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1. INTRODUCTION

The purpose of this paper is to describe a numeri-

cal method capable of solving a class of stochastic

optimal control problems, which includes portfolio

management. The paper draws the idea of solving

a continuous �nite-horizon stochastic optimal con-

trol problem as a Markov decision chain from [7]

and [6]. In this paper, the weakly consistent Euler

discretisation scheme, used for the approximation
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of the stochastic process, and a scaling in the

policy space have greatly improved the solutions,

relative to those reported previously.

Optimal portfolio management can be modelled

as a stochastic optimal control problem. One can

usually solve a problem of this class by solving the

Hamilton-Jacobi-Bellman (HJB) equation. This

is a complex procedure in any case. Often this

equation analytically insoluble and a numerical



method has to be applied. 1 This involves a dis-

cretisation scheme.

The Kushner [9] approach is an eÆcient discreti-

sation scheme, in which the state-space and time

steps remain related. An implementation of this

approach to in�nite horizon decision problems has

been successful even in the case of stochastic dif-

ferential games [3].

In [8], [7] and [6] a simple approach was intro-

duced that produced numerical solutions to a

few �nite-horizon stochastic optimal control prob-

lems. Instead of looking for a solution to the HJB

equation, as in the Kushner approach, a Markov

decision chain, discrete in time and space, was

solved. This is a more elementary exercise: instead

of looking for a numerical solution to a second-

order partial di�erential equation (HJB), a �rst

order di�erence equation (Bellman's) needs to be

solved.

In this paper, the original continuous optimal con-

trol problem is discretised to produce a Markov

decision chain. A method of approximating the

continuous noise by a discretely valued noise is ap-

plied. Value iteration is used to solve the Bellman

equation for the Markov decision chain thus ob-

tained. This \simple" Markovian approximation

method was directly applied in [8] and [7] to esti-

mate the discounted pro�t of stochastic resource

utilisation. Encouraging results were reported; in

particular, a good level of agreement of numerical

solutions with the existing solutions (see [11]) was

achieved and a sensible degree of computational

complexity of the method was observed. In [6],

the same method was used for the solution to the

classical portfolio management problem (see [2]).

While the utility measures of the approximating

and original problems were similar, there were

some discrepancies in the policy shapes. These are

overcome in this paper through a scaling in the

policy space and a weakly consistent discretisation

scheme of the Ito di�usion process.

The emphasis of the paper is on the solution

method. However, a few �nancial engineering

problems, diÆcult to solve analytically, will be

solved numerically in this paper. In particular,

rules will be computed for non stationary 2 and

1 Computational methods have been used for �nancial

optimisation for quite some time, see for example [11] and,

for a review, [15].
2 Analytical optimal portfolio rules are known for the

HARA (Hyperbolic Absolute Risk-Aversion) utility func-

constrained 3 portfolio problems. A bond pricing

problem will be solved through a repetitive solu-

tion of the Markov decision chain.

The rest of this paper is organised as follows. In

Section 2 the Markovian approximation method

from [8] is modi�ed through use of weakly con-

sistent (Euler) 2-value noise discretisation, rather

than an intuitively motivated 3-value noise dis-

cretisation scheme used in [8], [7] and [6]. The

method is applied, in Sections 4-5, to a classical

optimal portfolio selection problem from [2]. The

portfolio problem is de�ned and solved analyti-

cally in Section 3. Numerical solutions of varying

degree of computational e�ort are calculated in

Section 4 and compared to the analytical solution.

In Section 5, a few speci�c problems of �nancial

engineering are solved. Concluding remarks close

the paper.

2. A SIMPLE MARKOVIAN

APPROXIMATION

2.1 Optimal Stochastic Control

Consider the stochastic system to be controlled

dX(t) = f
�
X(t);u(t); t

�
dt

+b
�
X(t);u(t); t

�
dW (t) (1)

where

X = fX(t) 2 X � IRn
; t � 0; X(0) = x0 � giveng

is the state process, u(t) 2 U � IRm is the control,

W (t) is a Wiener process, f
�
X(t);u(t); t

�
is a

drift, and b
�
X(t);u(t); t

�
dW (t) is di�usion. For

the formal treatment of the optimally controlled

di�usion process refer to [2]. The optimal control

rule � that determines the control u is Markovian

u(t) = �(t;X(t)) (2)

and chosen so as to maximise a functional J

max
u

J(0; x0;u) (3)

where

tions include isoelastic, exponential and quadratic utility

functions. family of utility functions, see [10]. However, the

explicit solutions to some \practical" problems that would

allow for time dependent model parameters are usually

beyond the simple quadratures.
3 This is another class of analytically intractable yet sen-

sible portfolio problems. In principle, constrained policies

could be obtained through the Kuhn-Tucker conditions. In

practice, their closed forms are unobtainable.
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J(�; x;u) = (4)

IE

 Z
T

�

g
�
X(t);u(t); t

�
dt + s

�
X(T )

� ���X(�) = x

!

is the pro�t-to-go function. For Markovian feed-

back controls the maximum value of (4)

H(�; x) = max
�(�)

J(�; x;�(�))

satis�es the HJB equation

max fg(x;u; t) + LuH(t; x)g = 0 (5)

with the boundary condition

H(T;X(T )) = s(X(T )) (6)

where Lu is the operator

Lu =
@

@�
+

nX
i=1

fi(x;u; �)
@

@xi

+
1

2

nX
i;j=1

Bi;j(x;u; �)
@2

@xi@xj
(7)

and where fi is the i-th component function of

f and Bi;j is the i; j-th entry of the covariance

matrix B = bbT .

2.2 A Corresponding Markov Decision Chain

A Markov decision chain corresponding to the

optimisation problem max(4) subject to (1) and

(2) is obtained through the following three steps.

First, the state equation (1) is discretised in

time using the Euler-Maruyama approximation

(see [5]). Then, the state space is restricted to a

�nite dimensional discrete state grid and, �nally,

the transition probabilities and rewards for these

discrete states are speci�ed.

Euler-Maruyama Approximation. An Euler-

Maruyama approximation of process 4 X � IR1

that satis�es equation (1) is a stochastic process

Y = fY ` 2 X; 0 � ` � Ng
satisfying the equation (called the iterative scheme)

Y `+1 = Y ` + f
�
Y `;u`; �`

��
�`+1 � �`

�
+

b
�
Y `;u`; �`

��
W (�`+1)�W (�`)

�
(8)

4 The approximation scheme is introduced for a one di-

mensional process. The extension of the scheme to IRn is

obvious.

� = f�`gN`=0, with �0 = 0 and �N = T is a strictly

increasing sequence of real numbers that partition

the time interval [0; T ].

The indices run ` = 0; 1; 2; : : : ; N � 1, the initial

and subsequent values are, respectively

Y 0 =X(0) = x0; Y ` = Y (�`): (9)

For a time discretisation using a constant time

step (where N is a positive integral number)

�` = ` Æ where Æ = �`+1 � �` =
T

N
: (10)

Notation. The discretisation scheme, while intu-

itively simple, overlays several layers of discretisa-

tion: of time, of state, and of noise. We adopt the

following conventions.

(1) Continuous-time variables: x(t) (standard);

variables in discrete time: x`.

(2) Points of the discrete state space (\grid")

x 2 X`.

(3) Stochastic processes: x (bold).

Discrete State Space. Equidistant grids will be

used for simplicity (see [8]). The discrete state

space for stage ` is denoted by X` � IR1. Let

the upper and lower bounds of the state grid be

U ` = maxX` and L` = minX`:

respectively. A point x 2 X is de�ned to be within

the grid X` if L` � x � U `. The collection of the

discrete state spaces for all the stages, fX`gN`=0,
is denoted X and called the discrete state space.

Adjacency. Heuristically, the scheme approxi-

mates a point of X at stage ` by the points of

X` which are \adjacent" to it.

(1) Two states of X` are adjacent if no other

state of X` lies between them 5 .

(2) Given a point of the continuous state space,

x 2 X , a pair of states, x
	 2 X` and

x
� 2 X`, is adjacent to x if the states are

adjacent and x
	

< x < x
�.

(3) Given x 2 X with x � U` de�ne U` to be

adjacent to x.

(4) Given x 2 X with x � L` de�ne L` to be

adjacent to x.

(5) Given x 2 X with x 2 X` de�ne x to be

adjacent to itself.

5 In IRn two states are adjacent if their projections onto

each of the n coordinate axes are adjacent in the sense just

de�ned.
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Transition Probabilities.Consider the stochas-

tic process Y = fY `; ` = 0; 1; 2; : : :Ng where

Y ` is de�ned through equation (8). For a given

control sequence u` and equidistant discretisation

times, the iterative scheme (8) can be abbreviated

to

Y `+1 = Y ` + Æf` + b`�W ` (11)

where f` and b` denote, respectively,

f` = f(Y `;u`; �`) b` = b(Y `;u`; �`):

The increments

�W ` =W (�`+1)�W (�`); for ` = 0; 1; 2; : : :N

refer to the Wiener process W = fW (t); t � 0g
and are known (cf [5]) to be independent Gaus-

sian random variables with mean and variance:

IE(�W `) = 0 IE((�W `)
2) = Æ:

The iterative scheme (11) thus de�ned is the

simplest strong Taylor approximation of an Ito

di�usion process (1), see [5]. Now, suppose that

at some time �`, Y ` = Y ` 2 X`.

Deterministic process. Assume, for the time being,

that there is no noise in the process (11) so, for a

given control value u`, the process moves to Y `+1

which is de�ned by:

Y `+1 = Y ` + Æf`: (12)

If there is a pair of states of X`+1 adjacent to

Y `+1 then the transition probabilities are as-

signed using an inverse distance method. Let

Y
	

`+1 < Y
�

`+1 be the pair of states adjacent to

Y `+1. De�ne

h` = Y
�

`+1 � Y
	

`+1

and assign the following non-zero transition prob-

abilities

p(Y `;Y
�

`+1ju`) =
Y `+1 � Y 	

`+1

h`
(13)

p(Y `;Y
	

`+1ju`) =
Y
�

`+1 � Y `+1

h`
: (14)

A Weak Taylor Approximation. If the Gaussian

noise is present in (11) a value of Y `+1 is not

deterministic. For this situation, the strong Euler

scheme (11) will be replaced by a weak Euler

scheme (see [5])

Y `+1 = Y ` + Æf` + b`� ~W `: (15)

The di�erence is in � ~W `, which is a \convenient"

approximation of the random increments �W `

of the Wiener process that has similar moment

properties to those of �W `. In the portfolio

model, we will use an easily generated two point

random variable taking values �
p
Æ i.e.,

P

�
� ~W ` = �

p
Æ

�
=

1

2
: (16)

This approximation of the continuously distributed

perturbation �W ` by a two-value noise is of

course arbitrary. However, it is suÆcient for the

approximating solutions' convergence. One can

obviously use other more realistic discrete repre-

sentations of � ~W ` e.g., it can be modelled as a

three-point distributed random variable T` with

P

�
T` = �

p
3Æ
�
=

1

6
P (T` = 0) =

2

3
: (17)

No matter how simple or complex these approxi-

mations are, they should preserve the original dis-

tribution's �rst and second moments and depend

on the partition interval's length. The latter fea-

ture guarantees that, for all such approximations,

the smaller Æ the less di�use the states become, to

which the process transits.

For the noise representation (16), the de�nition

of the transition probabilities in the stochastic

case is only slightly di�erent from (13), (14).

Let Y `+1 be determined through (12). The noise

discretisation method means that for Æ > 0 the

process reaches, at `+ 1:

Y �

`+1 = Y `+1 � b`

p
Æ with prob.

1

2
(18)

Y +
`+1 = Y `+1 + b`

p
Æ with prob.

1

2
: (19)

If there are two adjacent states to Y �

`+1 and Y
+
`+1

then apply the inverse distance method as in (13),

(14) but weight the two probabilities by 1
2
. Thus,

for example, if Y �

`+1 =2 X`+1 but there exist

Y
�	

`+1 < Y
��

`+1 in X`+1 adjacent to Y
�

`+1 then the

transition probabilities are

p(Y `;Y
��

`+1ju`) =
1

2

Y �

`+1 � Y
�	

`+1

h`
(20)

p(Y `;Y
�	

`+1ju`) =
1

2

Y
��

`+1 � Y �

`+1

h`
(21)

where h` = Y
��

`+1 � Y
�	

`+1 . If any of the states

Y �	

;Y +	, etc. overlaps another, the respective

probabilities have to be summed up.

As evident, the above discretisation method is

very simple and intuitive. However, as noted, it
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preserves the �rst two moments of the original dis-

tribution so that the overall discretisation scheme

is weakly consistent in the sense of [9] 6 .

Constraints. It has to be borne in mind that the

discretisation of a constraint is always sensitive

to the choice of the discretisation steps Æ and

h, and has to be dealt with \carefully". E.g., a

local constraint v(t) > a for t 2 [t1; t2] can be

meaningfully translated as v` > a only if bothe Æ

is small in comparison to [t1; t2] and the state grid

step h < jaj. See inequality (34) for an example of

how a state variable constraint can be represented

in discrete time.

Transition Rewards. Let the control strategy

be Markovian (2) and action at state ` computed

as

u` = �(`;Y `); Y ` 2 X`; ` = 0; 1; ::N � 1: (22)

Recalling (4), note that for the approximating

problem, the decision maker receives a reward

that depends on the state at stage ` and on the

action u`


(Y `;u`; `) = Æ g(Y `;u`; `); (23)

` = 0; 1; 2; : : :N � 1. The overall reward for the

Markov decision chain Y , starting from Y 0 =

x0 2 X0 and controlled by u = fu0;u1; : : :uN�1g
can be determined as

J(0; x0;u) = (24)

IE

 
N�1X
`=0


(Y `;u`; `) + s(Y N )
���Y 0 = x0

!

Finally, the problem:8<
:

max
u

J(0; x0;u)

subject to

Y `+1 = Y ` + Æf` + b`w`;

(25)

with the transition probabilities de�ned as above

is the Markov decision chain approximating the

6 See [9], page 1002. Conditions \1" and \2" (about con-

tinuity of the Markov chain expected value and variance)

are easy to prove. However, because in this discretisation

method the state step is independent of the time step,

condition \3" (about continuity of the Markov chain in-

crements) can only be satis�ed if the grid X
l
is allowed

to become denser. Moreover, consistency fails along the

boundary of the discrete state space so the scheme is locally

weakly consistent. This is not surprising since it would be

impossible for a system constrained to lie within a �nite

space to follow the behaviour of a system which is not

similarly constrained at the points where the constraints

become active. However, this feature is common to all

approximation schemes of this kind.

original continuous-time optimisation problem of

Section 2.1. For convenience, we use the notation

J(Æ;X) � J(0; x0; û) where û is a maximiser in

the above optimisation.

2.3 Computational Complexity

There are two crucial parameters for the solution

method outlined above: the number of states and

the number of time steps. One expects that in-

creasing these numbers would improve the solu-

tion's accuracy. However, the computation time

also increases. Recent papers [13] and [14] report

mitigating the curse of dimensionality for a certain

subclass of Markov decision chains through use

of randomisation. The Markovian approximation

de�ned in this paper leads to a similar conclusion.

Following [7] a result of this nature will be proved.

Claim 1. The computation time needed for the

solution of the Markov decision chain (25) in-

creases approximately linearly in both the number

of states and the number of time steps.

Proof. Suppose a solution is computed by back-

ward induction for a state in stage ` and that

the solution from stage `+1 onwards has already

been determined. The time required to compute

the optimal decision for the current state is largely

independent of both the number of time steps and

the number of states. Its independence of the num-

ber of states is a consequence of the approximation

scheme scanning only the adjacent states in the

next stage. Doubling the number of states means

that twice the time is taken for each stage and the

computation time doubles. Doubling the number

of time steps leaves the computation time for each

stage �xed but doubles the number of stages and

hence the computation time doubles. This exact

linear relationship reported in [7], see Figure 1, is

spoiled by the vagaries of the computation time

of the numerical maximisation, as well as the load

dependence of the computer performance (see Fig-

ure 1 right panel). �

An array of test problems was solved in [7] (and

[8]) using a similar Markovian approximation

method 7 . The approximating solutions closely

7 The noise approximation method used in [7], [8] was

di�erent from the weak Taylor approximation used here.

So, only deterministic problems' solutions there reported

are directly relevant for this paper.
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Fig. 1. Computational complexity.

followed the optimal ones, see [8]. However, the

test problems were \easy" in that they contained

a quadratic cost component (they were not linear-

quadratic though). Here, the method will be used

to solve a classical portfolio selection problem

(see [2]) which is a generically stochastic and non

linear-quadratic problem.

3. A PORTFOLIO SELECTION MODEL

3.1 The Model

A simpli�ed version of Merton's [10] model of

optimal portfolio selection is analytically solved

in [2], pp. 160-161.

The stock portfolio consists of two assets, one

\risky" and the other \risk free". If the price per

share of the risky asset p(t) changes according to

dp = p(�dt+ �dw)

while the price q per share for the risk free asset

changes according to

dq = qrdt

then the wealth x(t) at time t 2 [0; T ] changes

according to the following stochastic di�erential

equation

dx = (1� u1)rxdt + u1x(�dt+ �dw) � U2dt:

(26)

Here, w is a one-dimensional standard Brownian

motion, and r; �; � are constants with r < � and

� > 0. Symbol u1(t) denotes the fraction of the

wealth invested in the risky asset at t and U2(t)

is the consumption rate. The agent's objective

is to �nd an optimal two-dimensional strategy

u = [u1(x); U2(x)], such that

0 � u1(t) � 1; and U2(t) � 0; (27)

and such that maximises expected discounted

total utility

J(0; x(0);u) = IE

 Z
T

0

e
�%t[U2(t)]



dt

���x(0) = x0

!

(28)

given discount rate % > 0 and assuming that

[U2(t)]

 is the agent's utility function. Here no

value is assigned to wealth at T while x0 is the

wealth at the initial time 0. The problem to

maximise (28) subject to (26) is clearly one of the

class described in Section 2.1.

3.2 The Optimal Solution

The Hamilton-Jacobi-Bellman equation can be

solved for the optimal value function in the fol-

lowing form

H(�; x) = g(�)x
 : (29)

Function g(�) can be integrated and equals

g(�) = e
�%�

�
1� 


%� �


�
1� e

�
(%��
)
1�
 (T��)

��1�


(30)

where

� =
(� � r)2

2�2(1� 
)
+ r:

The optimal investment and consumption strate-

gies û1 and Û2 can be computed as

û1 =
�� r

�2(1� 
)
(31)

Û2(�; x) = [e%�g(�)]
1


�1 x: (32)

In this example, only Û2 is a (linear) function

of wealth while û1 is constant. Notice also that

the above solution is \internal" in that both con-

straints (27) will be satis�ed for some parameter

set. In particular û1 � 1 if �� r � �2(1� 
).
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4. A CALIBRATED MODEL

4.1 The reference solution

Suppose an agent with an original wealth of x0 =

$100; 000 wants to maximise their satisfaction

during the coming T = 10 years. The instanta-

neous satisfaction is measured by
p
U2(t). The

risk free asset price drift is r = :05 and that of the

risky asset is � = :11 with the volatility � = :4.

The agent's discount rate is % = :11.

For these parameter values, the agent's expected

discounted total utility is Ĵ = g(0)
p
100000 =

723:09. Figure 2 presents the optimal strategies;

the expected wealth and consumption rate time

pro�les are shown in Figure 3.
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u
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10

12
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4  

u
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wealth

t=0

t=8

Fig. 2. Optimal (reference) strategies.

Figure 4 shows ten wealth and strategy time

pro�les, which correspond to ten noise realisations

dw(t); t 2 [0; T ], obtained from a random number

generator. The average total discounted utility of

these 10 portfolios is 751, which is more than the

theoretical Ĵ = 729. However, it is evident that

the optimal portfolios' performance has a large

variance 8 .

8 An estimate of the optimal utility standard deviation

was computed for the same integration parameter set as in

Section 4.2. (I.e., there were 600 noise realisations and the

integration step was .025.) The mean utility was 719.7,

which was 99.5 % of the theoretical expected optimal

performance; the corresponding standard deviation was

165.
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4 Portfolio Selection. Expected Values
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$
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n
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 $
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Fig. 3. Optimal expected wealth and consumption

rate time pro�les.
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Fig. 4. Optimal wealth, investment and consump-

tion rate realisations.

4.2 Numerical Solutions

The SOC Sol [18] suite of Matlab functions was

used to optimise a portfolio from Section 3. Most

of the problem transformation (e.g., from a con-

tinuous time and space formulation to a discrete

model) is taken care of by the software.
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Constraints. The constraints have to be dealt

with \manually". The local instantaneous con-

straints on controls u1(t) and U2(t) (27) can be

immediately expressed in discrete time as

0 � u1;` � 1; and U2;` � 0: (33)

The portfolio admissibility condition, which in the

continuous version amounts to x(t) � 0; 8t 2
[0; T ], [4], cannot however be directly replaced by

x` � 0. This is (mainly) because x` is expressible

in terms of u1;`�1 and U2;`�1 yet we need a

condition valid for time `. It appears (from [10])

that the best discrete-time counterpart of x(t) � 0

is

x`

�
1 + Æ(r + u1;`(�� r))

� � ÆU2;` � 0 (34)

where Æ is the time discretisation step (see Section

2.2). It has to be borne in mind that (34) is

an approximation to the portfolio admissibility

condition and that it depends on the time dis-

cretisation step.

Technical hints. A cautionary remark about

numerical optimisation is in place. Most optimi-

sation methods work (much) more eÆciently if

the solution vector components are of comparable

magnitudes. This is not the case of the control

variables u1 and U2. Indeed, u1 is bounded be-

tween 0 and 1 but, U2 is practically unbounded

from above, see Figure 2. This caused some (not

insuperable) diÆculties in [6] in obtaining accu-

rate approximating solutions. In this paper, such

diÆculties were avoided through re-scaling of the

model. It follows from (32) that U2(t) is linear in

the state x(t). All U2(t) were then replaced by

u2(t)x(t) in the optimisation problem max (28)

subject to (26). Consequently, the numerical rou-

tines were looking for u2(t) that was not greater

than 12 for most of the cases solved. Moreover,

because of the above transformation the strategy

graphs will no longer be linear as in Figure 2 low

panel but horizontal (as in Figure 7).

Important software control parameters are the

time discretisation step Æ and the state space

grid width h. To get an idea of their range val-

ues, necessary for an accurate approximation, a

deterministic portfolio control problem (T = 2)

was solved: �rst analytically, then, the discretised

model solutions were computed. Figure 5 shows

the results.

The plot coordinates are the time discretisation

step Æ and a utility measure. The horizon is T = 2;

the remaining model parameters are as in Section

4.1.
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<−−continuous time model optimal utility"

Discrete Model Utility Measures (T=2)

h=500

h=20000

h=20000

h=500

h=20000

δ

Fig. 5. Discretised model utility realisations.

The point denoted \*" (0,422) is the continuous

model optimal utility. The discrete time model

utility values converge toward this point as Æ ! 0.

Notice that they are greater than the continuous

model utility. This is because (in the rectangular

method) the integration error grows in Æ. The

points denoted \+" correspond to utility reali-

sations of a model discretised both in time and

space (Markov chain). It is clear from the �gure

that reasonable utility approximations can only

be obtained for Æ � :1 and h � 500.

The impact of the length of the time step Æ on the

solution accuracy in a stochastic model is shown

in Figure 6.

Consider time ` (` = 0; 1:::N � 1) and u1;` to be

applied at this time. Assuming that the choice of

U2;` is made optimal

u1;` = argmax
�
Æ
p
U2;` + e

�%Æ
g(`+ Æ)IE

p
x`+Æ

�
= argmax

�
IE
p
x`+Æ

�
; (35)

see (29). The expected value in (35) was computed

using a Taylor series (second order) expansion and

presented as a function of strategy u1 in Figure 6.

The strategy domain was \extended" beyond the

feasible range [0 1] to show the utility measure

shapes. Notice that, for the feasible u1 2 [0; 1],

the utility measures would all look 
at.

8
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Fig. 6. Strategy convergence.

The vertical line u1=.75 shows where the utility

maximum \should" be, for it is known from Figure

2 that the optimal strategy is u1=.75, indepen-

dent of time. It is clear from the �gure that the

discretised model strategy u1;`(Æ) converges to the

optimal strategy as Æ ! 0. Again, any reasonable

approximation requires Æ � :1.

Another point to remember is that the time step

Æ should be large enough for the process to move

beyond the adjacent state i.e., Æjf:j > h. On the

other hand, as shown above, Æ should be small for

high accuracy of the approximating solutions.

The convergence. There are various ways in

which the goodness of a numerical solution can

be evaluated. The most \objective" one would

perhaps be to look at the average discounted total

utility Ĵ generated by the application of an ap-

proximated optimal numerical solution to the con-

tinuous model. However, as evident from Figure 4,

the portfolio performance is very \volatile" and

the standard deviation of utility distribution is

large. Therefore, using Ĵ thus computed is diÆcult

to judge which solution is best.

We will �rst evaluate the convergence by compar-

ing the approximating policy pro�les (Figures 7 -

12), to the optimal ones (Figure 2). 9 Then, we

9 Remember that because of the model re-scaling, if U2

was linear (Figure 2) u2 will be horizontal.

will generate a few realisation pro�les to compare

them to those of Figure 4 and, eventually, we will

compute the corresponding utility distribution.
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Fig. 7. Approximating strategies for t = 0

(Æ = :2).

Examine the policy rules shown in Figures 7 -

12. The bold dotted lines correspond to opti-

mal strategies (compare Figure 2). One can see

that the strategy convergence is more diÆcult

to achieve for later times (t = 9) than at the

beginning of the horizon (t = 0).
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Fig. 8. Approximating strategies for t = 0

(Æ = :1).
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Fig. 9. Approximating strategies for t = 9

(Æ = :2) .
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Fig. 10. Approximating strategies for t = 9

(Æ = :1).

Indeed, the gap between the optimal strategy and

the approximating strategies for t = 0 is narrow

for Æ = :2 and closes for Æ = :1 (for reasonably

small h) whereas, for t = 9, it narrows down only

for smaller Æs, see Figures 11 and 12. This is to

be expected because the optimal Û2(T ) = 1,

and û2(T ) = 1 (see (32) and (30)), which is

impossible to reproduce numerically.

Figure 13 shows the wealth and strategy reali-

sations for Æ = :05 and h = 100. They look
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Fig. 11. Approximating strategies for t = 9

(Æ = :05).

0 2 4 6 8 10

x 10
4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

u
1

wealth

δ=.02; h=5000 −:− 100t=9

0 2 4 6 8 10

x 10
4

0.6

0.7

0.8

0.9

1

1.1

1.2

u
2

wealth

h=5000 

Fig. 12. Approximating strategies for t = 9

(Æ = :02 \small").

very similar to the optimal ones in Figure 4. The

simulation of 2000 noise realisations and the appli-

cation of the approximating policy rules computed

for the same parameters (i.e., Æ = :05 and h =

100) resulted in the utility distribution (integrated

with the time simulation step equal to .025) shown

in Figure 14.

The mean discounted utility is Ĵ = 715:4 (98.9 %

optimal) and the corresponding standard devia-

tion is 161. However, the portfolio performance

10
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Fig. 14. Utility realisation distribution.

as judged by index Ĵ for other approximating

rules (e.g., Æ = :05; :02 and h = 500; 100) was

comparable (Ĵ 2 [701; 720] with standard devia-

tions 2 [159; 162]). 10 Averaging the utility over

more realisations and diminishing the simulation

step could help to improve the utility variance

estimate. However, the improvement would not be

substantial, as the portfolio perfomance is highly

\volatile" whether optimal (Figure 4) or not (Fig-

ure 13).

5. PORTFOLIO MODEL MODIFICATIONS

5.1 Time Varying Parameters

Suppose now that the agent expects the volatility

coeÆcient � to vary as follows

�(t) = �

�
1� 0:09 cos

�
2t

�

��
(36)

where � = :4. This means that the volatil-

ity � used in Sections 3 and 4 was an average

value. Now, the volatility will rise from 36.4 %

to 43.6 % in the middle of T , and then drop. The

agent would like to know whether this information

should change their investment strategy or not.

Figure 15 reveals the modi�ed strategy obtained

as a solution to the discretised portfolio problem

with Æ = :05 and h = 500. As expected 11 , the

agent will invest more (i.e., above .75) when the

volatility is low. The solution is \exact" in that we

can read how much one has to invest at each time.

Interestingly, the optimal consumption strategy

remains unchanged.

The wealth and strategy sample paths for the

cosine volatility problem are shown in Figure 16.

The discounted total utility is 664 (std=158).

In summary, the agent should modify their in-

vestment strategy once the information about a

volatility scenario becomes available. In a similar

way, a portfolio problem with a time dependent

interest rate (or other parameters) can be solved.

10However, using Æ = :5; h = 10000 that is clearly a \bad"

policy, resulted in Ĵ = 124:13 with the standard deviation

equal 100.
11See footnote 19.
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Fig. 15. Cosine modi�ed strategies.
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Fig. 16. Cosine modi�ed realisation paths.

5.2 Constrained Policies

A portfolio manager might have an a priori belief

that their investment should not exceed a certain

wealth percentage. Such a constraint can easily be

allowed for in the above numerical optimisation

procedure.

Suppose that the permissible investment level is

u1 = :5. Figure 17 reveals the modi�ed strategy.

Not surprisingly, the agent is expected to invest

at the constraint. However, this does not a�ect

the consumption strategy. The new discounted

total utility is 717 and the standard deviation

equals 108, which is substantially less than un-

der the unconstrained regime. The wealth and

strategy sample paths are shown in Figure 18.

The conservative investment strategy results in

much less \volatility" in consumption and wealth

as observed by eye and measured by the utility

standard deviation.
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Fig. 17. Constrained strategies.
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An impact of the investment constraint on the

expected performance can be observed in more

detail in Figure 19. Two histograms of the dis-

counted total utility realisations are presented.

The dark shadowed one corresponds to the un-

constrained policies (compare Figure 14). The

light histogram represents the constrained pol-

icy performance. Evidently, the constrained policy

guarantees more \secure" performance (standard

deviation = 108 vis-�a-vis 166 of the unconstrained

policy). However, the unconstrained policy brings

a (marginally) higher utility value. More compu-

tations of that kind would generate the \eÆcient

boundary".
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0

50

100

150

utility
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mean=717 

std=108 
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std=166 

Fig. 19. Utility realisation distributions.

In a similar way, another portfolio problem, in

which some minimal (or maximal) consumption

rate is given could be solved.

5.3 Pension funds

A practical problem of �nancial engineering is one

in which an agent pays an amount x0 to a pension

fund, to be repaid by a quantity �xT at time T . The

latter is a result of an investment policy u1(x)

adopted by the fund's manager.

The manager's policy depends on his or her ob-

jective function, which could be the maximisation

of an expected value, the minimisation of risk to

obtain a target amount, etc. Once the objective

function is revealed, the manager's policy can

be computed as a solution to a stochastic opti-

mal control problem associated with the objec-

tive function. The problem solution will routinely

comprise an optimal decision rule u1(x); U2(x)

and a Monte-Carlo simulated distribution of xT .

Knowing the former is crucial for the manager to

control the portfolio. The latter is \practical" in

that it tells the pension buyer what they can, or

should, expect as �xT .

Knowing the distribution of xT also helps the

manager. It gives them an idea of what prob-

abilities, or risks, are associated with obtaining

particular realisations of the objective function.

For example, the distribution may suggest that,

for every x0 there is a probable terminal value

�xT , which the manager may choose to advertise

as the pension target.

We will �rst solve a pension fund problem for

the expected value criterion, as follows. In (4),

set g
�
X(t);u(t); t

�
= 0, s(T (t)) = x(T ) 12

and suppose that the management fee is 2%x(t).

This means that we need to solve an optimisation

problem in u1(x) with U2(t) = :02x(t).

Using the Markovian approximation approach as

in Section 4.2, with the same model parameters

i.e., T = 10; r = :05, etc., generates a rather

trivial optimal strategy: u1;t = 1; U2;t = :02xt for

positive states and times. Applying the strategy to

di�erent initial outlays x0 generates the following

�nal fund yield spread and location measures 13

at T = 10, see Figure 20.

The �gure tell us, among other things, that an

initial deposit of $40,000 corresponds to the ex-

pected pension value of about $100,000. However,

the median fund's yield for this objective function

is signi�cantly below the mean. This indicates

that the fund distribution is skewed, which is evi-

dent from Figure 21 (upper panel). The histogram

shows us too that the probability of earning less

than the \secure" revenue

40; 000 exp f(r � \management fee00)10g = 53; 994

is more than .5. 14 It is even fairly probable

(with probability >.4) to earn less than the initial

outlay x0 = 40; 000. Evidently, using a policy

that maximises the expected yield is a very risky

strategy of managing a portfolio.

12Here, the objective function is not HARA.
13Averaged over 1000 realisations.
14To prove this and the subsequent claims integrate the

area under the histogram from zero to 53,994 and 40,000 ,

respectively.
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Fig. 20. Yield location and spread measures.

To quantify a risk level associated with this policy,

two popular risk measures, Value-at-Risk (VaR)

and Conditional Value-at-Risk 15 (CVaR) can be

approximately calculated from the histogram. The

�-VaR of a portfolio is the lowest amount � such

that, with probability � the loss will not exceed

�; here

.9-VaR � 30,000 .

The �-CVaR is the conditional expectation of

losses above the amount �; here

.9-CVaR � 34,000 .

These measures disqualify the policy of maximis-

ing the expected yield as a fund manager's ob-

jective function. No manager would accept such a

high risk in controlling a pension fund.

A di�erent strategy has to be considered. Sup-

pose that the manager will use a \constrained"

strategy: u1;t = :5; U2;t = :02xt (i.e., non optimal

with respect to the expected value criterion). We

can see from Figure 21 (lower panel) that, for

the same initial outlay x0 = $40; 000, the yield

distribution (represented by the light histogram)

is more concentrated and less skewed than the

unconstrained one (upper panel). The mean for

this portfolio is $84,100 (median=58,710) and the

standard deviation diminishes to $45,563 from

$168,000 for the unconstrained policy. The dark

histogram represents the �nal fund's yield dis-

tribution for the constrained strategy applied to

x0 = 60; 000. In this case, the mean value is

15See [1] for a static portfolio analysis based on VaR and

CVaR.
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Fig. 21. Fund yield spread.

$109,013 (median=93,000) and the standard de-

viation $63,322. Overall, the risk of performing

worse than investing in the secure asset alone is

much less under a constrained strategy. The risk

of scoring less than x0 is, for x0 = 40; 000

.9-VaR � 13,000 and .9-CVaR � 17,000 ;

whereas for x0 = 60; 000,

.9-VaR � 21,000 and .9-CVaR � 30,000 .

Suppose now that the fund manager would like to

advertise their pension fund as paying an amount

�xT for an initial outlay x0.
16 It is clear from

the histograms in Figure 21 that an expected

value maximisation policy (constrained or not)

cannot be used for this purpose. Instead, we will

examine the policy determined as a solution to

the stochastic optimal control problem with the

objective function given as

J(0; x(0);u) = IE
�
h(xT )

���x(0) = x0

�
(37)

where

h(xT ) =

�
(xT � �xT )

1
2 if xT � �xT ;

�(xT � �xT )
2 otherwise:

(38)

This criterion re
ects the manager's wish to dis-

pose of suÆcient funds to meet the target �xT . At

the same time, it does not prompt the manager to

accumulate (much) more than needed.

16 In other words, the manager will sell a ten year \bond"

�x10 for x0.
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The optimal investment policy 17 u1, called \cau-

tious", is shown in Figure 22. The target is �x10 =

100; 000.
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Fig. 22. A cautious policy.

The solution is intuitively explicable: if there is a

shortage of funds, or time, the manager's actions

become risky. In other words, the policy lines get

higher and steeper as x0 falls. Also, for the part of

the strategy graph where it is impossible to meet

the target xT by investing in the riskless asset

only (i.e., before each line hits 0.), each policy line

representing a later time dominates the lines that

correspond to earlier times.

The usefulness of the cautious strategy for pension

fund management can be assessed from Figure 23.

The cautious strategy was used to manage two

initial payments x0 of $60,000 and $73,500. The

corresponding yield spreads are represented by the

two central histograms in Figure 23. It is easy to

see that the risk indices VaR and CVaR will be

very small for the �rst outlay and virtually zero

for the second. For comparisons, the background

\back-to-back" histogram represents the result of

managing the second payment using the expected

value maximisation strategy. Once again we can

see that results worse than a \secure" investment

outcome ($99,215 in this case) are very probable.

17The rest of the problem parameters are as before i.e.,

T = 10; u2 = :02; r = :05, etc.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

50

100

150

200

250

300

350

400

x
10

cautious strategy         
x

0
=73500; Ex

10
=99541 

cautious strategy      
x

0
=60000;Ex

10
=84686

max expected value strategy
x

0
=73500;Ex

10
=167200   

median= 84015             

median=99532 

median=86399 

Fig. 23. A policy comparison.

Overall the cautious strategy appears an attrac-

tive portfolio management policy. However, to use

it for pension advertising, or for pricing the x10

\bond", the objective function should reward the

manager for exceeding a target (here, $100,000)

more than the square root term 18 .

An optimal control problem with g
�
X(t);u(t); t

� 6=
0 and s(X(T )) = e�%Tx(T ) i.e., one in which

a combination of the �nal wealth and the util-

ity from consumption is maximised, can also be

solved using the above approximation method.

6. CONCLUSION

A discretisation method useful for Markovian

approximations of �nite-horizon continuous-time

stochastic optimal-control problems has been de-

scribed. An optimising algorithm has been devel-

oped (see [18]) and applied to solve a portfolio

selection problem. For the calibrated models, an

overall agreement between the analytical (where

obtainable) and approximating solutions was no-

ticed. However, a large variance of utility real-

isations was observed. It was also noticed that

the variance diminished for constrained optimal

solutions.

In the example with variable volatility, no dif-

ference was reported in consumption patterns

between periods of low and high volatilities.

18For example, (xT � �xT )
9
10 could be tried.
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There were, however, di�erences in the investment

schedules: as expected 19 , the volatility troughs

triggered higher investment levels. A pension fund

management example illustrated the use of the

method for a non HARA objective function; it

also highlighted the insuÆciency of a mean value

as an optimisation criterion. A cautious strategy

was computed with very low VaR and CVaR.

All solutions were practical in that they could be

applied to real life situations describable by the

portfolio model. The method of obtaining them

is ready to be applied to other scenarios of the

model parameters (including a variable discount

rate, etc.).

Some optimisation runs (on a Pentium II PC)

lasted up to 30 hours (for Æ = :02; h = 100).

However, an \intelligent" state space search (�a la

[12] or [16]) could be implemented to accelerate

the algorithm convergence.
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