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Abstract

The paper considers stochastic dynamic optimization problems where a tentative

numerical solution has been found. It uses the Euler residuals along simulated

paths of the model to estimate the accuracy of the proposed solution. The main

measure of accuracy is the the reduction in the criterion function from using the

numerical rather than the exact solution. The method can also be used to estimate

the approximation error of the policy function. The method is applied to the one-

dimensional stochastic growth model, where it is shown to provide quite precise

estimates of the errors in the value and the policy function.
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1 Introduction

With the necessity to solve higher dimensional optimization problems, economists resort

more and more to approximative numerical methods whose accuracy properties are not

well known. It therefore seems necessary to analyze the accuracy of a proposed solution

in each speci�c case, to make sure that it is su�cient for the problem at hand. Often

there are several numerical solution procedures available, and the task is to choose the

best one.

For the evaluation of numerical solutions, it is natural to make use of the Euler resid-

uals (Judd 1992). Since Euler equations are a fundamental tool in economic analysis,

economists can probably interpret Euler residuals more easily than other error statis-

tics. Den Haan and Marcet (1994) use the Euler residuals to construct a test for the

null hypothesis that the numerical solution is identical to the exact solution. However,

in that paper they do not try to measure the magnitude of the deviation between the

exact and the numerical policy. Santos (1999) derives theoretical relationships between

the size of the Euler residuals and the deviations of the policy function and the value

function from their exact values. The derived relationship is in the supremum norm of

these variables.

The present paper follows Santos (1999) in measuring the approximation error in

the policy and the value function, but it is complementary to that paper in the sense

that it does not estimate the supremum (or maximum) of the error over the state space,

but either the error at a particular point in the state space or the average error over

a part of the state space. In particular, the paper focuses on the loss in the objective

function that results from using the numerical rather than the exact solution. While

Santos (1999) mainly derives theoretical bounds that are easy to compute but relatively

loose, the present paper uses methods that are more computer intensive but give tight

estimates.

Computing average errors rather than error bounds in supremum norms is somewhat

unusual and deserves some further discussion. Both the \supremum approach" and

the \average approach" have their advantages. The supremum approach gives us the

highest level of con�dence in a method, if we can actually show that the supremum of

the approximation error is below some required threshold level. This is probably the

reason why it plays a dominant role in error analysis. The disadvantage is that the

supremum approach may often be non-operational if the accuracy of the solution at

hand is not very high. Accuracy measures in supremum norms are very conservative.

First because the nature of supremum arguments makes that the estimated supremum

error is often much bigger (by one or two orders of magnitude) than the true supremum

error (cf. Section 2). Second, the supremum error criterion itself may be too demanding.

Consider a numerical solution that provides the approximately right policy in almost

all circumstances, but makes substantial mistakes under some circumstances. If these

circumstances are very unlikely to ever occur, this numerical method may be easily good

enough for a given purpose. In the same spirit, if we have to decide between two methods

to use, it is not clear whether we should prefer the one with the lower supremum error

or with the lower average error.

To clarify the latter point, it might be useful to distinguish the perspective of the

agent who has to solve the problem (which I will call the \internal" perspective), from

the perspective of a scientist who tries to describe, predict or interpret the behavior of

an agent who solves such a problem. I will call this the \external" perspective. From
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the internal point of view, the criterion of evaluation is clear: the method is better

that obtains the higher value of the objective function, given the initial condition of the

agent. If the same algorithm is used in many occasions, one should average the obtained

value over the di�erent (expected) initial conditions.

An external observer may have very di�erent criteria to judge a solution. One such

criterion may be the supremum norm. However, the application of these criteria requires

that the observed agent itself (the object of study) uses an algorithm that is either exact

or at least close to the exact algorithm in terms of the external observer's criteria. This

is a strong requirement; if it is not met, or if the external observer does not have very

clear criteria, it appears most natural to judge methods by the internal view.

The plan of the paper is as follows. Section 2 provides a heuristic discussion of the

relationship between Euler residuals and approximation errors. Section 3 describes the

class of optimization problems that we are going to study. Section 4 derives estimates

of the approximation error in the value function, while the error in the policy function

is treated in Section 5. Numerical examples are provided in Section 6, and Section 7

concludes.

2 Euler residuals and approximation errors

The method of the present paper makes essential use of the Euler residuals. The purpose

of this section is therefore to gain some intuitive understanding about the relationship

between the Euler residuals and the approximation error.

One potential problem is that the Euler equation alone is not a su�cient condition

for a solution. An optimization problem usually has in�nitely many paths that satisfy

the Euler equation, i.e., have zero Euler residuals. Fortunately, this is not as big a

problem as it seems, since the Euler equation together with a transversality condition

are su�cient (Stokey and Lucas 1989, Theorem 4.15). This implies that a non-optimal

solution which satis�es the Euler equation violates the transversality condition, and this

means that, at some point in time, it will do something that is either very obviously non-

optimal (in the consumption problem, letting the ratio of consumption to capital go to

zero) or impossible (negative capital, growing at the rate of interest). Since a reasonable

numerical method excludes both types of cases, the inaccuracy of the solution will sooner

or later show up in the Euler residuals. We will detect the inaccuracy if we keep track

of the Euler residuals over time.

Unfortunately, in order to get a precise estimate of the approximation error, it is not

enough to look at the maximum Euler residual. Let us illustrate this at a very simple

case. Consider the deterministic �nite horizon consumption problem with interest rate

and discount factor equal to zero. The household maximizes

TX
t=1

u(ct) (1)

with u
0(c) > 0 and u

00(c) < 0, subject to the constraint

TX
t=1

ct = K (2)
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with given initial capital K. The Euler residual for this problem is

u
0(ct)� u

0(ct+1) (3)

and the optimal consumption path is

ct = c
� = K=T (4)

Now assume that T is even and consider two small deviations from the optimal policy

(cf. Figure 1)

C
1

t =

(
c
�
�

1

2
� for t odd

c
� + 1

2
� for t even

(5)

C
2

t = c
� + �

�
t�

T + 1

2

�
(6)

for small �. Both policies satisfy the budget constraint (2). Up to a quadratic approxi-
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Figure 1: Example: �nite horizon consumption problem

mation about c�, the Euler residual for both policies and all t is given by Rt = u
00(c�)�,

but the maximal approximation error of the policy function is 0:5� for C1

t and T�1
2
� for

C
2

t . The loss in value is T
8
ju
00(c�)j�2 for C1

t and ju00(c�)j
PT
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2
�
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2

�
2
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t .

The second policy has a much bigger error, because the mistake at a given point,

as measured by the Euler residual, steadily adds up over time, while in the �rst policy

the errors tend to cancel over time. This shows that there is no functional relationship

between the maximum of the Euler residuals and the maximal approximation error. A

theory that relates maximal Euler residuals to approximation errors will in most cases

substantially overestimate the approximation error, since it has to account for the worst

possible case (cf. the results in Santos, 1999, Section 4.3). If we want to obtain exact

error estimates based on Euler residuals, we therefore have to monitor the Euler residuals
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systematically over time. The next section will describe a method which does exactly

this.

Note also that, with a given maximal Euler residual, the policy can deviate the more

from the optimal policy, the longer the time horizon. In an in�nite horizon problem,

long time horizon should be interpreted as low discount factor, which explains the role

of the discount factor in (Santos 1999, Theorem 3.3).

3 The Model

In this paper, we consider optimization problems of the form

max
u0;u1;:::

E0

1X
t=0

�
t
F (xt; ut; zt) (7a)

subject to

xt+1 = ut + g(zt+1); Et g(zt+1) = 0 (7b)

ut 2 �(xt; zt) (7c)

x0 2 X given (7d)

and the transversality condition

E0 lim
t!1

�
t
F1(xt; ut; zt) � xt = 0 (7e)

Here, xt is a vector of endogenous state variables from the state space X, ut is a vector of

control variables, and zt+1 is a vector of exogenous random variables that satisfy a law of

motion which need not be speci�ed at the present stage. The random vector can appear

in the objective function as well as in the dynamic equation, with the requirement that

Et g(zt+1) = 0. In other words, the dynamic equation (7b) is written such that the

control ut is the expected value of next period's state vector, which simpli�es notation,

The function F is assumed to be measurable, and three times continuously di�erentiable

in (xt; ut) for all zt. We also assume that F is strictly concave in x and u, which means

that

Ht �

�
F11;t(xt; ut; zt) F12;t(xt; ut; zt)

F21;t(xt; ut; zt) F22;t(xt; ut; zt)

�
(8)

is strictly negative de�nite for all (xt; ut). This implies that the Euler equation together

with the transversality condition (7e) is su�cient for an optimum.

The set of feasible controls �(xt) is assumed to be convex for all xt. In most of this

paper we assume that the exact as well as the proposed numerical solution are inner

solutions to this problem (cf. Santos, 1999, Section 2 for a discussion of this assumption).

Section 4.4 will deal with the case of occasionally binding constraints.

We assume that the state space X is compact. Economic models are often de�ned

on unbounded state spaces, but for numerical solutions it is usually necessary to rewrite

the model in such a way that it can be well approximated on a bounded space. We take

the bounded approximation as given and do not consider the approximation error that

may result from approximating an unbounded problem on a bounded space. Since X

is compact, the continuity of F and its derivatives implies that they are bounded. We

also assume that the policy function is bounded.
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Formulation (7) is of course not the most general stochastic optimization model, but

it encompasses most of the models studied in macroeconomics. More general models do

not always have an Euler equation, while for the above model we have the simple Euler

equation

Rt+1 � F2 (xt; ut; zt) + � Et F1 (xt+1; ut+1; zt+1) = 0 (9)

As argued above, the Euler residual Rt+1 will not be exactly zero for numerical solutions.

The numerical residuals will form the basis for the estimation of the errors in the value

and policy function.

4 Estimating the error in the value function

We assume that a numerical solution for the problem (7a) is provided, and our task is

to estimate the size of the approximation error of this solution. Of course, we do not

assume to know the exact solution. We mostly concentrate on accuracy measured in

terms of the objective function, more precisely, on the decrease in the objective function

that results from using the approximate rather than the exact solution. Section 4.2

provides an upper bound to the error. In the numerical examples given below, we will

se that this upper bound is rather tight. Section 5 will discuss the problem of measuring

the error in the policy function.

4.1 Introduction: the deterministic case

This section discusses briey and somewhat heuristically the deterministic case. This

will provide some intuitive understanding of the accuracy estimates, even if we will later

see that the analysis in the stochastic case di�ers substantially from the deterministic

analysis.

Consider the deterministic version of the model with criterion function F (xt; ut) and

xt+1 = ut. Assume we have simulated the path x̂t, for t = 0; : : : ; T , by the numerical

solution, starting from x̂0 = x0. Assume that the model is stable and that the simulated

path converges at least approximately to the true stationary state. We can then choose

T large enough so that what happens after time T is irrelevant, given a required degree of

accuracy. The loss in accuracy from using the numerical rather than the exact solution

is therefore approximately (means, to the required degree of accuracy) equal to the loss

that we make in choosing a suboptimal path from x0 to x̂T . This loss can be computed

by solving the problem

max
�1;�2;:::

TX
t=0

�
t
F (x̂t + �t�1; x̂t+1 + �t)� F (x̂t; x̂t+1) (10)

subject to

�t + x̂t+1 2 �(�t�1 + x̂t) (11a)

��1 = 0 (11b)

�T = 0 (11c)

Here, �t is the time t policy error. The value function of this problem at x0 gives us the

value loss from the numerical solution.
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Of course, problem (10) is just a �nite horizon version of problem (7a) and not easier

to solve. However, if the numerical solution x̂t is already close to the true solution, the

above problem can be substituted by the locally quadratic approximation

max
�0;�1;:::

TX
t=0

�
t

�
F
0

1
(x̂t; x̂t+1)�t�1 + F

0

2
(x̂t; x̂t+1)�t +

1

2

�
�t�1

0
; �t

0
�
Ht

�
z
t
���t�1

�t

��
(12)

where prime denotes transposition and Ĥt is the Hessian of F (xt; xt+1) at (x̂t; x̂t+1). This

problem can be easily solved by backward induction, by the usual Riccati equations. The

procedure gives an estimate of the policy error �t�1 as well as the value loss from the

approximation. (By iterating the quadratic approximation, we would probably converge

to the exact solution, but this is not our concern here.)

From this we learn two things. First, computing the approximation error along a

simulated path is a much simpler task than solving the optimization problem (imagine

the problem is nonlinear and high-dimensional). Second, the accuracy with which we

can estimate the approximation error depends itself on the accuracy of the numerical

solution, because it determines the accuracy of the locally quadratic approximation (12).

This will be made more precise in the next section.

4.2 General theory: an upper bound

From now on we deal with the general model of Section 3. Again, we follow the idea of

estimating the approximation error along realized paths. One might �rst think that the

analysis of the deterministic case can be carried over to the stochastic model by solving

the stochastic version of the locally quadratic approximation along a realized path. This

is not the case, for the following reason. The solution to a dynamic optimization model

always has to take into account what happens o� the realized path. In a deterministic

model, it is su�cient to consider small deviations from the given path. In a stochastic

model, the existence of (generally not small) random shocks force us to consider large

deviations from a realized path, and these can, in general, not be well approximated

by a quadratic function, even if we assume that the simulated path �t is close to the

optimal path. The following computations will therefore be based on a more complicated

argument; nevertheless, quadratic approximations will play a decisive role.

We �rst introduce some notation. A realized path of the numerical solution will

always be denoted by x̂t. Such a path depends on the (given) initial value x0 and a

realization of the shocks z0; z1; : : : . Let us denote the history of shocks z0; z1; : : : ; zt by

z
t. Because of the Markov structure of the problem, the optimal policy u�t is a function

of the vector of state variables. We also assume that the policy ût provided by the

numerical solution is a function of the state vector. This also implies that, with a �xed

initial state x0, the variables x�t , u
�

t , x̂t and ût are a function of the history of shocks

z
t. All expectation operators should be understood as referring to the distribution of

the shocks z0; z1; : : : . Formally, the operator Et means expectation w.r.t. the �-algebra

generated by z
t. We will say that a random variable is t-measurable to express that it

is a function of zt.

We now de�ne the policy error �t
�
z
t
�
= u

�

t

�
z
t
�
� ût

�
z
t
�
. The notation stresses the

fact that we understand �t as a function of the history of shocks zt, not of the current

state vector. From (7b) it follows that the optimal state x
�

t satis�es x�t = x̂t + �t�1.

The �rst and second partial derivatives of the objective function along a simulated path
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x̂t are denoted by F1;t, F11;t etc. They should also be understood as random variables

depending on z
t.

Using this notation, we can now de�ne the approximation error � of the value

function as

� � E0

1X
t=0

�
t
h
F (x�t ; u

�

t ; zt)� F (x̂t; ût; zt)
i

Analogous to the last section, consider the program

�trunc = max
�1;�2;:::

TX
t=0

�
t
F (x̂t + �t�1; x̂t+1 + �t; zt)� F (x̂t; x̂t+1; zt+1) (13)

subject to (11a), (11b) and

�T (z
T ) = 0 (14)

The di�erence between � and �trunc satis�es

k���trunc
k � E0 �

T+1
�
kv
�
x
�

T+1

�
� v (x̂T+1) k+ kv (x̂T+1)� w (x̂T+1) k

�
(15)

where v(x) is the (exact) value function at point x, and w(x) is the value reached under

the policy of the numerical solution. The boundedness of F shows that this term goes

to zero for T ! 1, so we can concentrate on measuring �trunc rather than � if we

choose T large enough. We proceed in three steps. First, we derive a simple expression

for �trunc, based on a quadratic approximation. Second we show a way to compute an

upper bound to this quadratic approximation based on an estimate of the policy error.

Third, we show how to obtain an estimate of the policy error.

Step 1: Quadratic approximation to �trunc

From now on, denote by �t the solution to program (13). Since the optimal policy is

bounded, we can de�ne

� = sup
t;zt

k�t(z
t)k (16)

We now use a Taylor approximation of the terms in brackets about x̂t. Since the third

partial derivatives of F are bounded, Taylor's theorem shows that

�appr
� E0

TX
t=0

�
t
h
F1;t�t�1 + F2;t�t +

1

2

�
�
0

t�1F11;t�t�1 + 2�0t�1F12;t�t + �
0

tF22;t�t

�i
� �trunc

�O
�
�
3
�

(17)

In the following, we use the Euler equation to obtain a simpler expression for �appr.

Along any path z
T+1, the approximation errors �t satisfy

F2 (x̂t + �t�1; ût + �t; zt) + � Et F1 (x̂t+1 + �t; ût+1 + �t+1; zt+1) = 0 (18)

Using again Taylor's theorem, we obtain the approximation

F2;t + F21;t�t�1 + F22;t�t + � Et (F1;t+1 + F11;t+1�t + F12;t+1�t+1) = O
�
�
2
�

(19)
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If we premultiply (19) by �
0

t, use the fact that �t is a function of zt so that �0t Et(x) =

Et [�
0

tx] (Billingsley 1986, Theorem 34.3) for any vector of random variables x, take

expected values and use the law of iterative expectations, we get

E0

h
�
0

tF2;t + �
0

tF21;t�t�1 + �
0

tF22;t�t

+ �
�
�
0

tF1;t+1 + �
0

tF11;t+1�t + �
0

tF12;t+1�t+1

� i
= O

�
�
3
�

(20)

This expression can be used to simplify (17) if we apply the following reordering of

terms:

TX
t=0

�
t
�
�
0

t�1F11;t�t�1 + 2�0t�1F12;t�t + �
0

tF22;t�t

�

=

T�1X
t=0

�
t
�
�
0

tF21;t�t�1 + �
0

t (F22;t + �F11;t+1) �t + ��
0

tF12;t+1�t+1

�
+ �

0

�1
F11;0��1 + �

0

�1
F12;0�0 + �

T
�
�
0

TF21;T �T�1 + �
0

TF22;T �T

�
(21)

If we multiply (20) by �t, sum up for t = 0; : : : ; T�1, and subtract it from the summation

term in (17), applying (21) and ��1 = 0, we see that

�appr = �

1

2
E0

TX
t=0

�
t
�
�
0

t�1F11;t�t�1 + �
0

t�1F12;t�t + �
0

tF21;t�t�1 + �
0

tF22;t�t

�

+ E0 �
T
h
F2;T �t +

�
�
0

tF21;T �t�1 + �
0

tF22;T �t

�i
+O

�
�
3
�

(22)

Therefore, if we choose � large enough so that the last terms in (22) are su�ciently

small, our task reduces to estimating the quadratic term in (22), which we denote by

�qu and write as

�qu
� �

1

2
E0

TX
t=0

�
t
�
�t�1

0
; �t

0
�
Ht

�
�t�1

�t

�
(23)

using the notation

Ht =

�
F11;t F12;t

F21;t F22;t

�

The concavity assumption made in Section 3 means that (23) is a positive de�nite

quadratic form, and the estimated value gain �qu is nonnegative.

Step 2: Computing an upper bound for �qu using an estimate of �t

In the stochastic model, we cannot \compute" the �t's, not even for a given realization

of zT . This is apparent from Equ. (19), which can be slightly rearranged as

Rt+1 + F21;t�t�1 + (F22;t + � Et F11;t+1) �t + � Et [F12;t+1�t+1] = O
�
�
2
�

(24)

The Euler residual Rt+1 can be measured, but the expectation � Et [F12;t+1�t+1] can-

not, because it requires the values of �t+1 o� the realized path. To compute �0 to �T

recursively, the values of � at all realizations starting from x0 are required.
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However, we will see below that we can use Equ. (24) to obtain an estimate of �t,

which we denote by ��t. If we compute formula (23) with ��t rather than �t, we obtain

�ub
� �

1

2
E0

TX
t=0

�
t
�
��0t�1;

��0t
�
Ht

�
��t�1
��t

�
(25)

If we denote the error in estimating �t by ~�t = �t �
��t, we can write

�ub = �

1

2
E0

TX
t=0

�
t

��
�t�1 �

~�t�1

�
0

;

�
�t �

~�t

�
0

�
Ht

�
�t�1 �

~�t�1
�t �

~�t

�
(26)

= �qu +�cross
��esterr (27)

where

�cross
� E0

TX
t=0

�
t
�
�t�1

0
; �t

0
�
Ht

�
~�t�1
~�t

�
(28)

�esterr
�

1

2
E0

TX
t=0

�
t
�
~�0t�1;

~�0t

�
Ht

�
~�t�1
~�t

�
(29)

We therefore reach the conclusion that �ub
� �qu if we can show that �cross is equal

to zero. In other words, under this condition, �ub is an upper bound for �qu. Note

that we can compute �ub from (25) by Monte-Carlo techniques, to any desired degree

of accuracy. The details of the computation are developed in Section 4.3.

Step 3: Estimating �t

To form an estimate ��t of �t, we start from (19). We replace Et F1;t+1 by an estimate

F
e
1;t+1 that has the property Et F

e
1;t+1 = Et F1;t+1. As discussed above,

Et [F11;t+1�t + F12;t+1�t+1] is not available, so we simply ignore the expectation operator

Et and use [F11;t+1�t + F12;t+1�t+1] (but note that the realization can be interpreted as

an unbiased estimate of its expected value). Then we obtain the second order di�erence

equation

F2;t + F21;t
��t�1 + F22;t

��t + �
�
F

e
1;t+1 + F11;t+1

��t + F12;t+1
��t+1

�
= 0 (30)

For a given realization of the series x̂t, we can compute the estimates ��t from Equ. (30)

and the boundary conditions

���1 = 0 (31a)

��T = 0 (31b)

which are natural since ��1 and �T are zero by construction. The following remarks

should clarify some of the properties of this estimate.

1. The expression F2;t + �F
e
1;t+1 is an estimate of the Euler residual F2;t + � Et F1;t+1.

We do not require to measure the Euler residual precisely, but we will get a better

estimate if we do so.

2. If the estimated Euler residual is zero for all t, the estimated error ��t is zero for all

t.
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3. We make an error in estimating �t mainly because we ignore the expectation operator

and replace this part by the realized values. The error will be bigger, the larger is

the variance of [F11;t+1�t + F12;t+1�t+1] conditional on t.

4. ��t depends on the whole realization x0; : : : ; xT , so ��t is not t-measurable.

It remains to show that the error ~�t = �t �
��t has the property that the term �cross

in (28) is equal to zero. Subtracting (30) from (19) gives

F21;t
~�t�1 + F22;t

~�t + � Et (F1;t+1 + F11;t+1�t + F12;t+1�t+1)

� �
�
F

e
1;t+1 + F11;t+1

��t + F12;t+1
��t+1

�
= 0 (32)

Conditioning on t we see that

Et

h
F21;t

~�t�1 + F22;t
~�t + �

�
F11;t+1

~�t + F12;t+1
~�t+1

�i
= 0 (33)

Premultiplying (33) by �
0

t, using again �
0

t Et(x) = Et [�
0

tx], and taking expectations E0,

we get

E0

h
�
0

tF21;t
~�t�1 + �

0

tF22;t
~�t + �

�
�
0

tF11;t+1
~�t + �

0

tF12;t+1
~�t+1

� i
= 0 (34)

If we multiply (34) by �
t, sum up for t = 0; : : : ; T � 1, and use the reordering (21), we

obtain

E0

TX
t=0

�
t

��
�t�1

0
; �t

0
�
Ht

�
~�t�1
~�t

��
= �

T
�
0

TF21;T
~�T�1 (35)

So �cross is zero except for a term that goes to zero for large T (since �T and ~�T�1 are

bounded).

Finally, I would like to point out why we have to use F11;t+1 and F12;t+1 in formula

(30) and not Et[F11;t+1] and Et[F12;t+1]. Since neither ��t nor �t+1 are t-measurable,

both variables may be correlated with F11;t+1 or F12;t+1, and replacing these variables

by their time t expectations would not allow us to derive formula (33).

The calculations of this section are summarized by the following theorem.

Theorem 1. If ��t is de�ned by Equ. (30) and the boundary conditions (31), then

�ub
� ��O

�
�
3
�
�K�

T

holds for some constant K.

Theorem 1 is the main theoretical result of this paper. It shows that even in the

stochastic case, the estimated errors along realized paths can be used to estimate an

upper bound of the approximation error of the value function. The numerical results of

section Section 6.2 will show that these upper bounds are rather tight.

It may be useful to list all sources of error that come into play in estimating � by

�ub:

1. The error from the quadratic approximation of F about x̂t, and from the linear

approximation of the Euler equation about x̂t, which together give an error which is

O
�
�
3
�
.
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2. The truncation error K�
T from the �nite horizon of the simulation.

3. The sampling error in the simulation.

4. Imprecise measurement of the Euler residual.

5. The quadratic term �esterr.

The errors 3, 4 and 2 can be made arbitrarily small by increasing the computational

e�ort, using longer time horizons, more simulations etc. The error 1 depends on the

nonlinearity of the model. It is a cubic function of the maximal deviation of the sim-

ulation, so it disappears when the numerical solution goes to the exact solution. The

error 5 cannot be decreased by doing more simulations etc., and it is quadratic in the

maximal deviation, just as �ub itself. It is therefore the most serious source of error.

4.3 Recursive computation of the error estimate

This section describes recursive formulas for the computation of �ub for a given real-

ization x0; : : : ; xT . The formulas are similar to the recursions of the linear-quadratic

control problem. If we de�ne

R
e
t+1 = F2;t + �F

e
1;t+1 (36)

we have from (30)

��t = � (F22;t + �F11;t+1)
�1
�
F21;t

��t�1 +R
e
t+1 + �F12;t+1

��t+1
�

(37)

Since ��T = 0, we get

��T�1 = � (F22;T�1 + �F11;T )
�1
�
F21;T�1

��T�2 +R
e
T

�
(38)

= aT�1 +AT�1
��T�2 (39)

This can be used as the starting point of the following recursion. If

��t+1 = at+1 +At+1
��t (40)

is given with some vector at+1 and some matrix At+1, it follows from (37) that

��t = at +At
��t�1 (41)

with

at = � (F22;t + �F11;t+1 + �F12;t+1At+1)
�1
�
R

e
t+1 + �F12;t+1at+1

�
(42a)

At = � (F22;t + �F11;t+1 + �F12;t+1At+1)
�1

F21;t (42b)

The recursions (42) de�ne ��t+s as a function of ��t for s > 0. This allows us to de�ne

�ub
t (��t�1) = �

1

2
E0

TX
s=t

�
t�s

�
��s�1

�
��t�1

�
0

; ��s
�
��t�1

�
0

�
Hs

�
��s�1

�
��t�1

�
��s
�
��t�1

� � (43)

and compute it recursively, starting with

�2�ub
T (��T�1) = ��0T�1F11;T

��T�1 (44)
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If we are given

�2�ub
t+1(

��t) = �vt+1 + v
0

t+1
��t + ��0tVt+1

��t (45)

it follows that

�2�ub
t (��t�1) = ��0t�1F11;t

��t�1 + 2��0t�1F12;t
�
at +At

��t�1
�
+
�
at +At

��t�1
�
0

F22;t

�
at +At

��t�1
�

+ �

h
�vt+1 + v

0

t+1

�
at +At

��t�1
�
+
�
at +At

��t�1
�
0

Vt+1

�
at +At

��t�1
�i

= �vt + v
0

t
��t�1 + ��0t�1Vt

��t�1 (46)

with

�vt = a
0

tF22;tat + �
�
�vt+1 + v

0

t+1at + a
0

tVt+1at

�
(47)

vt = 2F12;tat + 2A0tF22;tat + �
�
A
0

tvt+1 + 2A0tVt+1at
�

(48)

Vt = F11;t + 2F12;tAt +A
0

tF22;tAt + �A
0

tVt+1At (49)

Since ���1 = 0, we �nally arrive at the error estimate

�ub
0
= �

1

2
�v0 (50)

The estimate �ub in (26) is then the sum of �ub
0
over many simulated paths. To compute

the error at a speci�c point of the state space, the simulations will all start from this

point. The compute the (weighted) average of the error over parts of the subspace, we

start the simulations from di�erent points, according to some probability distribution

over the state space.

4.4 Occasionally binding constraints

The calculations of Sections 4.2 and 4.3 can be carried over to the case of binding

constraints in the following way. Assume that in the numerical solution, a constraint

for the control variable i at time t is binding. We accept this and set ��it = 0. For the

components that do not face a binding constraint, the Euler equation is still valid. This

leads to simple changes in the recursive formulas (42), but the calculation of �ub is

otherwise unchanged.

Since the assumption ��it = 0 is not necessarily true, we introduce a new form of error

here. Each instance of such an error is of the order O
�
�
2
�
. However, if � goes to zero,

the probability of making this error also goes to zero, linearly in �, and so the claim

that the error in �ub is of order O
�
�
3
�
still holds up.

[DETAILS TO BE COMPLETED.]

5 Estimating the error in the policy function

The error in the policy function is much more di�cult to measure than the error in the

value function. In the procedure of the last section we actually computed an estimate ��t
of the policy error, but there is no theorem showing that this estimate is unbiased or an

upper bound of the true policy error. In estimating the policy error we make a mistake,

which we denoted by ~�t, and everything we know about it is Equ. (33), which does not

allow to draw inferences about the expectation or variance of ~�t. The main obstacle to
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further analysis is that we cannot say anything about the correlation between ~�t+1 and

F12;t+1 (remember that the policy error is an arbitrary function of the state variables).

In the limiting case where the Hessian matrix is constant, Equ. (33) gives a linear

second order di�erence equation in E(~�t), and with the boundary condition it implies

E(~�t) = 0 for all t. This also suggests that for smooth problems, where the Hessian

moves slowly over time, the estimate is almost unbiased.

In the general case, one can follow two strategies to obtain an estimate of the policy

error:

1. If we only want to know the approximate size of the policy errors and do not need

rigorous error bounds, we can take the mean value of the estimated policy error

(perhaps plus 2 standard deviations, to be on the safe side) as an estimate. The nu-

merical experiments with variants of the stochastic growth model (cf. Section 6.1)

suggest that it is a good estimate.

2. If one is willing to make a higher computational e�ort than that of Section 4.2 (but

still less than the one needed to obtain the solution of the optimization problem),

it is possible to compute the policy error at a certain point up to O
�
�
2
�
. This will

be shown in the rest of this section.

To compute the estimate of the policy error, we analyze Equ. (24), with the O
�
�
3
�
-

term set to zero, which gives

Rt+1 + F21;t�t�1 + (F22;t + � Et F11;t+1) �t + � Et [F12;t+1�t+1] = 0 (51)

Solving this for �t we obtain

�t = � (F22;t + �Et[F11;t+1])
�1 (F21;t�t�1 +Rt+1 + � Et [F12;t+1�t+1]) (52)

Adopting again the approximation �T = 0, we get

�T�1 = a
�

T�1 +A
�

T�1�T�2 (53)

where

a
�

T�1 = � (F22;T�1 + �ET�1[F11;T ])
�1

RT (54)

A
�

T�1 = � (F22;T�1 + �ET�1[F11;T ])
�1

F21;T�1 (55)

This can be used as the starting point of the following recursion. Assume we are given

the relationship

�t+1 = a
�

t+1 +A
�

t+1�t (56)

where the vector a�t+1 and the matrix A�t+1 are known. Then it follows from (52) that

�t = a
�

t +A
�

t �t�1 (57)

where a�t and A
�

t are given by

a
�

t = �

�
F22;t + � Et

�
F11;t+1 + F12;t+1A

�

t+1

��
�1
�
Rt+1 + � Et

�
F12;t+1a

�

t+1

��
(58a)

A
�

t = �

�
F22;t + � Et

�
F11;t+1 + F12;t+1A

�

t+1

��
�1

F21;t (58b)

14



Following this recursion we �nally arrive at �0 = a
�

0
. Iterating Equs. (58) forwards, we

obtain the policy error as an expectation of future Euler residuals:

�0 = a
�

0
= E0

T�1X
s=0

CsRs+1 (59)

where

C0 � F
�1

12;0M0 (60)

Ct+1 � �CtMt+1 (61)

Mt � �F12;t

�
F22;t + � Et

�
F11;t+1 + F12;t+1A

�

t+1

��
�1

(62)

From (58b) we see that Mt satis�es the recursion

Mt = �F12;t (F22;t + � Et [F11;t+1 +Mt+1F21;t+1])
�1 (63)

If we can compute the matrices Mt, we can use (59) and Monte-Carlo techniques to

compute the policy error �0 (or at least an unbiased estimate). The precision of the esti-

mate can be arbitrarily increased by increasing the number of Monte-Carlo simulations,

subject to an O
�
�
3
�
-error from (51).

Comparing the recursions (58) with (42), we see that the di�erence lies in taking

expectations as of time t. This is the reason why the estimate of �0 obtained here is

unbiased, unlike its counterpart ��t of Section 4.2. This comes at a computational cost,

however: while the recursions (42) can be computed along simulated paths, Equs. (58)

are functional equations that have to be computed for the whole state space. Since the

recursion (63) converges backwards in time, we can actually replace the Mt's in (59) by

the solution to the time-invariant equation

M(x) = �F12;x

�
F22;x + � Ex

�
F11;x0 +M(x0)F21;x0

��
�1

(64)

where we write all the expressions as functions of the state vector x, and x0 denotes next

periods state vector. Equ. (64) is similar to a Bellman equation, or other functional

equations used in solving dynamic optimization problems. It is considerably simpler

than those equations since it does not involve any optimization. It can be obtained

either recursively on a �nite grid, or by projection methods.

6 Numerical examples

This section reports numerical results on a well known test problem, the one-dimensional

stochastic neoclassical growth model. Numerical solutions to variants of this model have

been intensively studied in the literature. I have chosen a one-dimensional model, since

this can be solved at a �nite grid with so high precision that it can serve as the \exact

solution" for test purposes (Santos and Vigo-Aguiar 1998, Section 4).

6.1 One-dimensional stochastic growth

The social planner maximizes

E

1X
t=0

�
t c
1�
t � 1

1� 
(65)
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subject to the constraints

ct = �Ak
�
t � kt+1

kt � 0

where �t is an i.i.d. shock with log-uniform distribution

�� � log �t � �; � > 0 (66)

We bring this model into the form of Section 3 and solve it on a one-dimensional grid

by de�ning

xt = log(�Ak�t ) (67)

ut = log(Ak�t+1) (68)

zt = log �t (69)

g(z) = z (70)

F (xt; ut; zt) =
[ext

� (eut=A)1=�]1�
� 1

1� 
(71)

The simulations use the parameter values � = 0:95, � = 0:4, and di�erent values of �.

A wide range of values for  has been used, but always with  > 1, which is necessary

to make the function F in concave in x and u. The constant A was set to 1=(��) so

that the deterministic steady state capital stock is equal to 1.

The theory developed above is based on quadratic approximations, and the results

are derived up to an error term O
�
�
3
�
. In practice, it might then not be clear whether

the estimates are su�ciently accurate if there are strong nonlinearities with a sharply

changing second derivatives of the relevant functions. Since the stochastic growth model

is known to be very well behaved, one might question the relevance of the results for

less well-behaved problems.

To deal with this problem without investigating more complicated models, I make

the growth model as nonlinear as possible, �rst by using very high values of the risk

aversion parameter (up to  = 10), and then also by introducing a kink in the utility

function at a value c� close to the steady state level of consumption. More precisely, for

c � c
� the risk aversion parameter is some 0, for c > c

� it is some 1, and at c = c
� the

utility function is scaled such that the utility function is continuous and di�erentiable.

The second derivative, however, suddenly jumps downward at this point. This violates

the assumptions made in Section 3, but can be considered as the limit case of a model

with rapidly changing second derivative. The switch point c� was set at 1.02 times the

deterministic steady state level of consumption.

6.2 Results

The solution was developed on a grid that conforms roughly to capital values k 2 (0:2; 5).

The grid size for the \exact solution" was 3137, for the approximate solutions grid sizes

of 5 (!) and 25 were used. Euler residuals of the growth model were calculated at a grid

of 41 points.

The results are based on 20000 Simulations of 200 periods each. The shocks were

not generated randomly, but as a sort of \subrandom" sequences, namely generalized

Faure points (Papageorgiou and Traub 1996). This should increase the precision of
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the estimates. The large number of simulations is mainly necessary to compute the

di�erence between the value obtained with the exact and with the approximate solution.

The estimate of the error bound cold have been obtained with fewer simulations, cf.

Section 6.3.

Some results are presented in the Table 1. The results refer not to average errors,

 � Gridsize �ub � Est.Pol.Err. True Pol.Err

2 0.2 5 3.649e-04 3.823e-04 -2.009e-03 (2.611e-03) -2.101e-03

2 0.2 25 2.409e-06 3.142e-06 -1.077e-04 (2.758e-04) -2.024e-04

2 1e-5 5 2.322e-05 2.313e-05 1.715e-03 (1.715e-03) 1.707e-03

10 0.2 5 5.039e-03 6.473e-03 -2.758e-02 (3.701e-02) -3.789e-02

2,10 0.2 5 9.904e-03 6.750e-03 1.273e-02 (2.146e-02) 1.099e-02

2,10 0.2 25 4.231e-05 2.442e-05 1.996e-04 (6.647e-04) 2.084e-04

Notes: Two values of  indicate kinked utility function

Gridsize: refers to approximate solution

� is exact loss in value function, �up is estimated upper bound

Est.Pol.Err: mean (in parentheses: absolute mean plus 2 stdev) of estimated ��0

Table 1: Simulation results, growth model

but to the error starting from a speci�c value of the capital stock, namely with capital 20

percent above the steady state. Two conclusions emerge from the table. First, the upper

bound is relatively tight, it overestimates the error by at most 100 percent. Sometimes

the upper bound is slightly below what is called the \true error", but one should keep in

mind that the \true error" is also estimated and contains a sampling error component.

Second, the mean of the estimated policy error is close to the true error, so the

estimate of ��0 is almost unbiased in these examples. However, since the estimated

error can be positive or negative, or close to zero by accident, it seems safer to use the

statistic \absolute mean plus 2 standard deviations" of estimated error as a practical

upper bound to the error in the policy function.

The results reported here always started from the same starting point. Numerous

other runs using di�erent starting values con�rm the above conclusions.

[PRELIMINARY. MORE EXAMPLES WILL FOLLOW.]

6.3 Computational cost

The computational cost of calculating the upper bound to the value function error is not

trivial, but it is substantially lower than the cost of calculating the numerical solution

itself, at least for medium or higher-dimensional problems. This is because we only

have to solve a series of linear-quadratic problems along realized paths, and calculate

Euler residuals. The main e�ort lies in fact in the computation of the Euler residuals,

and so the computational burden grows with the dimension of the state space in the

same way as the burden of multi-dimensional integration. Choosing the right grids for

integration (quadrature grids) will therefore prove essential for e�cient computation.

One should recall that the theory did not depend on calculating the Euler residuals

correctly: less precisely calculated residuals will simply result in a not so tight error

bound, cf. Section 4.2. The e�ort to produce these estimates therefore depends on

the required precision on the upper bound. This is true also because it determines the
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number of simulations used in computing the expectation in �ub. In my examples,

the upper bound could be computed up to an error of about 5 percent with about 200

simulations.

7 Conclusions

The paper has derived estimates of the approximation error in the value as well as the

policy function of a numerical solution to a dynamic optimization problem, whereby

the exact solution is not known. Test applications have shown that the error can be

estimated with good precision.
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