n
represents the number of eigenvalues of absolute values less than or equal to 1. Let us
consider in 1Λ and 1W a higher part *

1Λ and *
1W and a lower part **

1Λ and **
1W , respectively

related to the eigenvalues of absolute values equal or smaller than 1. Their respective
dimensions are *

1n and **
1n . Then, txW **

1 and txW2 still tend to xW **
1 and xW2 when t

increases indefinitely. However, this property does not hold for: 0
*

10
*

1
*
1

*
1 xWxWxW t

t =Λ= .
This permanent dependency of the path relatively to its initial conditions is called
hysteresis, and characterizes some economic mechanisms9. When there does not exist
any eigenvalue equal to 1, x is unique. Otherwise, it belongs to a linear variety with
dimension *

1n . This problem was investigated by Giavazzi and Wyploz (1986). More
precisely, we get the result:

Proposition 2. Under assumption '
1H , that h is not orthogonal to any of the rows of **

1W

and is orthogonal to *
1W , and assumption 2H , the necessary and sufficient condition for

equation (3) to define a unique and stable path is that matrix A has as many eigenvalues
of absolute values less or equal to 1 as there exists predetermined endogenous variables,
and as many eigenvalues of absolute values larger than 1 as there exists anticipated
variables.

The previous results cannot be directly applied to the case of macroeconometric models
with perfect foresight. Actually, these models present the following properties: a) There
does not exist a steady state for the endogenous and the exogenous variables, but a
balanced growth path; b) On this path the various variables do not have the same growth
rate; c) The linear approximation of the model in the neighbourhood of a balanced growth
path has coefficients which change over time; d) Hysteresis does not manifest by the
identical reproduction of initial conditions over time for some variables or combinations of
variables, but by an expansion at a geometric rate endogenous to the model.

2. A simple example

In this example the model includes only one equation:

(8) ttt xyy += −1λ , 0y given, 1≥t .

ty is the endogenous variable, tx is the exogenous variable, λ is an adjustement

parameter and t represents time. We will assume that tx grows geometrically at rate g

9 We can notice that in the case of hysteresis, stability does not refer to the endogenous variables of the model, but to
the product of the eigen vectors non related to the unitary eigenvalue by the vector of the endogenous variables. As most
economists, we give in this paper to the term hysteresis a meaning which is very different from the one given by
mathematicians inspired by the theory of magnetism. The mathematical concept can have useful applications in
economics, for instance in the case of temporary interventions by the Government which tries to solve problems of co-
ordination failure or to act on irreversible decisions by private agents. These points are discussed by Amable, Henry,
Lordon and Topol (1995). The concept of pseudo-hysteresis, which will be introduced later, is our own.
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larger or equal to 1. We will also assume, until paragraph 2.3 which will investigate the
question of hysteresis, that λ differs from g . We have:

(9) t
t gxx 0= ,

where 0x is the initial variable of the exogenous variable. We easily get the expression of
the solution of the model:

(10) ttt
t ygggxy λλλ 00 )/1/(])/(1[ +−−= .

Thus, this example is limited to the case where there do not exist anticipated variables.
We can notice that Proposition 1 can be applied to this case: When there are no
anticipated variables, the convergence of model (3) to its steady state, that is its stability,
requires that all its eigenvalues are of absolute values less than 1. The specificity of this
case is that it is easy to compute an unstable solution, by a succession of recursive
resolutions from present to future. On the other hand when some variables are
anticipated, the concept of unstable solution becomes complex, and such solutions, if we
succeed in defining them, cannot be easily computed by the usual softwares. This
example will allow us to investigate in a simple way the concept of stability in an economy
where variables grow permanently.

2.1A definition of stability in absolute difference

We will start by defining a balanced growth path of rate g , tY , by using the steady-state
model:

(11) t
tt gxgYY 0/ += λ , 0≥t

The solution of this equation is:

(12) )/1/(0 ggxY t
t λ−= .

The difference between the path effectively followed by the economy and the balanced
growth paths is:

(13) tt
tt ygxYy λλλ 00 )/1/( +−−=− .

We will say the model to be stable in the absolute difference when this difference tends to
zero when time increases indefinitely. Thus, a necessary and sufficient condition of
stability is: 11 <<− λ .

An interesting case is when the eigenvalue of the model λ is exactly equal to 1,
with: 1>g . Then, the balanced growth path of the economy tY exists and is defined

without ambiguity. However, the effective path ty differs from it by an amount which
remains constant over time and which depends on the initial state of the economy:

0000 )/11/( Yygxy −=−− . As the balanced growth path of the economy exists and is
unique, and as the effective path of the economy differs from it by an amount which
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becomes relatively smaller and smaller over time, we will not call this property hysteresis.
However, we can define pseudo-hysteresis as the existence of unitary eigenvalues in the
model written with its original variables.

2.2. A definition of stability in relative difference

To introduce this second definition we must start by rewriting the model in reduced
variables. To do that we define the endogenous reduced variable:
(14) t

tt gyy /' = .

The exogenous reduced variable is 0x . The model in reduced variables can be written:

(15) 0
'

1
' )/( xygy tt += −λ , 0

'
0 yy = given, 1≥t .

The steady state of the model is 0Y defined by equation (11) applied at time zero. We will

say the model to be stable in relative difference if 0
' Yyt − tends to zero when time

increases indefinitely. Thus, a necessary and sufficient condition for stability is:
1/1 <<− gλ . This condition can be expressed as the requirement for the eigenvalue of

the transition matrix of the model written in reduced variables, to be of absolute values
smaller than 1.

The second condition of stability is less strict than the first. It is also the one which is
usually applied to theoretical models of growth where it is frequent to work with models
written in reduced variables. The case when: g<< λ1 , corresponds to a model where the
absolute difference between the effective path and the balanced growth path increases
indefinitely over time, but where the relative difference tends to zero. If: 1=λ , the
absolute difference remains constant, but the relative difference tends to zero. Thus, we
will extend our previous definition and call the situation when the model is stable in
relative difference and unstable in absolute difference, that is the case when: g<≤ λ1 ,
pseudo-hysteresis.

We can notice that the stability in the absolute difference requires that: tt Yy − tends to
zero when time increases indefinitely. This stability in the relative difference requires that
it is to t

tt gYy −− )( to have this property. Then, we can notice two things. First, we could

define an intermediary stability where it is: t
tt gYy −− ,)( , with : gg << '0 , which tends to

zero. We could express this requirement by the fact that tt Yy − must be of an order

smaller than tg , when t tends to infinity. Secondly, the stability in the relative difference
reduces the variables to a zero trend, which comes to put them on a common trend when
they follow different trends in their original forms. In this last case, the stability in the
absolute difference does not use this adjustment to a common trend and concerns
variables which grow at different rates. Then, it is natural to consider another fixation to a
common trend which is the highest balanced growth path present in the model. Then, we
expand the variables having a smaller long run growth rate. The stability of the model
written in this last way will be called stability in the expanded difference. The convergence
in the relative difference is then a necessary condition for the convergence in the absolute
difference, and the convergence in the expanded difference is a sufficient condition.
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When the model is stable in the relative difference and unstable in the expanded
difference, we will say that it presents a pseudo-hysteresis.

2.3. The case of hysteresis

Until now, we have assumed that the adjustment parameter λ was different from the
growth rate of the exogenous variables g . Now, let us assume that these two parameters
are equal. Then, the model can be written:

(16) t
tt gxgyy 01 += − .

The solution of this equation is:

(17) tt
t gygtxy 00 += .

The steady-state model can be written:

(18) t
tt gxYY 0+= .

In the case where 0x is non zero, this model has no solution. In the case where 0x is zero,
this model has an infinity of solutions. Then, the steady-state model does not define a
reference balanced growth path relatively to which a concept of stability could be given.
The model written in reduced variables has for solution:

(19) 00
' ytxyt += .

For 0x non zero, the model diverges linearly, and the effect of the initial value of the

endogenous variable 0y stays eternally present. If 0x is zero we have:

(20) 0
' yyt = , and: tt

t ygyy λ00 == .

Then, the model written in its original form has an eigenvalue equal to g . In its reduced
form it has an eigenvalue equal to 1, and we find again the definition of hysteresis given in
section 1.

3. A complete example: The Lucas model

3.1. The model

The model of endogenous growth by Lucas10 is much richer than the previous model, has
the advantage of having an economic meaning and includes all the technical ingredients
which are met in large macro-econometric models: Different balanced growth rates for the
different variables, predetermined and anticipated variables, hysteresis. Certainly, the
economic mechanisms which are included are fairly different from those present in large
macro-econometric models. In general, these last models assume exogenous real growth

10 A good reference for this model is chapter 5 of the book by Barro and Sala-I-Martin (1995). These two authors
present the model in its time-continuous version, which has the advantage of simplifying some computations.
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rates and the hysteresis property they may have is relative to prices and not to the level of
activity. However, these differences are secondary for our purpose, which is to give an
example richer than the previous one. The two basic equations of the model are:

(21) αα −
−−− +=+ 1

111 )( tt
t

tttt HugAKKKC

(22) 11 )1( −− −+= tttt HuBHH

There are two production factors: Physical capital tK and human capital tH , the
depreciation rates of which are assumed to be zero. The output of physical commodity is
determined by a Cobb-Douglas production function, and is allocated between the
accumulation of physical capital and consumption tC . We will differ of the original model
by Lucas by introducing an exogenous technical progress in the production function of
physical commodity, specified by the trend tg , with : 1>g . Human capital is produced
only with human capital. Its quantity available at period t is allocated between the
productions of physical commodity and of human capital, in the proportions tu and tu−1 .

The optimization criterion of the households is: ÿ
∞

=
+

0

)log()1(
t

t
t Cρ . As there are neither

distortions nor externalities on markets, the economic equilibrium is identical to the
optimum, and it suffices to maximize the households' criterion under the constraints of
equations (21) and (22). We get the first order conditions:

(23) ααρ −
+

+
+ +=+ 1

1
1

1 )/(1/)1( ttt
t

tt KHugACC

(24) ααρ −
−−+

−
+ +=+ 1

111
1

1 )]//()/[()1(/)1( tttttttt HuKHuKgBCC

The model has four equations and four endogenous variables: 1+tC , tH , tK , 1+tu . tH and

tK are predetermined variables, the initial values of which are given. 1+tC and 1+tu are
anticipated variables. Then, we notice that, with a change of variables, we can
decompose this dynamic system into two blocks, which can be solved successively. To do
that we introduce the variables deflated by human capital:

(25) ttt HKk /= ttt HCc /= ,

The first block of dynamic equations is:

(26) αα −
−− +=+−+ 1

11 )())](1(1[ t
t

ttttt ugAkkkcuB

(27) αααρ −
+

+
+ +=+−+ 1

1
1

1 )(1/)1)](1(1[ t
t

tttt ugAkccuB

(28) ααρ )]//()/[()1(/)1)](1(1[ 11
1

1 ttttttt ukukgBccuB −+
−

+ +=+−+
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This block determines the dynamics of variables 1+tc , tk and 1+tu . tk is a predetermined

variable the initial value of which is known, 1+tc et 1+tu are anticipated variables. The
second block is limited to equation:

(29) )1(1/ 1 ttt uBHH −+=−

3.2. Analysis of the first block of equations

The first step of the analysis is the computation of the balanced growth path generated by
this block: 1

1
+

+ = t
t gcc , t

t gkk = , uut =+1 . We notice that the two first variables grow at a
geometrical rate, and that the third remains constant. This diversity in the trends followed
by the various variables is a characteristic of large macro-econometric models, which was
lacking in the previous example. We easily get the three expressions:

(30)
)1(

)1(

ρ
ρ

+
+=

B

B
u

(31)
)1/(1

1)1(

)1(
α

α
ρ

ρ
−

�
�

�
�
�

�
+−+

+=
Bgg

A

B

B
gk

(32) ]
)1(

)1)(1(
1)[/(

gB
kc

+
−+−−+= αραρα

To have: 10 ≤≤ u , we must assume: B≤ρ . The second step is the computation of a
linear approximation of the model in the neighbourhood of the balanced growth path. We
denote by a ^ the difference between the effective value taken by a variable and its
balanced growth path at the same time. We get:

(33)
)/ˆ/ˆ()/()1(

]ˆ)1/(ˆˆ)[/)](1/()1[(ˆ)1/(

1
11

1
1

kkguukugA

kgkckgcgkgBukcBg

t
t

t

t
t

t
t

t
t

t

−
+−−

−
+−−−

−−

=+−+++++−
αα

ρ

(34)
)/ˆ/ˆ()/()1(

)1)(/ˆ/ˆ/ˆ/ˆ(

1
1

11
1

kkguukugA

gBuuuukkgkkg

t
t

t

ttt
t

t
t

−
+

−

+−
+−−

−−

=+−+−
αα

(35)
)/ˆ/ˆ/ˆ/ˆ(

/ˆ/ˆˆ)]1/()1([

11
1

1
1

uuuukkgkkg

ccgccguBB

ttt
t

t
t

t
t

t
t

t

+−
+−−

−
+

−−

−+−

=−+++−

α

ρ

We notice that we can define several concepts of stability of the model. The most natural
is to require that each variable tends to its balanced growth path value when time
increases indefinitely, that is: 0ˆ,ˆ,ˆ 11 →++ ttt ukc when ∞→t . For the two first variables, the
convergence is to a path which grows at the geometrical rate: 1>g , but for the third
variable the convergence is to a fixed value. In the previous section we called this
property, stability in the absolute difference. The problem with this concept is that the
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dynamic linear system of the equations (33), (34) et (35) is non autonomous relatively to
time, or more precisely that it has some coefficients which decrease geometrically over
time. Thus, we cannot use the results by Blanchard and Kahn and get local conditions for
the existence and uniqueness of a solution in terms of eigenvalues computed at an
equilibrium state. There exists at least two natural ways to overcome this difficulty.

The first consists in requiring that the variables, corrected of their balanced growth trend,
that is the reduced variables, tend to the initial value of their balanced growth path. The
reduced variables of the linear approximation of the model are:

1
'

1
1'

1 ˆ,ˆˆ,ˆˆ +
−

+
−−

+ == tt
t

tt
t

t ukgkcgc , and we require that they all tend to 0 when t increases
indefinitely. The system, rewritten in reduced variables is:

(36)
)/ˆ/ˆ()/()1(

]ˆ)1/(ˆˆ)[/)](1/()1[(ˆ)1/(
'

1
1

'
1

''

kkuukugA

kkckckgBukcBg

tt

tttt

−
−

−

−−

=+−+++−++−
αα

ρδ

(37)
)/ˆ/ˆ()/()1(

)1)(/ˆ/ˆ/ˆ/ˆ(
'

1
1

1
'

1
'

kkuukugA

gBuuuukkkk

tt

tttt

−−

=+−−+∆−

+
−

+−

αα

δ

(38)
)/ˆ/ˆ/ˆ/ˆ(

/ˆ/ˆˆ)]1/()1([

1
'

1
'

''
1

uuuukkkk

ccccuBB

tttt

ttt

+−

+

−+−

=−++−+−

α

δρ

The second solution consists in expanding the variables of the model, which means giving
them as common trend the highest balanced growth rate of the model g . Then, we
require that these expanded variables tend to their balanced growth path. The expanded

variables of the linear approximation of the model are: 1
1"

11 ˆˆ,ˆ,ˆ +
+

++ = t
t

ttt ugukc , and we require
that they tend to zero when t increases indefinitely. The system rewritten in expanded
variables is:
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The second stability condition is stricter than the first, and this explains why the two
dynamic systems which are related to them are different. For the system written in

reduced variables, we get a first eigenvalue equal to:
Bgg

Bgg

++−
+−−−

α
α

1

)1)(1(
1 . We easily see

that this value is included between 0 and 1. The two other eigenvalues are equal to 1 plus
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the roots of the equation in λ : 0/]/)1/([2 =+++− kckckc ρρλ . We can easily see that

these roots are real and positive. More precisely, their product is equal to kc /ρ and their

sum to kckc /)1/( ++ρ . As there are as many eigenvalues larger (smaller) than 1 as
there exist anticipated (predetermined) variables, the Blanchard and Kahn's conditions
are satisfied and the Lucas’s model has a unique solution (according to the criteria of the
stability in the relative difference). We can easily show that the eigenvalues of the system
written in expanded variables are equal to the previous eigenvalues time g . The growth
rate g should take a very high value to have the three eigenvalues higher than 1, and to
reach the conclusion that the Lucas’s model has no solution according to the criteria of
the stability in the expanded difference. We recall that this situation was denoted pseudo-
hysteresis.

To define a stability which can be associated with an autonomous linear dynamic system
to which we can apply the results by Blanchard and Kahn, we adjusted all the variables of
the model to a common trend. In the first case this trend had zero growth rate, in the
second case its growth rate was the highest balanced growth rate present in the model.
Of course, we can choose a rate intermediary between these two last values.

We must point here to a tricky element of our results. The eigenvalues associated with the
stability in the expanded difference are greater than the eigenvalues associated with the
stability in the relative difference. The Blanchard and Kahn's conditions require the first of
these eigenvalues to be smaller than 1, and the two others to be greater than 1. This last
requirement is severer for the stability in the relative difference than for the stability in the
expanded difference, that is for the less strict stability criteria. The solution to this
apparent contradiction is simple. If the conditions of Blanchard and Kahn are satisfied for
the model written in expanded variables, the solution of the model stable in the expanded
difference a fortiori satisfies the stability in the absolute difference. However, it is possible
that other solution paths of the model satisfy this less strict stability condition. A fortiori all
these solutions satisfy the stability in the relative difference. Thus, if for the model written
in reduced variables the Blanchard and Kahn's conditions are still satisfied, there can only
exist one solution path of the model which is stable in the absolute difference. In
conclusion, the satisfaction of the Blanchard and Kahn's conditions for the model written
in reduced and in expanded variables is a sufficient condition for the existence and the
uniqueness of a solution stable in the absolute difference. In heuristic terms, the stability
in the expanded difference warrants the existence of a solution and the stability in the
reduced difference implies its uniqueness.

More generally, if in macro-econometric models the Blanchard and Kahn's conditions are
satisfied by the model written in expanded variables but not in reduced variables, this
implies that there exists an infinity of solutions, stable in relative differences. If the
Blanchard and Kahn's conditions are verified for the model written in reduced variables,
but not in expanded variables, this implies that there does not exist any solution stable in
the expanded difference. We could continue to call pseudo-hysteresis these two
situations. However, the meaning of the concept would become a bit fuzzy then.

3.3. Analysis of the second block of equations and conclusion on hysteresis

This block is limited to equation:
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(29) )1(1/ 1 ttt uBHH −+=−

In the long run tu tends to its steady state u , and the right-hand side of equation (29)
tends to: )1/()1( ρ++ B , which is the last eigenvalue of the model. As we have assumed
condition: B≤ρ , we deduce that the growth rate of human capital is non negative in the
long run. We can notice that we are in a situation of hysteresis: Human capital eternally
depends on its initial value. This dependency is transmitted to other variables of the
model written in its initial form, more precisely to physical capital and consumption. What
is new is that human capital, which is the variable at the origin of hysteresis, has a positive
long run growth rate which is determined by the steady state of the first block of equations
of the model, which means that it is endogenous. In a more elaborated model we could
make it sensitive to economic policy.

We could have analysed the Lucas’s model in a more direct way, by computing the
balanced growth rates of all the original variables in the model. These rates would of
course have depended on the solution of the steady-state model. Then we would have
rewritten the model in reduced variables. We would have got an eigenvalue equal to 1,
resulting from the property of hysteresis, and we could have applied Proposition 2: Two
eigenvalues smaller or equal to 1, and as many predetermined variables. We should have
had to check the orthogonality of the eigen vector associated with the unitary eigenvalue,
with the right-hand side of equation (3). If we had worked with expanded variables, the
previous unitary eigenvalue would have become equal to the highest balanced growth
rate in the model g .

Most of the endogenous growth model can be analysed in a way similar to the one
presented here. However, large macro-econometric models generally assume that growth
is exogenous. However, they often present an hysteresis which has many similarities with
the one which was investigated here. A model of a closed economy has an inflation rate
which is determined in the long run by the monetary rule followed by the Central Bank.
Quite frequently, this is the case for the rules put by Taylor and Furher and Moore, it links
a nominal short-term interest rate to inflation rates and to indicators of the level of activity.
Thus, the steady state of the model determines the inflation rate, but leaves undetermined
the price level11. Over time this last variable will remain dependent on its initial value.
Thus, we are exactly in the situation of the Lucas’s model if we substitute the endogenous
real growth rate by the inflation rate, and human capital by the price level. Then, the first
block of equations determines variables expressed in volumes and the inflation rate. The
second block determines the price level and the variables expressed in value. A model of
an open economy will have the same property if the exchange rate is flexible, which will
prevent the price level from being determined in the steady state by exogenous foreign
prices. A multinational model where the rules of monetary policy would be relative to rates
and not to levels, would have the same property of hysteresis: The number of price levels
and consequently of exchange rates minus 1, undetermined in the steady state, would be
equal to the number of monetary policy rules expressed in rates12.

11 Giavazzi and Wyplosz (1985) give an example of this kind of hysteresis. The result that the price level is
undetermined when monetary policy sets the nominal interest rate, comes back to Wicksell at the beginning of the
century. Juillard (1999) investigates in a systematic way this kind of hysteresis for several monetary policy rules.
12 Béraud (1998) gives another example of hysteresis. She considers a neo-classical economy of two countries. Each
country has specific utility and production functions. Both of them have the same discount rate and the international
capital market is perfect. A first block of equations of the model determines the path followed by all the world
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4. Theoretical analysis

A perfect foresight model can be written13:

(42) 0),,,( 11 =−+ tttt xyyyF , 0y given.

F is a vector of n equations, y is the column vector of the n endogenous variables, x is the
column vector of the m exogenous variables (which can include time). At time t, the model
determines the current values of the endogenous variables ty in function of the values of
these variables which are anticipated for the future or which were observed in the past,

1+ty and 1−ty , and of the values of the exogenous variables tx .

We will assume that this model can determine a balanced growth path. To get this
property we assume that there exists two diagonal matrices g and h , with respective

dimensions nand m , such that for all vector x belonging to a subset Ω of mR , there
exists (at least) a vector y of nR , satisfying:

(43) 0),,,( 11 =−+ xhygygygF tttt ,

g and h are the vectors of the growth rates of, respectively, the endogenous variables and
the exogenous variables. These rates are assumed to be equal or larger than 1. The initial
values of the balanced growth paths of the endogenous and exogenous variables are
related by:

(44) 0),,,( 1 =− xygygyF .

),( yx will be called a steady state of the model14 and ( s
t

s
t yx , ) = ( ), ygxh tt will be a

balanced growth path. We can see that the existence of a balanced growth path requires
that equation (44) has a solution for all Ω∈x . We will assume that this solution y belongs

to a subset Φ of nR . But it is also necessary for function F to exhibit a homogeneity
property implying that relation (43) is satisfied when equation (44) is verified. This property
can be written:

(45) ),,,(),,,( 111 xygygyFxhygygygF tttt −−+ ≡

for all Ω∈x and y solution of (44).

aggregated variables and the allocation of production between the two countries. Hysteresis appears in a second block
of equations which determines the distribution of the ownership of the world capital between the two countries, and
consequently, the distribution of consumption. These distributions will permanently depend on the initial state of the
economy. This hysteresis is absent from multinational models Quest 2 and Multimod Mark 3, but we do not know
which features of these models are responsible for the disappearance of this property, which seems to us rather robust.
13 The result that we can write under this form a very general rational expectations model, when the random shocks are
small enough so we can approximate the expected value of a function by the function of the expected values of its
variables, was proven by Broze, Gouriéroux and Safarz (1989) and Laffargue (1990).
14 In the case of hysteresis there exist several solutions. We choose one of them in an arbitrary way.



06/06/00Page 15 sur 20

Let us denote by '
1F , '

2F and '
3F the matrices of the partial derivatives of F relatively to

the vectors of the endogenous variables appearing respectively without lead and lag, with
a lead and with a lag. More precisely, '

1F represents a square matrix with dimension n , the
rows of which refer to equations and the columns to the contemporaneous endogenous
variables relatively to which the derivation was computed. '

2F and '
3F are defined in the

same way, but for the variables appearing respectively with a lead or with a lag. Let us
now compute a linear approximation of model (42) in the neighbourhood of a balanced
growth path:
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We deduce from this expression a first definition: The stability in the absolute difference is
the tendency of every endogenous variable of the model to its balanced growth path value
when time increases indefinitely:

0→− s
tt yy , when ∞→t

This definition gives the justification of the most natural way to simulate the model. Model
(42) represents a system of finite difference equations with initial conditions (on the
predetermined variables) and with final conditions (on the anticipated variables). We
select a time horizon long enough and we choose as terminal conditions at this horizon
the equality of the anticipated variables to their balanced growth values. Then, we can use
the usual algorithms developed to solve this kind of mathematical problem.

However, in linear approximation (46), the matrices of the coefficients depend on time, so
we cannot use the results by Blanchard and Kahn15. To be able to use these results we
must first strengthen the homogeneity property (45), in a way which does not look
restrictive from a practical point of view. Then, we impose condition:

(47) ),,,(),,,( 13
1

2113
1

2
1

1 xygygyFkxhygygygF ttttt −−+ ≡ ,

1≥∀t , Φ∈∀ 321 ,, yyy and Ω∈∀ 1x ,

where k represents a diagonal matrix of dimension n .

15 Malgrange (1981) had already noticed this difficulty. More precisely, he proved that the dynamic system (46) has
eigenvalues which remain constant over time, and he shows on an example that these values can give very mistaken
indications for stability. He also proved that the requirement of the tendency to zero of the relative differences of the
variables to their values of balanced growth, is equivalent to the stability in the relative difference which will be defined
later.
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This property of homogeneity has interesting implications. Let us differentiate identity (47)
relatively to 1y , 2y and 3y , for: 1=t . We get identities:
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Then, the linear approximation (46) can be rewritten, after simplifying by tk :
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We can deduce from this expression new definitions of stability. For the first, in the
relative difference, we define the vector of the reduced endogenous variables by:

t
t

t ygy −=' . Then, equation (51) can be rewritten in reduced variables:

(52)
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Stability is defined as the convergence of the vector of the reduced endogenous variables
to the steady state. The matrix of the coefficients does not depend on time any more, so
we can apply the results by Blanchard and Kahn. A remark, which has interesting practical
consequences, is that relation (51), which is the writing in reduced variables of the linear
approximation of the model computed with its original variables, can also be obtained as
the linear approximation of the model directly written in reduced variables. To show that
let us define the vector of the reduced exogenous variables by: t

t
t xhx −=' . Then, model

(42) can be rewritten:

(53) 0),,,( ''
1

1'
1

1' =−
−

+
+

t
t

t
t

t
t

t
t xhygygygF ,

and, if we use the homogeneity condition (47):

(54) 0),,,( ''
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The linear approximation of this equation is identical to equation (51).

For another definition of stability, in expanded difference, we must first introduce the
diagonal matrix of dimension n , with generic element the highest balanced growth rate
among those appearing in matrix g . We denote this matrix as maxg . We multiply equation

(51) by tgmax , and we define the vector of expanded endogenous variables by:
'

maxmax
"

t
t

t
tt

t ygyggy == − . Stability requires that these expanded endogenous variables
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converge to their balanced growth path ygt
max . We see that this condition is stricter than

the previous one, and we recall that we called pseudo-hysteresis the case when the
model had a unique solution with the stability in the reduced difference, and no solution
with the stability in the absolute difference. Then, the linear approximation of the model
can be written:
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This time yet, the matrix of the coefficients does not depend on time, and it is possible to
use Blanchard and Kahn's results. It is interesting to notice that equation (55) cannot be
considered as the linear approximation of the model written in expanded variables, except
if we strengthen the homogeneity condition (47).

We show in the Appendix that the eigenvalues of the linear approximation of the model
written in expanded variables are equal to maxg times the eigenvalues of the model written
in reduced variables. Thus, we can observe that the satisfaction of the Blanchard and
Kahn's conditions is not easier for one or the other kind of stability. When we go from the
stability in the relative difference to the stability in the expanded difference we reduce the
possibility of the non existence of a solution path, but we increase the possibility of the
existence of an infinity of solutions. As we saw in the previous section, if the Blanchard
and Kahn's conditions are satisfied for these two stabilities, the properties of existence
and uniqueness is warranted for the case of the stability in absolute difference16.

The possibility of hysteresis raises a new problem at the level of the simulation of the
model. In this case, the balanced growth path is no more unique, and we have an infinity
of available terminal conditions for some of the anticipated variables. In general, only one
of these terminal conditions is compatible with the initial conditions of the economy, but
we do not know which. We can overcome this difficulty at the level of the writing of the
model. Let us assume, for example, that the model builder considers as a possibility an
hysteresis on the prices level, but not on the inflation rate. This means that the balanced
growth path of prices is undetermined, but not the one of the inflation rate. Then, we can
substitute all the led prices variables by the product of their current values by led inflation
rates. By selecting at random a balanced growth path among all those which are possible,
we do not introduce any error on the terminal conditions of the anticipated variables which
are present in the model, and we can use the standard algorithms which were developed
to solve the systems of finite difference equations with initial and final conditions.

An interest of the stability in the relative difference is that hysteresis is characterized by
eigenvalues equal to 1. We will still have to check that the number of associated eigen
vectors is equal to the order of multiplicity of the unitary eigenvalue, and are orthogonal to
the right-hand side of the model written as equation (3). Then, we can apply Proposition 2.
In the case of the stability in the expanded difference, things are a little more complicated.
We first have to write the model such that any variable which could present an hysteresis

16 We have met a situation where the linear approximation of the model written in reduced variables has less
eigenvalues larger than 1 than lead variables, and where the linear approximation of the model written in expanded
variables has more eigenvalues larger than 1 than lead variables. In these situations, sometimes we could compute a
unique solution path for the model written with its original variables, sometimes there did not exist any solution or there
existed an infinity of them.
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does not appear with a lead. Then, we can apply Proposition1, but without taking into
account the eigenvalues equal to maxg .

The multinational model Quest 2 is written in reduced variables. So, it is very easy to
compute its eigenvalues with the Lkroot command of Troll. We get the result that the
model does not present any hysteresis and that the Blanchard and Kahn's conditions of
Proposition 1 are satisfied. Things are more complicated with model Multimod Mark 3.
This model is written with variables in their original form, and it is solved under the
condition of stability in the absolute difference. The checking of Blanchard and Kahn's
conditions for the stability in relative and expanded differences are sufficient conditions for
the existence and uniqueness of a solution path. However, the checking of these
conditions requires the rewriting of the equations of the model in reduced variables, what
we have not done. However, we were able to prove that for the model written in reduced
variables, we have an eigenvalue equal to 1, with multiplicity equal to the number of
countries, let be 9. This hysteresis concerns the price level of these countries, and
consequently their exchange rates.

5. Conclusion

In this paper we have explained how we can use the local conditions of Blanchard and
Kahn to investigate the existence and the uniqueness of the solution of macro-
econometric models of large size. To do that we have had to overcome the following
difficulties: The model is non linear, its linear approximation gives coefficients which
change over time, in the long run many variables grow at positive rates which differ
between them, and finally the model may present an hysteresis. We have introduced the
notion of stability in the absolute difference, which is most natural but which does not
allow the application of Blanchard and Kahn's conditions. Then, we have defined two
other notions of stability which are consistent with the application of the results by
Blanchard and Kahn: The stability in the relative difference and the stability in the
expanded difference. If the Blanchard and Kahn's conditions are satisfied for these two
stabilities, then the model has a unique solution under the condition of stability in the
absolute difference. Our results can also be applied to the analysis of the stability of more
traditional macro-econometric models where expectations are of an adaptive kind, and
where the current state of the economy does not depend on its future states which are
foreseen by the model.
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Appendix

We consider the case where there does not exist any static variable and we use the
notations of section 1. The model written in reduced variables is
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where 1g et 2g represent the diagonal matrices of the balanced growth rates of
respectively the predetermined and the anticipated variables. Let us put:
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Then, the model in reduced variables can be written:
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The model in expanded variables is:
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It can be written:
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Let us denote by λ an eigenvalue of system (A3) and by ][
2

1

V

V
the associated eigen vector,

the two components of which respectively correspond to 1
tx et 2

tx . Then, we can easily

show that we can associate to λ the eigenvalue λmaxg and the eigen vector ][
2max

1

Vg

V
of

system (A3).


