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We develop a scenario for technological evolution where a �nite number of agents interact lo-

cally in a low dimensional space. Agents adopt a \technology" and obtain a payo� that depends

both on how advanced is this technology and how \compatible" it is with those of her neigh-

bors/partners. Progress is induced through stochastic innovation and inter-agent coordination.

We show that under these conditions the system displays a rich variety of behaviour ranging

from synchronization (technology grows as a common front) to criticality where advance is

elicited in terms of \technological avalanches" distributed according to a power law. We also

show that is it possible to de�ne a macroscopic observable (rate of technological progress) which

is maximized in the critical region.

I. INTRODUCTION

In modern economies, technological change is a rapid phenomenon that has an inherent systemic nature to it. Given

the crucial complementarities involved in using advanced technology, economic agents will only �nd it pro�table to

advance along the ladder open by new technological possibilities if others also follow a similar path [1{4].

This would seem to indicate that any substantial \technological update" to be undertaken in a large economy will

require some sort of implicit or explicit coordination (i.e. \good timing") among a large number of agents. For only

then will these agents reap the bene�ts (and thus have the incentives to incur the costs) of a more sophisticated

technology and the transition may indeed take place. This raises the important question of how is it that large and

decentralized societies develop suitable mechanisms that render such coordination feasible. A natural way out of

this puzzle is given by the observation that, typically, agents do not interact with the population at large but only

with a small subset of \neighbors". Therefore, it is conceivable that a technological transition may occur in gradual

steps, in each of these only a certain string of neighboring agents managing to internalize the required technological

complementarities.

If indeed technological transitions take place in this manner, one should observe the materialization and persistence

of a substantial degree of heterogeneity across an economy: some \islands" are rather advanced, others stay relatively

backward, still others display an intermediate range of development and act as bridges between the former two. Under

some circumstances, these technological bridges may be rather robust. In others, however, they will be rather fragile,

thus triggering technological avalanches when slightly disturbed. In each case, the aggregate technological dynamics

of the economy will be very di�erent.

In this paper, we want to construct a model of technological advance with the characteristics outlined. Agents

interact locally along a certain (one-dimensional) lattice. Most of the time, their technological decisions are taken

as a best response to the con�guration prevailing in their neighborhoods. Occasionally, however, the economy is

perturbed, some randomly chosen agent performing a \unilateral innovation" (i.e. an exogenous upward shift in her

technological choice). We are interested in studying the aggregate long-run behavior generated by this process. In

particular, we want to identify long-run regularities on the distribution of \technological avalanches", here understood

as the waves of technological advance that follow a single perturbation of the economy as indicated.

As we shall see, these avalanches exhibit the long-run regularities displayed by self-organized critical systems, of

the sort extensively studied in the physics literature in the last decade (e.g. [5{7]). Once this is con�rmed, our main

ensuing concern will be as follows.

First, we shall identify the parameter region where criticality arises. As it turns out, this phenomenon will be seen

to materialize whenever the incompatibility (or miscoordination) costs exceed a certain threshold.
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(b) Schematic dynamics of the model.

FIG. 1: Description of the investigated model.

Second, we address the issue of \endogenizing" incompatibility costs. Of course, there are some contexts where

these costs are best conceived as exogenous, i.e. a datum of the model. However, in some other cases, one may think

of them as being the outcome of some underlying process of adjustment or the target of economic policy. In this

latter case, we may ask: What is the level for such costs that maximizes the rate of technological advance of the

system? Quite strikingly, we �nd that the advance of the system is maximized when incompatibility costs are close to

the lower boundary of (and within) the critical region. Using a well-known phrase of Kau�man [8], we could describe

matters as suggesting that the performance of the system is optimized when the process is \at the edge of order and

chaos". Resorting to convenient approximations, this conclusion will be analytically understood as the achievement of

a suitable balance between the \hold" induced by large incompatibility costs in maintaining some (bene�cial) degree

of population heterogeneity and the \pull" of innovation toward homogenization (i.e. technological di�usion) that is

favored by low such costs.

Finally, we attempt to use our model to shed some light on real-world phenomena embodying inde�nite advance

of \knowledge", technological or otherwise. In the future, our research in this respect will aim at shedding some

light on the technological dynamics of some of the most innovating and pervasive sectors of modern economies,

e.g. the computer industry. For the moment, we are just in the position to establish some preliminary and merely

qualitative parallelisms with the advance of \academic knowledge", as indirectly captured by available data on scienti�c

citations. As we shall explain, some of this empirical evidence concerning this phenomenon indicates the existence of

self-organized critical behavior.

II. THE FRAMEWORK

We consider n agents, each of them occupying a particular node in a one-dimensional boundariless lattice (cf. Fig.

1(a)). Time is discrete. At every t = 0; 1; 2; :::, each agent i 2 f1; 2; :::; ng adopts a certain action ai(t) 2 R+, that is

interpreted as the technology level she currently uses. If we were to think of computer technology, then ai(t) could

indicate the speed or capacity of the computer used by i at t. Every agent i is assumed to interact with the individual

to the right and to the left of her (i.e. i+ 1 and i� 1; these indices interpreted as \modulo n"). Out of each of these

two interactions, she obtains corresponding payo�s,  (ai(t); ai+1(t)) and  (ai(t); ai�1(t)), with  (�) being called the

payo� function.

In our simulations, we will postulate a stylized payo� function of the following form:

 (a; a0) =

8<
:
a� k1

�
1� e

�(a�a0)
�

if a � a
0

a� k2

�
1� e

�(a0�a)
�

if a < a
0

(1)



for some k1; k2 > 0. By way of illustration, we may think of the interaction taking place between any two agents

as consisting of the completion of a certain project (e.g. launching a new product through �rm partnership). Then,

the crucial aspect of the interaction that (1) models is that there is an advantage to compatibility (i.e. similarity) of

technological levels.

More speci�cally, payo�s (e.g. pro�ts) accrue from the composition of two components. On the one hand, there

is the base payo� obtained by individual using technology level a; that is assumed increasing in this level { for

simplicity, we just make it equal to this level, thus in essence parametrizing technological level through the base payo�

it induces. On the other hand, we have the costs associated to di�erent degrees of technological incompatibility

with the neighbors' technologies. These costs are derived from two alternative sources: (i) the agent is too advanced

relative to her neighbors; (ii) the agent is too backwards. In either case, the bilateral interaction in question is assumed

partially disrupted, which leads to the waste of some valuable resources. The magnitude of each of these two possible

costs is parametrized, respectively, by k1 and k2: As it turns out, only the di�erence k1 � k2 will be found to play an

important role in the analysis.

III. THE DYNAMICS

The process starts from some given initial state [ai(0)]
n

i=1.
15 At each t = 1; 2; :::; a single agent �(t) is randomly

chosen to update her technological level. (This update may be conceived of as an \innovation".) The agent thus

chosen is subject to an upward shift in her technological level that passes from ai(t � 1) to ai(t � 1) + ~� where ~�

is a i.i.d. random variable, that will be typically postulated uniformly distributed on the interval [0; 1] : After such

random update is performed at t on agent �(t); the following adjustment process ensues, with its steps indexed by

q = 0; 1; 2; :::

At q = 0; we make �0j (t) = aj(t � 1) for j 6= �(t) and �
0
�(t)

(t) = a�(t)(t � 1) + �t; where �t is the realization of

the random variable ~� at t: Subsequently, at every q = 1; 2; :::; some agent i is randomly selected and is given the

opportunity to adjust her former technology level �
q�1
i (t): Then, she chooses the technology level that solves the

problem:

max
���

q�1

i
(t)

h
 (�; �

q�1
i+1 (t)) +  (�; �

q�1
i�1 (t))

i
: (2)

The solution of this problem is then made �
q
i (t): For all other agents j 6= i; �

q
j (t) = �

q�1
j (t):

This process continues for all required q until a certain �q is reached in which it can be ensured that no agent wants

to perform any adjustment in her technological level. By the construction of the process and the properties of the

payo� function, this �q is certain to be �nite. Then, we make ai(t) = �
�q
i (t) and the process turns to the next \period"

t+ 1; where an analogous chain of initial update and ensuing adjustment is conducted.

At each t; the adjustment process that restores stability after the initial update will be called a (technological)

avalanche. In our simulations, we shall be interested in quantifying the size s(t) of each avalanche at t as follows:

s(t) � #fi : ai(t) 6= ai(t� 1)g; (3)

where #f�g stands for the cardinality of the set in question. We shall also concern ourselves with the total advance

triggered by the avalanche, as given by:

H(t) �

nX
i=1

[ai(t)� ai(t� 1)] : (4)

As explained below, these magnitudes are seen to display interesting regularities in our simulations. Of course,

the speci�c details of these regularities depend on the underlying parameters of the model { speci�cally, on the

incompatibility costs captured by k1 and k2:

IV. COMPUTER SIMULATIONS

We have performed computer simulations for the dynamics outlined above on one-dimensional lattices. In order

to understand the e�ect of the di�erent parameters involved, we consider di�erent system sizes, noise levels, k's, and

initial and boundary conditions.

We focus on three types of complementary results:
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FIG. 2: Logarithm of the probability of having an avalanche of size s vs. logarithm of the size for k=2, 2.5, 3, 3.5.

The length of the system is kept �xed at 1024.

� size distributions of technological avalanches

� technological-index pro�les

� roughness of these pro�les

A Size distributions technological avalanches

Let k = k1�k2: As shown below (cf. Section V), k is the essential cost parameter underlying the long-run behavior

of the system. We have obtained the (avalanche) size distributions for di�erent values of k and di�erent values of

n (the latter is considered in order to check for possible �nite-population e�ects). To get a better statistics we have

followed a binnig procedure, i.e. we consider intervals of exponentially increasing length as representatives of size.

The outcome of these simulations is summarized in Figs. 2-4.

In Fig. 2 we show the size distribution for \small" values of k; where we can notice the transition from a regime

where all the avalanches are system-size wide (we will call this regime supercritical or synchronized) to a regime

where the avalanche size obeys a power-law distribution. The latter corresponds to a critical regime in the sense used

in statistical physics, i.e. it describes a process in which there are no characteristic length scales. For intermediate

values, we notice a transition from distributions that display a positive exponent (and thus keep some trends of the

synchronized regime) to distributions with a negative exponent.

Fig. 3 shows size distributions that are clearly in the critical region, the corresponding exponent changing with k.

It is worth noting that, as k ! 1; any interaction between neighboring sites vanishes and one obtains a process of

so-called random deposition, a very well known process in the study of surface growth (see for instance [9]).

In Fig. 4, it is con�rmed that criticality is not a �nite-size e�ect since power laws are preserved (with exponents

that depend on k) over three orders of magnitude. However, the distribution tails do display �nite-size e�ects due

to the periodic boundary conditions used throughout the paper. In Ref. [10] we have also con�rmed that the initial

decay is exponential up to a value of s0 = 3 that is independent of the size of the system. In order to do that we have

computed the probability that an agent adjusts her technological level after an innovation has been introduced in the

system.
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FIG. 4: Same as Fig. 2. for a �xed value of k=3.5 and di�erent system sizes 1024, 2048, 4096, 8192, 16384, and

32768.
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FIG. 5: Technology level pro�le for k=3.

In sum, we observe that the system undergoes a transition from a synchronized (supercritical) behavior to a

non-interacting (subcritical) regime, the system behaving in a critical manner across a wide intermediate range of

parameters, no parameter �ne-tuning needed to achieve such criticality.

B Technological pro�les

Here we focus on the evolution of small lattices (n = 200) along a short span of time (1000 exogenous updates,

plotted at intervals of 100), starting from a 
at distribution of technology indices. The �gures below show again the

transition between the di�erent regimes. For k < 3; the pro�les are essentially 
at since, in this case, very large

avalanches typically occur after an update. On the opposite case, when k is large, for endogenous adjustments to

occur a very large local gradient is needed and hence the interface pro�le is typically very rough; we will quantify this

roughness in the following subsection.

C Pro�le roughness and technological distribution

In surface growth problems, it is common to quantify the roughness of an interface by its width, which is then

related by means of a scaling hypothesis to the surface correlation functions. The width is de�ned by the root mean

square 
uctuations in the technology level pro�le:

W (t; n) =

q
a(t)2 � a(t)

2
; (5)

where the overline denotes spatial average, i.e.

a(t)q =
1

n

nX
i=1

(ai(t))
q
: (6)

When there are no characteristic time or length scales in the dynamical evolution of a system then this width is

expected to have the following behavior

W (t; n) = t
��(t=nz) = n

�
�(t=nz) (7)
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0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160 180 200

FIG. 7: Same as Fig. 5 for k=8.
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FIG. 8: Squared width of the technology pro�le as a function of time, for di�erent system sizes and k=3.

where � and � are scaling functions, and �, �, and z are the critical exponents describing the critical properties of

the system. In particular, z is called the dynamical exponent and describes the time approximately needed for the

system to reach saturation (i.e. the state where its roughness does not increase any longer); on the other hand, � is

called the roughness exponent and determines the growth of the interface in terms of the system length; �nally, � is

usually called the growth exponent and characterizes the time-dependent dynamics of the roughening process.

It is interesting to note that the formerly indicated exponents are not independent. Speci�cally, it is easy to check

that simple manipulations lead to the relation:

z = �=�; (8)

which is typically labelled a scaling law in statistical mechanics. Recent simulations show that local 
uctuations do

not scale as global 
uctuations [10, 11] giving rise to what is known as anomalous scaling [12].

The �gures below depict the evolution of the width of the system, as de�ned in (5). Note that since we are only

interested in the statistical properties of the pro�le dynamics, the evolution of this magnitude is averaged over 1000

independent runs.16

Figs. 8-10 show that the \technological roughness" of the system evolves with time and increases with system size

according to the scaling laws introduced above. One also observes that the technological interface is made rougher as

k increases. The time scale is always measured as the number of external upgrades per site.

Overall, the above simulation results suggest that the system has a well-de�ned level of technological heterogeneity

on which the process settles in the long-run, independently of initial conditions. In fact, it is precisely such under-

lying scope for inter-agent technological di�erences that underlies the other long-run regularities (in particular those

concerning size distributions) that have been depicted in Fig. 2-4. In a sense, such asymptotic roughness is nothing

but a di�erent manifestation of the other phenomenon studied before. They all are the outcome of a dynamic process

of technological advance that despite of (or rather, because of) microeconomic erraticness produces average long-run

regularities in a wide range of di�erent dimensions.

V. THE PARAMETERS OF THE MODEL

Given the payo� formulation adopted in (1), k1 and k2 are the only (cost) parameters of the model. As advanced,

we want to argue that, in order to understand the rise of critical behavior in the system, only the di�erence k �
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k1� k2 needs to concern us. Intuitively, k re
ects the cost di�erence resulting from \downwards incompatibility" (i.e.

being too advanced) as compared to that derived from \upwards incompatibility" (i.e. being too backwards). To see

that this cost di�erence must be the key consideration involved, consider a synchronized state [ai(t)]
n
i=1 where every

agent displays an essentially identical technological level, i.e. ai(t) � ai+1(t) � â for all i = 1; 2; :::; n . Now suppose

that an innovation update of magnitude � occurs for some particular agent io:When will this update lead the system

into a new synchronized state? This requires that the payo� to any agent i 6= io of adopting â+� when at least one

of her neighbors has done so is higher than if she were to remain at level â: Thus, if we focus on the only non-trivial

case where one neighbor adopts â; the relevant inequality is:

2(â+�)� k1(1� e
��) > 2â+�� k2(1� e

��);

or equivalently:

k � k1 � k2 <
2�

1� e��
: (9)

If (9) holds, the innovation will lead the system into a new synchronized state at the common level â + �; which

indicates that, in the long-run, the process will display supercritical behavior. Critical behavior will start to set in

only when the inequality converse to (9) begins to apply. That is, when

k > k
�
�

2�

1� e��

For example, if all innovation updates were to take place at a �xed magnitude � = 1; we would have k� = 3:164

{ note how the transition from a supercritical behavior to a critical behavior takes place around this value in Fig.

11. However, for innovation updates that are uniformly distributed on the interval [0; 1]; the threshold on k when

supercritical behavior must start to loose hold is k� = 2: This latter transition can be observed in Fig. 12.

VI. CRITICALITY AND THE RATE OF TECHNOLOGICAL PROGRESS

We have shown that there is a wide range of parameters (speci�cally, it is enough in every case that k be somewhat

larger than 3) within which critical behavior arises. This raises the question of whether there is some rationale that

may justify that this parameter range should indeed be attained.

We now provide one such justi�cation. Suppose k may be chosen endogenously as the value that maximizes the

rate of average technological progress (see below for a description of this discretionary choice as a decision of economic

policy). Then, if we count as a \period" every time an adjustment takes place (either through exogenous update or

internal adjustment), it is clear that the rate � of average technological progress may be de�ned as follows:

� = lim
T!1

PT

t=1H(t)PT

t=1 s(t)
; (10)

where H(t) and s(t) are de�ned above. Denote by �(k) the rate associated to some given value of k: Our simulations

show that �(k) is maximized within the relatively narrow range k 2 [3; 5] for which critical behavior is obtained

(compare Figs. 2 and Fig. 12).17

In the following section, we shall provide an analytical argument for this conclusion. As explained, it formalizes

the heuristic idea that the dynamic performance of the system is optimized at the \edge between chaos and order".

In our case, this may be identi�ed with the thin region of the state space where the transition from super-critical

to critical behavior takes place. For, as explained in Subsection IVA, it is precisely in this region that the long-run

dynamics of the system turn from exhibiting little structure to satisfying clear-cut power laws. Another point that

deserves some comments is the fact that � varies smoothly with k for a uniformly distributed noise whereas it does it

discontinuously for a �xed noise; this is related to the nature of the local gradient that has to be broken.

In [14] we have discussed how the maximum rate of technological progress can be related to the size distributions

of avalanches and to the induced distributions of technological advances. First, assuming that both probability

distributions obey a power-law:

P (s) � 1=s
 (11a)

P (H) � 1=H� (11b)
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FIG. 12: Same as Fig. 11 but in the present case the exogenous update is chosen from a uniform distribution [0,1].



We also assume, as is indeed observed, that technological advance and size are related through the following scaling

property

H � s
� (12)

where 1 � � � 2. The lower bound � = 1 holds in two extreme situations: in the subcritical state and in the

supecritical state. In the �rst case, there are only avalanches of size 1 and the technological advance is simply �. In

the second case, when the system is supercitical or synchronized, any avalanche grows like a strip of constant width.

A joint comparison of the di�erent possibilities that depend on the values of the exponents �, �, and 
 leads to

the following important insight. For large systems (i.e, contexts where the population size n is large), the rate of

technological advance is maximized in the region where the incompatibility costs (as given by the underlying k) lead to

long-run distributions P (s) and P (H) whose exponents satisfy 0 < � < 1 < 
 < 2: This conclusion has the following

interpretation.

On the one hand, it indicates that the rate of technological progress is certainly not maximized when the system

displays orderly (or perfectly tuned) behavior, all agents advancing in step and any small innovation rapidly di�using

throughout the whole population. In other words, we �nd that certain preservation of technological heterogeneity has

positive e�ects on stimulating the pace of advance of the system. The intuition here is not diÆcult to understand. If

incompatibility costs are low and, consequently, agents are always willing to adopt any minor technological advance

they are faced with, every individual adjustment will be relatively small. This, of course, implies as well a relatively

slow pace of change in the system overall, individuals hardly taking advantage of the economies of scale on innovation

that a large system might avail.

On the other hand, one also obtains the twin conclusion that fast technological advance cannot arise in that

part of the critical region where avalanches tend to be small. In this respect, the intuition is polar to that above.

If incompatibility costs are large, signi�cant heterogeneity does arise in the long run that is \orderly distributed"

according to a power law. However, if k is so large that the behavior of system is too much in the \heartland" of

the critical region, the substantial scale e�ects on technological advance potentially a�orded by a large system are,

again, not fully taken advantage of. For, if the avalanche distribution attributes too much weight to those of small

size, the e�ects of technological heterogeneity (bene�cial, as explained above) are more than o�set by the diÆculties

encountered by what must be its unavoidable complement, i.e. an e�ective process of technological di�usion.

Overall, we may summarize matters by resorting to the alluring phrase put forward by Kau�man [8]: the 
exibility

of the system is optimized when its internal organization is at the \edge of order and chaos"; or, somewhat more

prosaically, when it is within the critical (disorderly) region, but not too deep into it.

VII. CONCLUSIONS AND A BRIEF EMPIRICAL DIGRESSION

This paper represents just a �rst step in an ongoing research project where we plan to study in detail the relationship

among complexity, optimality, and self-organization in large systems composed of individual interacting entities. As

explained in the Introduction, we believe that many social and economic systems are suitably modelled in this fashion.

In particular, this seems to be the case for some of the most technologically dynamic segments of modern economies

such as, for example, the computer industry, both in its producer and consumer sides. Our future empirical research

will focus on this industry, where we hope to detect some of the crticicality-induced regularities displayed by our

theoretical framework.

To conclude, we want to discuss very brie
y some indirect empirical evidence suggesting that it is not too far-fetched

to expect that such kind of regularities may arise in systems that model the generation and spread of \knowledge",

the latter quite generally understood. Speci�cally, we shall focus on a recent paper by Redner [13], who has gathered

extensive empirical evidence on the phenomenon of academic quotation. We want to argue that, despite obvious

caveats, this evidence may be used to shed some light on the phenomenon of technological di�usion, as this process

is conceived and modelled in the present paper.

We start with the observation that the spread and use of scienti�c knowledge is subject to considerations of

complementarities (\local", in an appropriate dimension) that bear some similarities to those described in our model.

To a large extent, each of us relies on know-how, research tools, leading thoughts, etc. that are reasonably compatible

(and of similar levels of sophistication) as those of our colleagues. Certainly, this must happen with co-authors if joint

work is to be reasonably productive. On the other hand, given a mechanism of academic evaluation that is based on

peer review, there are obvious incentives not be too out of tune with those \neighbors" who have both to understand

and evaluate one's own work.

With these parallelisms in mind, we may identify a chain of quotations that originate in a certain paper as an

\avalanche" generated by this particular scienti�c contribution. These quotations re
ect, after all, a series of voluntary



choices made by individual scientists to devote time and e�ort to follow up on a certain line of research, with payo�s

(as suggested above) subject to important peer complementarities.

Quite in line with what our model would suggest, Redner �nds that the distribution of quotations generated over

di�erent papers (783,339 of them in one his studies) are essentially distributed according to a power law. How popular

is you paper? he asks. In the long run, he answers, the number of quotations you (or we) may expect is distributed

according to a power law. In an admittedly rash conceptual leap, we conjecture that the advance of knowledge (in

particular, knowledge of \technological" kind) may display similar empirical regularities if payo� complementarities

represent a relevant consideration.
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