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Summary: In the work the analitical method to calculate the ergodic
and difference matrices of finite state discouted Marcov decision processes
is presented. On the basis well - known literature the result for overall disco-
unted value, this one in interpretation of the calculated matrices is shown.
The obtained results gives a possibility to distinguish the constant and va-
riable parts of the overall discounted value.
The presented analitical method is illustrated by two simple examples. New
performance index to discounted optimal Markov control problem is propo-
sed.

1 Introduction

Marcov Decision Processes (MDP) are also called Controlled Marcov Processes
or Marcov Processes wiht reward since 1960, when Howard [25] introduced them,
ones became extremely attractive research tool and they found wide application
in different technical and research disciplines. From the beginning it can be ob-
served that the method is more and more improved [6, 9, 10, 11, 12, 16, 19].
The improvement concerns connections of Markov Processes with different me-
thods of mathematical programming [3, 10, 11, 12, 17, 20, 22, 24, 25, 29, 30, 34,
35, 38, 42], their optimization and searching of computational methods of diffe-
rent matrices which are connected with stochastic Marcov matrix of transitions.
Simultaneously with development of MDP (some scientists think that even ear-
lier) developed discipline which is connected with game theory, namely - stocha-
stic games [4, 5, 6, 15, 17, 21, 23, 28, 31, 33, 36, 37, 38, 40]. Quite not long
ago on the basis of two topics: stochastic games and Markov Decision Processes
arose new discipline connected with competition in Marcov Decision Processes
(so called Competitive Marcov Decision Processes) [18].
Especially practical importance for development of mentioned methods has the-
ory of irreducible Marcov Decision Chains with finite set of states and given
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discount factor β 1. This factor allows to calculate finite expected rewards which
appear during different economic – technical processes in long period of time (the-
oretically without time limit). This will happen in case if mathematical model
of these real processes is MDP.
Stochastic matrix of transitions P generates for irreducible Markov Chain with fi-
nite set of states very important matrices which can be used for analysis of these
processes: ergodic, fundamental and potential. Very simple and at the same time
strictly mathematical methods of calculation of these matrices in work [14, 18, 42]
are widely discussed. Presented methods are in most cases numerical iterative al-
gorithms which rely on Howard’s algorithms. It exists well – known analytical
method which calculates ergodic matrix for t→∞. But it is impossible to analy-
se the complete process with disturbances of the transient processs which happen
during initial development period of Markov Decision Process with or without
discount.
The goal of this paper is to present analytical method of calculation of ergodic
matrix and so called difference matrices of Discounted Finite States Markov De-
cision Chain.
It allows to analyse the total process in t ∈ [0,∞) range through separation of
two parts: constant which is represented by ergodic matrix and variable which is
represented by difference matrices.
The paper is organized as follows: In section 2 reminded readers derivation
of general formula for total expected rewards for t → ∞ , given matrix P
and β ∈ [0, 1). The derivation relies on known formula for total expected re-
wards if the input state was defined. In section 3 theorem about existing ergodic
matrix and connected with it difference matrices is formulated and proved. These
matrices always exist for β < 1. In section 4 two simple examples which illustra-
te computational method are solved. In section 5 new performance index used
for optimization Discounted Markov Decision Processes is interpreted.

2 Total expected reward with discount

We consider ergodic Marcov Chain with finite set of states N and given sto-
chastic matrix P = [pij], i, j = 1, N . We have also one – step matrix of re-
wards R = [rij], i, j = 1, N which is controlled by Markov Chain. Let νi (n),
i, j = 1, N , n = 0, 1, 2, . . . mean total process reward, if the input state was i-
th state. The system will be closed after n steps (transition). Then we can show

1Discounted factor β < 1 means that value of reward unit which was achieved in moment
t = k, in moment t = k + n has value βn.
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(see [18, 25]) that the following recurrent formula for rewards is correct

νi (n) =
N∑
j=1

Pij [rij + νj (n− 1)] . (1)

Other form of this formula is:

νi (n) =
N∑
j=1

pijrij +
N∑
j

pijνj (n− 1) , (2)

where

qi =
N∑
j=1

pijrij, (3)

as one-step reward of process.
Now we can write

νi (n) = qi +
N∑
j=1

pijνj (n− 1) . (4)

After taking discount factor β into consideration we receive:

νi(n, β) = qi + β
N∑
j=1

pijνj (n− 1) . (5)

Let us write this formulae as vector

ν (n, β) = q + β · P · ν (n− 1) , n = 0, 1, 2, . . . (6)

It is easy to notice that

ν (1, β) = q + βPν(0)
ν (2, β) = q + βPν(1) = q + βP (q + βPν (0)) = q + βPq + β2P 2ν (0)
.........................................................................
ν (n, β) = q + βnP nν(0) +

∑n−1
n=1 β

nP nq

 . (7)

Taking into consideration fact, that

q ≡ β0P 0q (8)
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we receive

ν (n, β) = βn · P n · ν (0) +
n−1∑
n=0

βn · P n · q. (9)

For n→∞ and β < 1 it follows to the next formula:

ν∞ (β) =
∞∑
n=0

βn · P n · q = (I − βP )−1 · q. (10)

Formula (10) allows to calculate total expected rewards if factor β and starting
state i = 1, . . . , N were given. We should pay attention to fact that this value
is finite for β < 1. This formula is well– known in literature and often used
for calculation of mentioned process rewards in long period of time in case if real
process can be modelled by means of MDP. We can optimize decision process
by means of formula (10) if we can choose different strategies of behaviour during
analysis of real process [18, 25]. The choice of optimal decision means choice at i-
th state of process so strategy of behaviour which gives maximum total expected
reward. As we know the fact can be achieved using iterative Howard’s algorithms
for recurrent process (or it later version).
Discussed formula does not allow to analyse the process during the whole inve-
stigated period of time t ∈ [0,∞).
This problem was solved for discrete and continuous Markov processes without
discount by Howard by means of z transformation (for discrete processes) and La-
place’a transformation (for continuos processes) for total rewards. After inverse
transformation new formulae in explicit depend on n. The dependence is a sum
of n–components. Ergodic matrix, which depends on n, is always the first com-
ponent. Next N − 1 components are named difference matrices and they also
depend on n. The sum of elements of each row for differential matrices is always
equal zero. For n → ∞, components approach zero. But the total expected re-
ward approaches in this case infinity.
Next we show analytical method of calculation of ergodic matrix and differen-
ce matrices for Discounted Markov Chain with irreducible stochastic matrix
P and finite set of states N which is based on approach proposed by Howard [25].
It allows to get finite total expected rewards ν∞ (β) which can be characterised
by two components: the first component represents finite part of constant reward
which is connected with ergodic matrix and the second component represents
finite part of variable reward which is connected with transient states of Mar-
kov Process. The part is a sum of rewards connected with difference matrices.
So we can now analyse quality of investigated Markov Processes by comparison
of constant and variable part of total reward in infinite period of time.
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3 Method of calculation of ergodic and differen-
ce matrices

We consider dependence for total discounted rewards given by formula (10) again.

ν∞ (β) = (I − βP )−1 · q. (11)

It is not difficult to notice, that

(I − βP )−1 =
1

det (I − βP )
(I − βP ) ad, (12)

where (I − βP ) ad is an algebraically complement of matrix (I − βP ). Next
we can write

(I − βP ) ad = [Dji (β)] , i, j = 1, N (13)

where Dji (β) = (−1)j+i ·Mji (β), and Mji (β) is a minor of matrix (I − βP )T ,
hence

(I − βP )−1 =
[Dji (β)]

det (I − βP )
. (14)

Theorem:
Let determinant of matrix (I − βP ) have real and singular roots, then for each
stochastic matrix P and factor β < 1 exist such αk 6= 0, k = 1, 2, . . . , N that true
is the following formula:

(I − βP )−1 =

[
D1
ji

]
(1− α1β)

+

[
D2
ji

]
(1− α2β)

+ . . .+

[
DN
ji

]
(1− αNβ)

, (15)

where

det (I − βP ) = (1− α1β) (1− α2β) . . . (1− αNβ) . . . , (16)
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and

Dk
ji, k = 1, 2, 3, . . . , N , are constant factors different from zero.

Proof:
From linear algebra results, that the determinant of matrix (I − βP ) always exist,
it is bigger than zero and it is a polynomial of N - degree. Each polynomial of N -
degree has exactly N different real roots. Hence we can show det (I − βP ) in form
(16). Let prove (15) and write this formula in the following form:

[Dji (β)]
det (I − βP )

=

[
D1
ji

]
(1− α1β)

+

[
D2
ji

]
(1− α2β)

+ . . .+

[
DN
ji

]
(1− αNβ)

. (17)

This formula shows decomposition of the left side of dependence (17) into sum
of N partial fractions. Such a decomposition is always possible. If we want to cal-
culate values of factors Dk

ji, k = 1, 2, 3, . . . , N , we should solve (N ×N) systems
of equations:

Dji (β)
det (I − βP )

=
D1
ji

1− α1β
+

D2
ji

1− α2β
+ . . .+

DN
ji

1− αNβ
, i, j = 1, N (18)

it means

Dji (β)
det (I − βP )

=
D1
ji (1− α2β) . . . (1− αNβ) +D2

ji (1− α1β) (1− α3β) . . .
det (I − βP )

. . . (1− αNβ) + . . .+DN
ji (1− α1β) (1− α2β) . . . (1− αN−1β)
det (I − βP )

.

After rejection of denominators of both sides we compare factors which stand in
front of the same powers β,

(
β0, β1, . . . , βN−1

)
of the left and right side of nume-

rators.
So each element of matrix

[Dji (β)]
det (I − βP )

=
[

Dji (β)
det (I − βP )

]
, i, j = 1, N
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was decomposed into N component forms:

[Dji (β)]
det (1− αkβ)

, k = 1, 2, 3, . . . , N.

It can be shown, that |Dij|k < 1 and even values express probability and α1 ≡ 1.
Next connecting so received N elements on condition equal factors (1− αKβ),
we create N separate (N ×N) matrices. The first matrix is ergodic matrix pro-
ducted by 1/ (1− β). For irreducible ergodic Markov Chain, this matrix will be con-
structed from the same rows.
Next N − 1 matrices will be difference matrices, each different and elements will
be divided by factors (I − αkβ), k = 2, 3, 4, . . . , N .
Now the formula for total rewards can be written in the following form:

ν∞ (β) =
(

1
1− β

[
D1
ji

]
+

1
1− α2β

[
D2
ji

]
+ . . .+

1
1− αNβ

[
DN
ji

])
· q. (19)

Next we consider and solve two simple examples, which show application of pre-
sented method.

4 Examples

Example 1
Let P be one-step stochastic matrix of transition of irreducible Markov Chain
with finite set of states N . Let N = 2 and let matrix P have the following form
[25]:

P =
[

0, 5 0, 5
0, 4 0, 6

]
.

Matrix of rewards R is also given,

R =
[

9 3
3 −7

]
.
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Hence

q =
[

6
−3

]
.

After some easy transformation we receive:

(I − βP ) =
[

1− 0, 5β −0, 5β
−0, 4β 1− 0, 6β

]
,

(I − βP )T =
[

1− 0, 5β −0, 4β
−0, 5β 1− 0, 6β

]

and

(I − βP )−1 =
1

det (I − βP )

[
1− 0, 6β 0, 5β

0, 4β 1− 0, 5β

]
,

det (I − βP ) = (1− 0, 5β) (1− 0, 6β) = 1− 11
10
β +

β2

10
= (1− β) (1− 0, 1β) .

Finally

(I − βP )−1 =

 1−0,6β
(1−β)(1−0,1β)

0,5β
(1−β)(1−0,1β)

0,4β
(1−β)(1−0,1β)

1−0,5β
(1−β)(1−0,1β)

 .

Now as an example, we decompose into partial fractions the first element of ma-
trix (1− βP )−1.
We receive:

1− 0, 6β
(1− β) (1− 0, 1β)

=
D1

11

(1− β)
+

D2
11

(1− 0, 1β)
=

4
9

(1− β)
+

5
9

(1− 0, 1β)
,

because

1− 0, 6β = D1
11 (1− 0, 1β) + (1− β)D2

11.
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In this same way, we decompose the other three elements of matrix and we rece-
ive:

(I − βP )−1 =


4
9

(1−β) +
5
9

(1−0,1β)

5
9

(1−β) + − 5
9

(1−0,1β)
4
9

(1−β) + − 4
9

(1−0,1β)

5
9

(1−β) +
4
9

(1−0,1β)

 .

Finally formula (15) becomes the following form:

(I − βP )−1 =
1

(1− β)

[
4
9

5
9

4
9

5
9

]
+

1
1− 0, 1β

[
5
9 −

5
9

−4
9

4
9

]
.

We can check that the first matrix with factor 1/ (1− β) is ergodic matrix of Mar-
kov Process for given stochastic matrix of transition P . The second matrix is so
named difference matrix. The sum of elements is equal zero in rows of this matrix.
Taking formula (19) into consideration, we receive total finite expected reward:

ν∞ (β) =
(

1
(1− β)

[
4
9

5
9

4
9

5
9

]
+

1
1− 0, 1β

[
5
9 −

5
9

−4
9

4
9

])
· q.

Now we can find value ν∞ (β) for two different β, β1 = 0, 5 and β2 = 0, 99.
After providing of values and simple calculations we receive:

ν∞ (0, 5) =
(

2
[

4
9

5
9

4
9

5
9

]
+ 1, 052

[
5
9 −

5
9

−4
9

4
9

])
·
[

6
−3

]
.

Hence we obtain for the starting state and n→∞

ν1,∞ (0, 5) = 2 · 1 + 1, 052 · 5 = 7, 260,
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and for the second state

ν2,∞ (0, 5) = 2 · 1− 1, 052 · 4 = −2, 208.

For β = 0, 99 we obtain

ν∞ (0, 99) = 100
[

1
1

]
+
[

5
−4

]
,

and

ν1,∞ (0, 99) = 100 + 5 = 105,

ν2,∞ (0, 99) = 100− 4 = 96.

Example 2
Let N = 3 and

P =

 0 1 0
1 0 0
0 0, 5 0, 5

 , R =

 9 8 3
3 −7 −2
5 −9 3

 .

Hence

q =

 −8
3
−3

 .

Further calculations give us the following results:

(I − βP ) =

 1 β 0
−β 1 0

0 0, 5β 1− 0, 5β

 ,
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det (I − βP ) = (1− 0, 5β)
(
1− β2

)
= (1− β) (1 + β) (1− 0, 5β)

(I − βP )−1 =


1

1−β
β

1−β2 0
β

1−β2
1

1−β2 0
0,5β2

(1−β2)(1−0,5β)
0,5β2

(1−β2)(1−0,5β)
1

1−0,5β

 =
1

1− β

 0, 5 0, 5 0
0, 5 0, 5 0
0, 5 0, 5 0

+

+
1

1 + β

 0, 5 −0, 5 0
−0, 5 0, 5 0

1
6 −1

6 0

+
1

1− 0, 5β

 0 0 0
0 0 0
−2

3 −
1
3 1

 .

Hence

ν∞ (β) = (1− β · P )−1 q =
(

1
1− β

[.] +
1

1 + β
[. . .] +

1
1− 0, 5β

[. . .]
)
·

 8
3
−3

 =

=
1

1− β

 5, 5
5, 5
5, 5

+
1

1 + β

 2, 5
−2, 5

5
6

+
1

1− 0, 5β

 0
0

−28
3

 .

Now we can calculate total finite expected rewards for given values β, β1 = 0, 5
and β2 = 0, 99. For β1 = 0, 5 we obtain

ν∞ (0, 5) =
1

1− 0, 5

 5, 5
5, 5
5, 5

+
1

1 + 0, 5

 2, 5
−2, 5

5
6

+
1

1− 0, 5 · 0, 5

 0
0

−28
3

 ,

and next

ν1,∞ (0, 5) = 2 · 5, 5 + 0, 666 · 2, 5 + 1, 333 · 0 = 11 + 1, 666 + 0 = 12, 666,

ν2,∞ (0, 5) = 2 · 5, 5− 0, 666 + 0 = 9, 334,
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ν3,∞ (0, 5) = 11 + 0, 666 · 5
6

+ 1, 333 ·
(
−28

3

)
= 11 + 1, 388− 12, 441 = −0, 053.

Finally

ν∞ (0, 5) =

 12, 666
9, 334
−0, 053

 .
For β2 = 0, 99 we obtain

ν∞ (0, 99) =
1

1− 0, 99

 5, 5
5, 5
5, 5

+
1

1 + 0, 99

 2, 5
−2, 5

5
6

+
1

1− 0, 5 · 0, 99

 0
0

−28
3

 =

= 100

 5, 5
5, 5
5, 5

+ 0, 502

 2, 5
−2, 5

5
6

+ 1, 980

 0
0

−28
3



and the result

ν1,∞ (0, 99) = 100 · 5, 5 + 0, 502 · 2, 5 + 1, 980 · 0 = 550 + 1, 255 + 0 = 551, 255,

ν2,∞ (0, 99) = 100 · 5, 5− 0, 502 · 2, 5 + 0 = 548, 745,

ν3,∞ (0, 99) = 550 + 0, 502 · 5
6

+ 1, 980 · 28
3

= 531, 938.

Finally

ν∞ (0, 99) =

 551, 255
548, 745
531, 938

 .
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5 Conclusions and comments

Identical results would be obtained for ν∞ (β) if we use directly formula (10)
(passing over difficulties connected with inverse matrix (I − βP )) . Using formu-
la (19) we can separate two components of total reward; a constant component
connected with 1/ (1− β) factor and ergodic matrix and variable component
which represents this part of ν∞ (β) which arises under the influence of unste-
ady transient process. Effect of this process is especially visible during the initial
phase of Markov Decision Process. Value of this part of component of quantity
ν∞ (β) rises along with decrease of discounted factor β and increase of disturban-
ces which are generated by matrix P . Two presented examples show it.
We can create, relying on above observations, a performance index of tested Di-
scounted Markov Decision Processes. Let ν1

∞ (β) mean component which stand
in front of 1

(1−β) , and νk∞ (β), k = 2, 3, . . . , N mean components which stand in
front of 1

1−αKβ
. Then performance index of mentioned Markov Chain can have

the following form:

J (β) = [Ji (β)] =
[∑

K=2,3,... ν
K
∞,i (β)

ν1
∞,i (β)

]
. (20)

From definition of coefficient J (β) for given β results that when absolute value
of this coefficient is more close zero, then better properties have tested Markov
Process. For presented two examples, values of coefficients amount to:

J (0, 5) =

 0, 151
−0, 151
−1, 005

 , J (0, 5) =
[

2, 630
−2, 104

]
,

J (0, 99) =

 0, 002
−0, 002
−1, 032

 , J (0, 99) =
[

0, 05
−0, 04

]
.

We observe that given stochastic matrix P always generates the same transient
process for n = 0, 1, 2 (it means P n). It results from calculation that effect of the
process depends on value of β. Hence optimisation of Discounted Markov Deci-
sion Process can rely on selection of adequately large factor β for given quality
coefficient. But usually β is given and depends on different economic–technical
conditions. Then optimisation MDP can rely on selection of adequately matrix
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P , it means, the control strategy should minimize quality coefficient if the factor
β is given.

These aspects mentioned above will be a subject area of next papers. It results
from analyses of MDP some conclusions:

1. Formula (19) allows to calculate in analytical way value of total reward
νk∞ (β) without difficult process of reverse of the matrix (I − βP ). Reverse
of matrices using computer technology goes on in iterative way. The number
of iteration rises along with the size N of matrix rapidly. It leads to loss of
calculation’s accuracy.

2. Proposed analytical method of calculation of ergodic and difference matri-
ces gives us the possibility of selection of two components of total reward.
It increases the possibility of analysis of Discounted Markov Decision Pro-
cess.
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