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Abstract. A state constrained optimal control problem in economics with

four linear control variables is discussed. First of all, the complex model

of a concern is introduced and a suitable choice of the model functions and

the model parameters is investigated. This means the adjustment of initial

data as well as the storage charges and the introduction of a price function

depending on the trade cycle. To solve the optimal control problem, direct

and indirect methods can be used. With the help of a direct approach it

is possible to solve the problem fast and easily, without any knowledge of

the necessary conditions of optimal control theory. Moreover, the direct

method provides good initial estimations which can be improved w.r.t. ac-

curacy and reliability by an indirect method. Furthermore, a brief outline

about the theoretical analysis of control or state constrained optimal con-

trol problems - including the derivation of necessary conditions - and the

numerical solution by means of the indirect method is represented. The

complex switching structure of the optimal controls, which results from

the appearance of singular subarcs and overlapping boundary arcs of two

active state constraints, is remarkable.

Keywords. Microeconomic model, model improvement, optimal control,

linear control, singular subarc, state constraint, necessary condition, direct

collocation method, indirect multiple shooting method.

1 Introduction

Mathematical models of microeconomic as well as macroecnomic models are

very important for many purposes. Considering this, we should recognize addi-

tionally, that the numerical methods and computational capabilities for practi-

cal applications of optimal control theory are permanently improved. Therefore,

increasingly sophisticated as well as even more complex and realistic economical

models can be investigated. There, as much knowledge about the real world as

possible can be used. For example, these models can help to explain economic

phenomena, help to improve the management of a concern or even enable get-

ting a survey of a whole planning horizon. The development of concern models

and their formulation as optimal control problems are well-known in literature,

cf. Refs. 1{4. In fact, conventional models are simple and they unfortunately
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lack in expressiveness. Developing more complex models means, amongst oth-

ers, designing realistic economic model functions and model parameters. In

Ref. 5 and Ref. 6, a complex model of a concern is introduced. It consists of

seven state variables, four linear controls and several control and state con-

straints. However, also this concern model can still be improved.

This paper, which is based on Ref. 7, mainly deals with the improvement of

this concern model, i.e., the adjustment of the initial data as well as the storage

charges and the introduction of a price function depending on the trade cycle.

To solve the corresponding optimal control problem, we use direct methods as

well as indirect methods, combined in a so-called hybrid approach.

Regarding the solution of the concern model provided by the direct method,

only two of the given state constraints become active during the whole time

interval on overlapping subintervals. These state constraints are replaced by

stronger, suitably designed control constraints (see Ref. 6). Thus, the solution

with the indirect method is simpli�ed. The results con�rm also, that concern-

ing the loss of optimality, it is more than enough to use the control constraints

instead of the state constraints. Nevertheless, it would be of mathematical

interest to investigate precisely the original state constrained problem and to

formulate the corresponding well-de�ned multipoint boundary value problem.

Details regarding the necessary conditions of the state constrained problem can

be read up in Ref. 7.

Although there are no more state constraints, further complexity is still caused

by singular subarcs which occur in addition to the two simultaneously active

control constraints. One diÆculty is determining their entry points.

The numerical solutions of the improved optimal control problems are presented

and discussed, also from an economical point of view.

2 Concern Model

In the following section the corresponding optimal control problem of a com-

plex concern model is introduced. Here, the vector of the state variables is

determined by

x
T = (S(t); L(t); Y (t);X(t);Xm(t);Xr(t); d(t))

with the stock S, the number of employees L, the loan capital Y , the equity

capital X, the remaining part in alternative investment Xm, the risk premium

Xr and the discounting position d. Furthermore, the vector of the control

variables is given by

u
T = (Sc(t); Lc(t); Yc(t); I(t)) ;

where Sc controls the stock, Lc the sta�, Yc and I, resp., control the loan and

the equity capital of the concern.

The problem is to �nd the vector of control variables u so as to maximize the

total pro�t of the capital owners, i.e. to minimize the performance index

Z[u] = �(x(tf )) = �

�
X(tf ) +Xm(tf ) + (1� �) p �

S(tf )

d(tf )

�
(1)
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for given initial conditions x(t0) subject to the di�erential equations

_S = Sc ;

_L = Lc ;

_Y = Yc ;

_X = +I + (1� �) (P (x; u) � �r X) ;

_Xm = �I + (1� �) �m Xm ;

_Xr = (1� �) �r X ;

_d = �d ln(1 + i)

(2)

as well as the following state and control constraints.

The state constraints read S � Smax; 0 � L; 0 � Y; 0 � Xm and

Z1 = Y � �X � 0; (3)

Z2 = �S + Smin � 0 : (4)

Due to former calculations, we know that only two of them, the constraints

(3) and (4) become active during the whole planning horizon. Thus, for the

sake of simplicity, concerning the numerical solution of the problem, the two

state constraints (3) and (4) are replaced by stronger, suitably designed control

constraints (cf. Ref. 6)

Vmin := ��2(�X � Y ) � � _X � _Y
(2)
) Yc � � _X � Vmin =: ~Ycmax

(Sc; I); (5)

~Scmin
:= ��1(S � Smin) � _S = Sc ; (6)

which guarantee the ful�llment of the state constraints. The greater the pa-

rameters �1; �2 > 0 are, the better the correspondence with the original state

constraints (3) and (4) is. Here, �1 = �2 = 10 seems to be a good choice. If

these control constraints are active, the optimal controls Y �

c = ~Ycmax
(S�c ; I

�)

and S
�

c = ~Scmin
are determined by Eqs. (5) and (6). The four controls are

bounded by

Sc2 [Scmin
; Scmax

] ; Lc2 [Lcmin
; Lcmax

] ; Yc2 [Ycmin
; Ycmax

] ; I2 [Imin; Imax] (7)

and, in addition, Sc has to obey the inequality constraint

0 � F � Sc: (8)

The time t is the independent variable. The initial time t0 and the terminal

time tf are �xed. In the following t0 = 0 and tf = 10 [years] hold. The model

functions and model parameters appearing in (1) to (8) are explained in Table 1.

Note, that the selection of their values has a great e�ect on the trajectories of

the solution, see Refs. 5, 8, 9 for a realistic design.

Remark 2.1 (Regarding kp, cf. Table 1)

In Ref. 9 the variable kp is treated as a state variable subject to the di�erential

equation k0p = 2�=kl and the initial value kp(0) = �=2. This di�erential equation

is independent of the other state variables. Hence, it can be integrated and with

its solution kp(t) =
�
2
+ 2�

kl
� t the dimension of the vector of state variables can

be reduced.
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Abbr. Formula / Value Meaning

P (x; u) 1
d
[p(F � Sc)� �S � !L]� �KY � ÆK pro�t (of the concern)

K(x) X + Y capital

F (x) �K
�KL

�L output of the concern

� 100

�K 0.35

9=
;
suitable parameters

of the output
�L 0.5

�K(t) 0:110 + 0:030 � sinkp(t) loan interest rate

�m(t) 0:074 + 0:018 � sinkp(t) current yield

i(t) 0:019 + 0:029 � sinkp(t) in
ation rate

�r(t) �K(t)� 0:05 high risk premium rate

kp(t)
�
2
+ 2�

kl
� t position in an economic cycle

kl 8 duration of the economic cycle

p 0.05 selling price

� 0.5 tax rate

� 0.01 storage charges

! 2 labor cost

� 0.8 rate of maximal borrowing

Æ 0.322 depreciation rate

Table 1: Model functions and model parameters.

Remark 2.2 (Regarding Eq. (5))

Solving Eq. (5), Vmin � � _X � _Y , with the help of the di�erential equations (2),

we could analogously obtain a control constraint for I:

I � ~Imin(Sc; Yc) : (9)

3 Theory for optimal control problems

Let us consider the following problem: The performance index

Z[u] := �(x(tf ); tf ) +

tfZ
t0

L(x(t); u(t)) dt (10)

has to be minimized with respect to the class of functions

C
p

k
:= fu : [t0; tf ]! U � R

k
; u piecewise continuousg:

The state trajectory x(t), x : [t0; tf ]! R
n , sati�es a vector di�erential equation

_x = f(x; u) ; f : Rn+k ! R
n
; (11)

with given initial conditions and terminal constraints,

x(t0) = x0 ; x0 2 R
n and (12)

	(x(tf ); tf ) = 0 ; 	 : Rn � R+ ! R
qf : (13)
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Furthermore, some applications include interior point conditions, control con-

straints

C(x(t); u(t)) � 0 ; C : Rn+k ! R
l
; (14)

or state constraints

S(x(t)) � 0 ; S : Rn ! R
l
: (15)

The functions appearing in Eqs. (10) to (15) are supposed to be suÆciently

often continuously di�erentiable with respect to all their arguments.

Considering the problem given by Eqs. (10) to (13) and de�ning the Hamiltonian

H(x; u; �) := L(x; u) + �
T
f(x; u) (16)

the following necessary conditions (see Refs. 10, 11) are obtained:

� di�erential equations of Euler-Lagrange

_x = H� = f(x; u) (17)

_�T = �Hx (18)

� minimum principle

H(x�; u�; �) = min
u2U

H(x�; u; �) ; (19)

where U denotes the set of admissible control values, and

� transversality conditions

�
T (tf ) = �xjt=tf

; (20)

(�t +H)jt=tf = 0 ; (21)

with �(x; t; �) := �(x; t) + �
T	(x(t); t).

If u appears linearly in H, Eq. (16) can be written in the form

H(x; u; �) = u
T
�(x; �) +R(x; �) : (22)

(�)i, i = 1; : : : ; k, is called the switching function associated with the control

variable ui 2 [uimin
; uimax

]. The minimum principle leads to bang-bang controls

ui =

�
uimax

; if (�)i < 0 ;

uimin
; if (�)i > 0 :

(23)

If (�)i vanishes on a subinterval, the control variable ui has a singular subarc.

In addition, all derivatives of (�)i then vanish on this subinterval.

Considering now the problem of minimizing the cost functional (10) subject to

the side conditions (11) { (13) and additionally subject to the state constraint

(15), the necessary conditions can be deduced in two di�erent ways. This

means, the Hamiltonian can be augmented by the state constraint directly (cf.

Refs. 12{14) or by the derivative of the state constraint (see Refs. 15,16). Both

ways and the resulting necessary conditions are summed up in Refs. 7, 17.

The necessary conditions for both kinds of problems result in a multipoint

boundary value problem which can be solved using the multiple shooting method.
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4 Improvement of the concern model

In the following, a short description of the adjustment of initial data, the modi�-

cation of the price and a brief outline about using storage charges to rationalize

is represented. To solve the corresponding optimal control problem of the con-

cern model, a so-called hybrid approach is used. This means, a direct method

and an indirect method are combined, to use the advantages of both methods.

The direct method, e.g. DIRCOL (Ref. 18) or NUDOCCCS (Ref. 19), quickly

provides a good initial estimation, which can be improved w.r.t. accuracy and

reliability by an indirect method, e.g. the multiple shooting method MUMUS

(Ref. 20). First of all, we want to give an overview about the initial solution

(cf. Refs. 5{7) of the optimal control problem and the needed preparatory works.

4.1 Initial Solution

Using the indirect multiple shooting method MUMUS the time interval, with

t 2 [0; tf ], should be transformed into s 2 [0; 1] with:

_x= f(x; u)) dx=ds= x
0= (f(x; u) � tf ; tf )

T with x
T= (S;L; Y;X;Xm; Xr; d; t)

to obtain a better convergence in case of parameter variations in tf (note,

t(1) = tf ).

The control variables Sc, Lc, Yc and I are appearing linearly in the di�erential

equations (2). Thus, the Hamiltonian reads

H(x; u; �)=�Sc � Sc + �Lc � Lc + �Yc � Yc + �I � I +R(x; �) (24)

with the switching functions depending on x and �:

�Sc = �S � (1� �) p � 1
d
� �X ;

�Lc = �L ;

�Yc = �Y and

�I = �X � �Xm :

If constraint (5) is active, the switching functions of Sc and I are changing into

~�Sc = �Sc + �Yc

@ ~Ycmax

@Sc
= �S � (1� �) p �

1

d
� (��Y + �X) (25)

~�I = �I + �Yc

@ ~Ycmax

@I
= ��Y + �X � �Xm : (26)

Remark 4.1

If constraint (9) holds, instead of Eq. (5), the switching function of Yc changes

into ~�Yc and �I holds further on. Because of � � ~�Yc = ~�I , the control variables

Yc and I are singular always at same time.

Regarding the described model, it was possible to verify the switching structure,

with the switching points 0 < s2 < � � � < s8 < 1, speci�ed in Table 2. The

borrowing limit (5) becomes active at s3, the stock constraint (6) at s4.

With the help of the switching structure (Table 2 and cf. Ref. 5) the piecewise

de�ned adjoint di�erential equations can be stated:
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[0; s2] ]s2; s3] ]s3; s4] ]s4; s5] ]s5; s6] ]s6; s7] ]s7; s8] ]s8; 1]

Sc
�

Scmin
Scmin

Scmin

~Scmin

~Scmin

~Scmin

~Scmin

~Scmin

Lc
�
Lcmax

Lcmax
Lcmax

Lcmax
Lcmax

Lcmin
singular Lcmax

Yc
�

Ycmin
Ycmax

~Ycmax
(Sc; I) ~Ycmax

(Sc; I) singular singular singular singular

I
�

Imin Imin Imin Imin singular singular singular singular

Table 2: Switching structure.

� On s 2 [0; s3] all controls are independent of the state variables:

�
0

xi
= �

@H

@xi
(x; u�; �) : (27)

� On s 2]s3; 1] the control variable Yc = ~Ycmax
depends on the state variables:

�
0

xi
= �

@H

@xi
� �Yc �

@ ~Ycmax

@xi
: (28)

� On s 2]s4; 1] the stock constraint (6) is additionally active. Compared to

(28) only �0S changes, because the control Sc = ~Scmin
depends only on the

state variable S:

�
0

S = �

@H

@S
� �Yc �

@ ~Ycmax

@S
� ~�Sc �

@ ~Scmin

@S
: (29)

On singular subarcs, the optimal controls are functions depending on state

variables and adjoint variables. Regarding the theoretical section, the switch-

ing functions and all their derivatives vanish on these subintervals. Here, the

control variables appear again linearly in the second derivatives of the switching

functions:

�
00

Lc
= �

00

L = 0 s 2]s7; s8] ;

~�00I = ��
00

Y + �
00

X � �
00

Xm
= 0 s 2]s5; 1] :

(30)

On the subinterval ]s7; s8] a linear system of equations has to be solved, cf. Ref. 5.

Elsewhere, only a linear equation has to be solved. In any case the singular

control Yc is determined by the constraint (5).

4.2 Adjustment of initial data

In order to increase the sensitivity of the problem, especially of the performance

index, with respect to parameters and initial values, the remaining part in al-

ternative investment is reduced from Xm(0) = 450 MU to 100 MU (=monetary
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units) at the initial point.

This causes no changes apart from the trajectory of Xm, cf. Eq. (2) and Fig. 1.

0 2 4 6 8 10
t

Xm

900

450

100

Figure 1: Solution of the state variable Xm with initial data

Xm(0) = 450 (black) and Xm(0) = 100 (grey).

As supposed the terminal value of the performance index decreases:

Xm(0) 450 100

Z[u] -1117.62 -605.07

4.3 Modifying the price

Emanating from the constant price p = pconst the price is modi�ed by a cyclic

function, i.e. a sinus cycle, which is displaced by �
2
because of the economic

trend,

p(kp(s)) = 0:05 + 0:01 � sin(kp(s)� �=2) :

Hereby the delayed reaction on supply and demand is re
ected (cf. Refs. 21{23).

The economic trend can be classi�ed into four sections, named

I the phase of contraction or recession,

II the phase of depression,

III the phase of expansion, and

IV the boom.

Phase II is ended by the lower reversal point (minimum) and Phase IV by the

upper reversal point (maximum).

As a consequence of the boom the price is raised at the beginning of the planning

horizon, i.e. at the upper reversal point. The recession even starts while raising

the price for 2 years. The reaction on the phase of depression is also delayed,

cf. Fig. 2.
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0

0.1

0 2 4 6 8 10

Iz }| { IIz }| { IIIz }| { IVz }| { Iz }| {

�K

�m

i

p(kp)

Figure 2: Functions depending on the economic trend.

In the following sections, we want to investigate what kind of changes are caused

by using that price function.

4.3.1 Investigation of the switching structure

With the aforementioned hybrid approach, a direct method is used to solve the

optimal control problem in order to realise the e�ects of modelling the price as a

function. Especially the changes in the switching structure are interesting. The

switching structure can be investigated with the help of the approximations of

the control variables computed with DIRCOL or NUDOCCCS . However, often

the switching structure can not be determined precisely with the help of these

informations. In such cases the switching functions have to be additionally

considered.

Considering the histories of the control variables Lc and Sc, however, their

switching structure can be determined clearly:

� Firstly, Lc is maximal (nearly 4 years), then minimal (more than 2 years)

and at the end again maximal. This means, at the beginning of the plan-

ning horizon as many employees as possible are engaged as long as the

number of employees is maximally reduced within the recession. From

nearly the end of the phase of expansion to the terminal time, the maxi-

mal amount of employess is engaged.

� The control Sc is minimal, i.e. the stock is reduced as fast as possible, as

long as the stock constraint becomes active (after 0.4 years). The stock

remains unchanged till the end of the planning horizon.

Regarding the approximations of Yc and I only the bang-bang structure can

be detected well. To determine the entry points of the constraints as well as

the singular arcs, the switching functions �Yc , �I , ~�Yc and the histories of the
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approximations of both constraints (5) and (6) have to be considered. Note,

the data of the graphs in Figs. 3{5 arise from the approximations obtained by

the direct method.

0 2 4 6 8 10
t

�Yc � 10
+3

6:5

0

�2

0 2 4 6 8 10
t

�I � 10
+3

19

0

Figure 3: The switching functions �Yc (left) and �I (right).

0 0:5 1 1:5
t

(5)
(6)

320

0

0 2 4 6 8 10
t

~�Yc � 10
+3

30

0

Figure 4: The critical part of the

stock constraint (6) (grey) and the

borrowing limit (5) (black).

Figure 5: The switching function ~�Yc .

By means of Fig. 3 (left picture) we can see clearly, that the switching function

�Yc changes its sign, thus the control Yc is �rstly minimal and then maximal.

That means, that within the boom at the beginning of the planning horizon

(which is rather the upper reversal point), the borrowing of loan capital is

as low as possible. After a very short time the borrowing becomes maximal.

Regarding Fig. 4, we can see that the borrowing limit becomes active at about

t = 0:32 years (note, then ~�Yc holds). The stock constraint is not active at that

time. I is minimal up to ~�Yc vanishes (Fig. 5). Then I becomes, together with

the control Yc (cf. Remark 4.1), singular at about t = 0:4 years.
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Summarizing the problems investigating the switching structure:

The problem is, that the stock constraint (6) becomes active and in addition Yc
and I become singular nearly at the same time, at about t = 0:4 years. Thus,

we have to take into account these two possibilities for the switching structure:

Possibility 1 Possibility 2

Eq. (5) becomes active s3 s3

Yc and I singular s4 s5

Eq. (6) becomes active s5 s4

Table 3: Two possibilities for the switching structure.

4.3.2 Investigation of the necessary conditions

To solve the problem with the help of the multiple shooting method MUMUS,

a so-called homotopy parameter HOM 2 [0; 1] is introduced:

p(kp) = 0:05 +HOM � 0:01 � sin(kp �
�

2
): (31)

Thus, starting from the solution for p = 0:05 with HOM = 0 (cf. Section 4.1)

the homotopy parameter is increased up to HOM = 1.

First of all, the formulation of the problem has to be modi�ed, so that the

multipoint boundary value problem is again well-de�ned.

Adjoint di�erential equations and boundary conditions

Neither in the adjoint di�erential equations nor in the boundary conditions any

changes occur. Nevertheless, the adjoint di�erential equations of the original

optimal control problem (cf. Section 4.1 and Ref. 5) are denoted by �
0

xiold
in

the following.

Remark 4.2

Since kp is treated as a state variable (cf. Remark 2.1), the adjoint di�erential

equation �0kpold
and the �nal condition, i.e. the transversality condition for �kp ,

are to be modi�ed.

Modi�cation in computing the optimal controls

Now, the control Lc does not become singular anymore. That means we have

to solve only a linear equation (cf.(30)) on s 2]s4; 1] or s 2]s5; 1] for I:

~�00I = ��
00

Y + �
00

X � �
00

Xm
= 0 : (32)

Regarding the second derivatives of the adjoint variables �Y , �X and �Xm , we

realise, that �00Xm
remains unchanged, but �00Y old

and �
00

Xold
are changing into

�
00

Y = �
00

Y old � tf � (1� �) � h1 ; (33)

�
00

X = �
00

Xold � tf � (1� �) � h1 ; (34)

with

h1 =
1

d
� (�X + � � �Y ) � F �

�K

X + Y
� 0:01 � cos(kp �

�

2
) � tf �

2�

kl
:
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Now, we have to solve, in an analogous way to Ref. 5, Section 6.3.4, the equation

a � I = b to get the singular control I. No further control variables occur in the

additional term in (33) and (34). Hence, there are no changes in a:

a = �(�X + � � �Y ) �
p

d
�

@F

@K
�

�K � 1

K
� (�+ 1)2 : (35)

But the right-hand sight b has to be modi�ed:

b = bold + h1 � (1 + �) (36)

with

bold = �(1� �) �M �

�
M � (�X + � � �Y ) + �r � �Xr

�
+ (1 + �) � (�X + � � �Y )

�

�
p

d �K
�

h
(�K � 1) �

@F

@K
�

�
(1� �) � (P (x; u) � �r �X) + h2

�

+�K �

@F

@L
� Lc

i
+
p

d

@F

@K
� log(1 + i)�

2�

kl
� 0:03 � cos(kp)

�

+cos(kp) �
2�

kl
� (0:03 � �Xr � 0:018 � �Xm) + (1� �) � �2m � �Xm :

and the auxiliary variables

@F

@K
=

�K � F

X + Y
;
@F

@L
=

�L � F

L
;

and

h2 = � � (1� �) � (P (x; u) � �rX) + �2 � (� �X � Y ) ; (37)

M = (�+ 1) � (
p

d
�

@F

@K
� Æ)� � � �K � �r : (38)

4.3.3 Numerical Solution with the indirect method MUMUS

It has been tried to solve the optimal control problem with the indirect method

using the two switching structures stated in Table 3. During the homotopy

it has been recognized that \Possibility 1" is correct. Detecting the switching

structures was not the only problem in solving the corresponding multipoint

boundary value problem. Note, that the changes in the history of the price

function p has a tremendous e�ect not only on the switching structure, but also

on the problem formulation itself. Even a homotopy method could not �nd a

remedy. By starting with a smaller planning horizon, e.g. tf = 5, the homotopy

(cf. Eq. (31)) can be realized. Then, the �nal time could be increased step by

step until tf = 10 is reached.

Figures 6 and 7 compare the solutions of the state and control variables, ob-

tained by solving the problem, with the indirect method MUMUS, using the

constant price and the price depending on the economic trend, resp..
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0 2 4 6 8 10
t

S

100

50

0 2 4 6 8 10
t

L

100

30

0 2 4 6 8 10
t

Y

230

30

0 2 4 6 8 10
t

X

280

60

0 2 4 6 8 10
t

Xm

400

100

0 2 4 6 8 10
t

Xr

44

0

Figure 6: Solutions of the state variables S, L, Y , X, Xm and Xr with

price p = 0:05 (grey) and p = p(kp) (black).
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0

�10
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t

Yc

100

0

�100

0 2 4 6 8 10
t

I

30

0

�100

Figure 7: Solutions of the control variables Sc, Lc, Yc and I with

price p = 0:05 (grey) and p = p(kp) (black).

Altogether, Tables 4 and 5 show the changes referring to the switching structure

as well as the positions of the switching points.

[0; s2] ]s2; s3] ]s3; s4] ]s4; s5] ]s5; s6] ]s6; s7] ]s7; 1]

Sc
�

Scmin
Scmin

Scmin
Scmin

~Scmin

~Scmin

~Scmin

Lc
�

Lcmax
Lcmax

Lcmax
Lcmax

Lcmax
Lcmin

Lcmax

Yc
�

Ycmin
Ycmax

~Ycmax
(Sc; I) singular singular singular singular

I
�

Imin Imin Imin singular singular singular singular

Table 4: Switching structure with Xm(0) = 100, p = p(kp) and tf = 10.

14



p = 0:05 p = p(kp)

Ycmin
! Ycmax

s2 = 0:01851616239 s2 = 0:01541157099

Eq. (3) active s3 = 0:03093418080 s3 = 0:02752838254

Eq. (4) active s4 = 0:04000000000 s5 = 0:04000000000

Yc, I singular s5 = 0:04309544934 s4 = 0:03780647755

Lcmax
! Lcmin

s6 = 0:53261860857 s6 = 0:35845196178

Lc singular s7 = 0:60913202729

Lc ! Lcmax
s8 = 0:73646847059

Lcmin
! Lcmax

s7 = 0:54337053706

Table 5: Variation of the switching points caused by modifying the price function.

Note the price p varies within a cycle in the interval [0:04; 0:06]. Since, at the

�nal time, p(kp(1)) = 0:06 is greater than the constant price pconst = 0:05

prescribed previously, the total pro�t of the capital owner (cf. (1)) increases,

i.e. , the performance index decreases:

p 0.05 0:05 + 0:01 � sin(kp �
�
2
)

Z[u] -605.07 -668.88

Finally it is necessary to have a look at the Hamiltonian to verify whether

the corresponding multipoint boundary value problem is well-de�ned. Because

the stated problem is autonomous, the Hamiltonian has to be nearly constant,

within computational accuracy. Figure 8 proves that.

0 2 4 6 8 10
t

H

3 � 10�12

0

�1:5 � 10�12

Figure 8: The Hamiltonian.

Generally, the optimality of a solution obtained by an indirect method is checked

using the minimum principle, cf. Eq. (19). Since the concern model is linear

w.r.t. the controls, the optimal controls satisfying (19) are the solutions of a

linear programming problem and have to ful�ll the Karush-Kuhn-Tucker con-

ditions (cf. Refs. 6, 24, 25).

The vector of control constraints is called B = (Bi) i=1;:::;10 and consists of (5),
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(6) and (7). Easily it can be proven, that the Karush-Kuhn-Tucker conditions

h�gradH;�gradBii > 0 ; with gradH =
@H

@u
; gradBi =

@Bi

@u

hold. Hence, there is no contradiction to the minimum principle.

4.4 Using the storage charges to rationalize

Up to now, the storage charges � has been very high. This has resulted in an

unrealistic behaviour of the stock, i.e. the stock has been reduced, as far as

possible, but has not been re�lled anymore. Now, because of their importance

for rationalization, the storage charges are reduced from � = 0:01 to � = 0:005,

hoping to observe 
uctuation in the stock, especially an increase of the stock.

For the purpose of model veri�cation a fast direct method is preferred for ob-

taining a solution and for deciding if the reduction is great enough for rational-

ization.

Figure 9 con�rms the assumption, that � a�ects the control variable Sc. Re-

garding the history of Sc, the economic cycle of duration kl = 8 years can be

observed. This results in an even more complex switching structure. Solving

that problem with an indirect method, too, would result in even greater e�orts.

Now, the consequence of rationalizing can be considered. The following table

shows, that the bene�t of the lower storage charges is on the total pro�t of the

capital owner, see jZ[u]j, but not on the pro�t of the concern, cf. P (x; u):

� = 0:01 � = 0:005

jZ[u]j 666.97 669.08

P (x; u) 218.06 216.92

0 2 4 6 8 10
t

Sc

0

�100

Figure 9: The control Sc, with storage charges � = 0:005.
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5 Conclusions

A complex model of a concern and its corresponding optimal control problem

with four linear controls, seven state variables and several control and state

constraints has been considered. An improvement of the concern model, con-

cerning initial data as well as storage charges and the introduction of a price

function depending on the trade cycle, has been realized. With the help of a

so-called hybrid approach, i.e. combination of a direct and an indirect method,

the numerical solution of the optimal control problem has been obtained.

Singular subarcs occuring in addition to two simultaneously active constraints

have caused further complexity. Within this paper, the optimal control problem

has been solved with stronger, suitably designed control constraints, replacing

the two active state constraints. The results, obtained in Ref. 17 showed that

the investigation of the necessary conditions of the optimal control problem

with state constraints is only of mathematical interest. Concerning the loss of

optimality, it is more than enough to use the control constraints.

Our future aim is to develop even more sophisticated and realistic models, e.g.

designing more realistic model functions depending on the trade cycle. Besides,

it should be noted, that the optimal control problem presented in this paper is

one of the rare problems published in literature that has four control variables

appearing linearly in the dynamical system. For such problems, second-order

suÆciency conditions are not yet known, which play an important role in the

development of real-time methods on the basis of a sensitivity analysis of the

underlying optimal control problem. Although, the demand for real-time so-

lutions of economical problems are not cogent, the problem may nevertheless

serve as test problem for the development of real-time methods.
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