
Computational approach to organizational design

A. Arenas1, A. D��az-Guilera2, and R. Guimer�a3

1Departament d'Enginyeria Inform�atica, Universitat Rovira i Virgili, Tarragona, Spain

2Departament de F��sica Fonamental, Universitat de Barcelona, Barcelona, Spain

3Departament d'Enginyeria Qu��mica, Universitat Rovira i Virgili, Tarragona, Spain

The relevance of information 
ow and processing in organizations have been

stressed. In this work we propose a simple agent-based model of communica-

tion in hierarchical networks and study both computationally and analitically

its behavior. The results obtained are used to identify eÆcient organizatinal

structures.

I. INTRODUCTION

Nowadays, a lot of attention is paid by physicist to the dynamics of complex social and economic

systems. In particular, many challenging questions have arisen concerning the in
uence of the

topology and the interaction processes in the behavior of such systems [1, 2]. Our interest is

focused on the behavior of hierarchical structures formed by agents (or element, in general) that

interact with each other via communication processes. This framework is especially adequate to

study for instance packet 
ow in computer networks as the Internet [3{5], traÆc networks [6], river

networks [7] and particularly communication 
ows in organizations [8{12].

Using Radner's words [8]:

The typical U.S. company is so large that a substantial part of its workforce is devoted

to information-processing, rather than to \making" or \selling" things in the nar-

row sense. Although precise de�nitions and data are not available, a reasonable esti-

mate is that more than one-half of U.S. workers (including managers) do information-

processing as their primary activity.

In this work, we propose and study a very simple model of communication in a hierarchical

network [13]. The model includes only the basic ingredients present in a communication process



between two elements: (i) information packets to be transmitted (delivered) and (ii) communication

channels with �nite capacity to transmit packets. Despite the simplicity, the model reproduces the

main characteristics of the 
ow of information packets in a network. We observe a phase transition

between a sparse and a congested regime when the number of packets to deliver reaches a critical

value (for a general reference about phase transitions and critical phenomena see [14]). Near the

transition point signs of criticality arise in agreement with reported empirical data [3]. On the

other hand, the model is simple enough to allow analytical characterization: we provide a mean

�eld estimation of the critical point in good agreement with simulation results. A �rst step towards

a more realistic model is to include the cost of stablishing communication lines.

In both cases, with and without cost associated to the links, the optimal organizational struc-

tures are studied.

II. THE MODEL

The model is de�ned as follows: the organization is mapped into a lattice where nodes represent

the communicating agents (employees) and the links between them represent communication lines.

In particular, we use hierarchical trees as depicted if Fig. 1. These structures are characterized by

two quantities: the branching factor, z, and the number of levels, m. From now on, we will use

the notation (z;m) to describe a particular tree.
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FIG. 1: Typical hierarchical tree structure used for simulations and calculations: in particular, it

is a tree (3; 4). Dashed line: de�nition of branch.

The dynamics of the model evolves according to the following scheme. At each time step t, an

information packet is created by every agent with probability p. When a new packet is created, a

destination agent, di�erent from the origin agent, is chosen at random in the network. Thus, during

the following time steps t; t+1; : : : ; t+ T , the packet is traveling towards its destination: once the



problem reaches this destination agent, it is delivered and disappears from the network. When

an agent receives a packet, she knows whether the destination is to be found somewhere below

him. If so, she directs the problem downwards in the right direction. Otherwise, she transmits it

upward to the agent overseeing him. Thus, the information packets move towards their destination

following the shortest path. The time a packet remains in the network is related not only to the

distance between the origin and the destination agents, but also to the amount of packets in the

network. In particular, at each time step, all the packets move from their current position, i, to

the next agent in their path, j, with a probability qij . We de�ne qij, quality of communication

between agents i and j, as

qij =
p
kikj: (1)

where k� represents the capability of agent � to communicate at each time step. For k� we propose:

k� = QL(c�)f(n�) (2)

where c� is the number of links of agent �, 0 < QL(c) � 1 is a cost factor related to these links

(note that, the higher the number of links, the smaller QL, so QL is a monotonically decreasing

function of its argument), L is the linking capability that tunes the magnitude of this cost, n� is the

total number of packets currently at agent �, and 0 < f(n) � 1 is the function that determines how

the capability of a particular agent decreases when the number of information packets to handle

grows (again, f(n) is a decreasing function of the argument). For the functions QL(c) and f(n)

we chose the following cies:

QL(c) = 1� tanh
c

L
; (3)

and

f(n) =

8><
>:

1 for n = 0

1=n for n = 1; 2; 3; : : :
(4)

The election of QL is completely arbitrary but (3) has two desirable properties: (i) it is a mono-

tonically decreasing strictly positive function and (ii) QL decreases linearly for small values of QL

(compared to L). The parameter L tunes how fast the capability decreases when new links are

added: for large values of L (big capabilities) this decreasing is slow while for small L it is very



fast (Fig. 2). Di�erent elections of this cost factor would lead to results qualitatively similar to the

ones reported in the following sections.
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FIG. 2: Behavior of the cost factor for di�erent values of the linking capability L.

The election of f(n) is more delicate but again it seems plausible that, for instance, the capability

is reduced to one half when the amount of information to deliver is double. Furthermore, this

election is consistent with existing queueing models for information 
ow in computer systems such

as the Internet [5].

III. RESULTS AND DISCUSSION

As a �rst step, let us concentrate in the simpler case L ! 1, i.e. costless connections. The

probability of generating a packet per agent and time unit, p, is an exogenous parameter that

controls the behavior of the system. For small values of p, all the packets are delivered and so,

after a transient, the system reaches a steady state in which the total number of packets, N ,


uctuates around a constant value, i.e. the number of delivered packets is equal, on average, to the

number of generated packets. However, for large values of p, not all the packets can be delivered,

and N grows in time without limit. The transition between one regime and the other occurs for



a critical value of p, pc. For values of p smaller than but close to pc, the steady state is reached

but large 
uctuations with long correlation times appear. These three behaviors can be observed

in Fig. 3.
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FIG. 3: Evolution of the number of packets in a network for regimes below (p = 1:1 � 10�4), above

(p = 1:5 � 10�4) and near (p = 1:3 � 10�4) the critical value, pc. These results correspond to

simulations performed in a tree (7; 5).

It is possible to give an analytical estimation of pc. Within a mean �eld approach, it is if we

do not consider 
uctuations and we assume that the behavior of all the agents in the same level is

statistically identical, we arrive to the following expression for pc (see Appendix A)

pc =

p
z

z(zm�1�1)2

zm�1
+ 1

: (5)

For values of z and m such that zm�1 � 1 (note that this condition is satis�ed even for relatively

small values of z and m), this expression can be approximated by

pc � z
3=2�m

: (6)

Although strictly speaking (5) (and its approximation (6)) provides an upper bound to pc, it is an

excellent estimation for z � 4, as can be seen in Fig. 4.
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FIG. 4: Comparison between simulated (symbols) and analytical (lines) values for the critical

probability of packet generation, pc as a function of the branching factor z for hierarchies with

di�erent number of levels: m = 4 (circles and full line), m = 5 (squares and dotted line), m = 6

(diamonds and dashed line) and m = 7 (triangles and dot-dashed line). The error bars are smaller

than the symbol size.

It is interesting to note, from (5), that the maximum number of information packets that can

be generated in a time step without collapsing the organization, Nc = pcS, with S standing for the

size of the organization, is given by

Nc =

p
z

z(zm�1�1)2

zm�1
+ 1

z
m � 1

z � 1
� z

3=2

z � 1
(7)

again with the same approximation as in (6). Thus the total number of packets a network can deal

with does not depend on the number of hierarchical levels. This fact is veri�ed by simulations.

Furthermore Nc is a monotonically increasing function of z, suggesting that, �xed the number of

agents in the organization, S, the optimal organizational structure, understood as the structure

with higger capacity to handle information, is the 
attest one, with m = 2 and z = S � 1.

However, from a practical point of view this structure is not possible: an organization with

10,000 employees, for instance, cannot be organized in only two hierarchical levels, since it is



impossible to mantain such a enormous number of communication lines. Thus, it is necessary to

introduce the cost for establishing links in order to get a more realistic picture of the problem. In

this case, following arguments analogous to that used in the case of costless connections, we can

arrive to the following expression for pc:

pc =

p
zQL(z)QL(z + 1)
z(zm�1�1)2

zm�1
+ 1

: (8)

Again, for z and m such that zm�1 � 1, the maximum number of packets that can be generated

per time step without collapsing the system is independent of m, and is given by

Nc �
z
3=2(QL(z)QL(z � 1))1=2

z � 1
: (9)

As can be seen from Fig. 5, the scenario that arises with the introduction of the cost factor

is much more interesting. Now, the cost term (which is a decreasing function) compete with the

behavior we have found for the critical number of generated packets, Nc, in the case of costless

connections. Thus, a maximum typically arises in Nc. This maximum is related to an optimum

value of z, z�, which in turn de�nes an optimal organizational structure di�erent from the trivial

m = 2 and z = S � 1.

IV. CONCLUSION

A very simple model for dealing with the problem of communication and information 
ow in

organizations has been introduced. The model considers agents, organized in a hierarchical tree-

like structure, which interchange information packets (that can be understood in the most general

sense) following a simple set of rules: we de�ne a communication capability for each agent which

is decreased if the quantity of information to handle grows. We observe that the system can show

two qualitatively di�erent behaviors. When the amount of information to handle is below a certain

critical value, all the packets are delivered to its destination. However, when the amount of packets

to deliver reaches this critical threshold value, the agents in the organization get collapsed and a

certain amount of information never reaches its destination.

The simplicity of the model allows an estimation of the critical values, i.e. for a given hierarchical

structure it is possible to calculate the maximum amount of information packets that can be

generated at each time step without collapsing the network. For the simplest case in which no
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FIG. 5: Maximum number of packets that can be generated in an organization per time unit

without collapsing it, plotted as a function of z. Di�erent curves correspond to di�erent values of

the linking capability, L.

cost is associated to the existence of communication lines, two main features are observed: (i)

the maximum number of packets per time unit the organization can deal with does not depend

on the number of levels in the hierarchical structure and (ii) this critical number of packets is a

monotonically increasing function of the branching factor (span of control), thus suggesting that,

for a �xed size of the organization, the optimal organizational structure is the 
attest one, with

only two levels. Optimality is de�ned as maximum capacity to deal with information.

A di�erent scenario arises when the more realistic situation of costly connections is considered

by introducing a cost factor in the de�nition of agents capability. Although as in the previous case,

the maximum amount of information the organization is able to handle does not depend on the

number of levels, it is not a monotonically increasing function of the branching factor. Thus the


attest structure is not the best in general. Actually, the steepness of the optimal organization

structure is tuned by the intensity of the cost factor. As may be expected, the higher the cost of

the connections, the steeper the optimal structure and vice versa.

The extension of our model to more general conditions and topologies is easy and new chal-



lenging situations arise. The introduction of lateral connections or shortcuts in our starting point

hierarchical structure, for instance, seems to be helpful in achieving better performances. We think

that the approach presented here opens a promising line of research which will follow to study more

complicated dynamics and topologies.

APPENDIX A: CALCULATION OF THE CRITICAL PROBABILITY OF PACKET

GENERATION

As happens in other problems is statistical physics [15], the particular symmetry of the hierar-

chical tree allows a mean �eld estimation of the critical point pc. Since in the steady state regime

there is no accumulation of packets, the number of packets arriving to the top of the hierarchical

structure (level 1) per time unit, na1, is, on average, equal to the number of packets that are cre-

ated in one branch of the network and have their destination in a di�erent branch (see Fig. 1).

Since the origin and the destination of the packets are chosen at random, from purely geometric

considerations it is straightforward to estimate this number of packets per unit time as:

n
a
1 = p

 
z
�
z
m�1 � 1

�2
zm � 1

+ 1

!
: (A1)

Within this mean �eld approach, it can be easily shown that this top agent is the most congested.

On the other hand, in our mean �eld calculation q12 is the average probability that a given

packet moves from an agent in the second level to the top agent and vice versa, and is given, as a

�rst approximation, by q12 = 1=
p
n1n2, where n1 is the average number of packets at level one and

n2 is the average number of packets at each of the z agents in the second level. Thus the average

number of packets leaving the top at each time step will be nl1 = n1q12, and the average number

of packets going from the z agents in the second level to the top will be na1 = z�n2q12, where �

stands for the fraction of packets in the second level that are trying to go up (some of the packets

in level 2 are, of course, trying to go down to level 3).

At the critical point the top agent becomes collapsed, the communications between the �rst

and the second level are much more congested than the communications between levels 2 and 3

and we can assume that � � 1. With this and the steady state condition n
a
1 = n

l
1 we arrive to the



relations n1 = zn2 and n
a
1 =

p
z. Using equation (A1) we obtain the �nal expression for pc:

pc =

p
z

z(zm�1�1)2

zm�1
+ 1

(A2)
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