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“Approximating the strategies used by players...will be

the area of future research in which low-rationality

adaptive game theory will need to interact most closely

with cognitive theory”

Erev et al (1998)

ABSTRACT

Game theory has provided a rigorous conceptual support to analyse strategic

decisions and bargaining behaviour. But it shares with competitive equilibrium three

basic assumptions. The players are fully rational; they comprehend the faced

situation; and they know all the relevant institutional parameters. In this paper we

deal with players that are bounded rational. The  bounded rational behaviour is

empirically obtained from a laboratory experiment with human players. Then we

demonstrate that the observed behaviour can be captured in a cognitive multiagent

modelling with artificial agents, and we replicate the observed results in a natural

way. The model accommodate, both declarative and procedural rationality: i.e

rationality as a process and as a product of learning.
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1.-INTRODUCTION.

The paper reports work in progress on the application of MAS to the design and engineering of economic

institutions, which began with the first author Ph.D., López (2000). Economics is the science which deals

with social organizations in relation to the well-getting wealth using and its distribution. Yet when

Economics’ methods are exported to other sister social sciences, from law to politics or to the bedroom

relationship, it was reconverted in the study of the allocation of scarce resources among competing uses.

In this way rational behaviour was narrowed to optimization, under suitable analytical constraints, thus

clearing the field of any other dimension of human behaviour. No attention is given to motivations,

emotions or social learning. The basic inquire of any science, the true nature of things, is substituted for

predictive performance. Neoclassical Economics assumes that people are highly rational and can reason

their way out through the complexity of the Economy. No wonder Economics does not catch up with the

Economy under this “as if” approach, Hernández et al (2000).

The Economy is complex because  we observe just real aggregated data, that comes from simple agents’

myriad interactions. So that from a macro observation post, the mathematical approach may be very

difficult or computationally intractable. But if we adopt a micro definition of even heterogeneous but

human agents,  the resulting MAS model may be generated in a reasonable and realistic way. In

Hernández et al. (1999) and (op.cit.) we examined this issue. We showed that a  posted offer auction with

many buyers (300) and some sellers (15) can be generated from heterogeneous agents with cognitive

capacities. They have limited memory and limited deliberation-action time; partial knowledge, emotions

and reputation. We looked for regularities that emerged from the interaction of the agents, and to what

extent market efficiency is improved by engineering organization technology: a board (Internet) where

sellers, buyers and producers (airline companies) put their bids, asks and reputation. But there were not

strategic interactions between the agents.

In this paper we deal with the other source of complexity and bounded rationality in Economics.

Bounded rationality is understood as rationality exhibited by actual economic behaviour. This means that

we have to consider the behavioural limitations and emotional positions of heterogeneous agents that

have to learn from each others decisions and actions and that think strategically. We present a procedure

for modelling complex behaviour in bargaining. First an experiment is conducted in the Laboratory of

the E.T.S. Industrial  Engineering, with both fifth year undergraduates and young teachers. They played

a repeated game with asymmetric information, for thirty rounds. The revealed patterns and corresponding

gains are then classified and used to endorse artificial behavioural agents, using a cognitive model

language, SMDL. The results of the artificial MAS simulations confirm that we are able to  reproduce

reasonably well the observed human behaviour, and they open a promising alternative to simulate and

engineer the strategic competition.

Some comments are due to fix up the terms of this research. The application of game theory has been

an important development in microeconomics. It is conventional wisdom to use it to understand how
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markets evolve and operate, and how managers should think about the strategic decisions they

continually face. For instance, the prisoner`s dilemma when repeated over time clears some of the logical

inconsistencies of Cournot, Bertrand or Stackelberg oligopolies. It allows us to show how firms can make

strategic moves that give them an advantage over their competitors or the edge in a bargaining situation.

How firms can design pay off matrices that allow to develop credible threats, promises, or deter entry

by potential competitors. Nevertheless game theory is concerned with the following question: If I believe

that my competitors are rational and act to maximize their own profits, how should I take their behaviour

into account when making my own profit-maximizing decisions?. This question is in itself difficult to

answer, even under conditions of complete symmetry and perfect information.

When trying to advance an equilibrium solution one has to assume some kind of intuitive plausible

information and learning strategy, plus the   most likely emotional response of the contenders. The

outcome of a repeated play of a game is path dependant and should be found through a process modelled

using some form of learning theory. But since not such a learning theory is available, one has to enforce

some mechanical replicator mechanism Peyton (1998), or to model observed behaviour, from controlled

experiments (reinforcement learning Erev at al., op.cit., recommended play Brandts et al., 1995, etc).

Experimental economics has shown that simple but robust learning and coordination models can predict

observed experimental outcomes And the outcomes of these experiments are frequently at odds with

rational game theory predictions.

An empirical-based general theory of learning under bounded rationality remains a formidable task for

the future, but a claim is gaining acceptance. “Approximating the strategies used by players... will be

the area of future research in which low-rationality adaptive game theory will need to interact most

closely with cognitive theory”, Erev et al. (1998) and Selten for related work. We would like to consider

our paper as a contribution in this direction. We replace learning procedures as used in adaptive game

theory, based on mechanical and optimizing players, for cognitive learning agents whose decisions are

agenda based.

Although the approach can be labelled as ACE or MAS i.e computational organization, there is a  subtle

difference with some works in the field.  The agents have cognitive capacity and emotions. Thus object

oriented programming languages will not be sufficient, since our agents are not objects. They request

actions to be performed. In the object-oriented case, the decision lies with the object that invokes a

method. In the agent case, the decision lies with the agent that receives the request.  Objects do it for

free; agents do it for money, could be a sharp slogan to indicate the difference. 

The assumption of perfect rationality is an imperfect description of real human behaviour.  Experimental

studies of decision-making (see Camerer´s,1995 and Conlisk´s ,1996 surveys) find inconsistencies with

the SEU version of rational choice. Models that embody SEU theory are incapable of fully explaining

economic activities like incomplete contracts, advertising, transfer pricing etc. This situation led some

researches, from Simon (1982) to demand models in which players are bounded rational. Should we
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consider from now on NASH rational equilibrium as futile armchair economics? Certainly not, as

Myerson (1999) cleverly argues.

First as  indicated above, an empirically based general theory of bounded rationality (if such generality

makes sense) remains a task for the future. A second reason is that the functional goal of social science

is not just to predict human behaviour in the abstract, but in relation to a particular  social institution and

in a contingent context. And to separate, the inefficience of the institutional setting from the inefficiency

of agents behaviour will be even more difficult. Thus applied social theorist and market engineers, should

find useful to analyse social institutions under the assumption that every member of that society will act,

within their domain of control, to maximize welfare as they evaluate it, given the likely behaviour of

others.

“Notice that this argument does not prove that Nash equilibrium should be the only methodological basis

for analysis of social institutions. But it does explain why studying Nash equilibria should be a fruitful

part of the critical analysis of almost any kind of social institution” (Myerson, op.cit.)

Thus in spite of the efforts of research like this work, Nash rational equilibrium will be with us for a long

time.

2.-ARTIFICIAL AGENTS TO DEAL WITH BOUNDED RATIONALITY AND COMPLEXITY.

The Economy is indeed a miserable experiment. That is why we have to simulate and grow up stable

aggregated behaviour. We have short data records, that sometimes are of low reliability. It is difficult to

test hypotheses concerning the process from individual behaviour to aggregated regularities, in the usual

way. In some areas, it may be that simulating economic processes with well founded cognitive models

by trial and error procedure,  is really  the best we can do.

The representative agent is not a realistic assumption to start with. We have to deal with bounded rational

agents, with finite processing capacity and without explicit utility functions. They adapt and settle for

satisfaction under rules of thumb. They have emotions. And they are rather heterogeneous. Even if the

resulting model with a representative full rational agent has high predictive capacity, it is still important

to replicate the observed patterns from models with heterogeneous and bounded rational agents. 

The method we use, MAS, can help to overcome the lack of capacity of Economics to explain the

Economy as a process. General equilibrium theory and its more rigorous game theory approach to

strategic firm behaviour, have been concerned mainly with static equilibria, ignoring process dynamics.

MAS and computational organization, we claim, is a natural and very soon popular methodology for

studying dynamics in social systems. 
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The following comments on complexity and rationality will be conditioned by our generative approach.

The aim is to provide initial micro specifications for the artificial agents, environment, and production

rules that are sufficient to generate the macrostructures of interest. We shall not enter into other

philosophical discussions, on rationality or complexity.

Complexity is a term used in many  ways according to different schools; see Barkley (1999) for a recent

survey. Most users come from the field of nonlinear dynamic models as applied to Economics.

Complexity is then, the fourth C in this line of research: cybernetics, catastrophe, chaos and complexity.

But the field of complexity is controversial and unsettled. And there is no accepted definition of the term.

There have been two prevailing views . A dynamical system is complex if it endogenously does not tend

asymptotically to a fixed point, a limit cycle, or an explosion. Alternatively a situation exhibits

complexity when there is an extreme difficulty of calculating solutions to optimization problems. We use

this view of complexity, that in turn comes from two sources.

From the aggregate  outcome of  simple agents´ myriad interactions taking notice of each other

agents´actions: institutional complexity. In these interactions, agents relate to each other and with the

environment through agent-environment production rules, and agent-agent rules. We release an initial

population of agents into the simulated environment and watch for macroscopic spontaneous order. This

was the problem we addressed in Hernández et al. (1999, 2000 op.cit.)

From agents trying to model other agents modelling of them, modelling those agents, ad infinitum. This

is  the main source of complexity in game theory. Expectations about other agents strategic behaviour.

This is the view we take in this paper.

Some selected facts on bounded rationality.

To endorse our artificial agents with instruments for unbounded rational, but consistent behaviour, one

has to recall some facts. 

(i) The basic dimensions. Following Selten (1998), the mental bounded rationality process comes from

the interaction of, motivation (the driving force) adaptation (routine adjustment without reasoning) and

cognition (reasoning and deliberation). Thus our cognitive approach has to accommodate a process for

reasoning and a process for adaptation. An this implies that unbounded rationality goes far beyond  “the

imitation paradigm” as in Vega-Redondo (1999).

(ii) Bounded rational agents are computationally strong. Full rational decision -making methods (the

usual methods drawn from logic, mathematics, and probability theory) are computationally weak:

incapable of solving the natural adaptive problems. 
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“Despite widespread claims to the contrary, the human mind is not worse than rational (e.g. because of

processing constraints) but may often be better than rational. On evolutionary recurrent computational

tasks, such as object recognition, grammar acquisition, or speech comprehension, the human mind

greatly outperforms the best artificial problem-solving systems that decades  of research have

produced...  How can this be? General-purpose systems are constrained to apply the same problem-

solving methods to every problem and can make no special assumptions about the problem to be solved.

Specialized problem-solvers are not handicapped by these limitations... Natural selection could equip

humans´ cognitive specializations. For the problem domains they are designed to operate on, specialized

problem-solving methods perform in a manner that is better than rational”. Cosmides et al. (1994).

The departure from rationality does not at all imply that we retreat, malgré nous, to second best

outcomes. Thus individual adaptive and satisfying learning does not necessary lead to inferior emergent

results.

(iii) Spontaneous order and the social component. The wide variety of situations where the social

interaction outcome was surprisingly different from individuals motivations and expectations, first shown

in Economics by Schelling (1995) and then in the wide literature of experimental economics,  underlies

the fact that institutional rules themselves matter and change as a result of myriad of individual actions.

This causes the spontaneous order as outcomes from bounded rational agents which can be more efficient

than expected from rational agents. Thus learning and knowledge acquisition has a social component.

Our instruments for bounded rational agents, explicitly should make methodological  individualism and

social knowledge  compatible views. 

(iv) Simons´ Ltd.  Bounded rational modelling should then include: motivations (and perhaps emotions),

adaptation to accommodate social learning (can I name them knowledge externalities?) and cognition.

But is there a place where we could find such desirable stock of tools to model our bounded rational

agents?. The answer is yes, surely.  The concepts warehouse is Simons´ Ltd. , the premises to be located

in his collected work, Simon (op.cit.). The cognitive facilities to assemble his ideas of procedural and

substantive rationality are available in recent developments by Anderson (1993). The convergence of

these two contributions allows for a consilient unification of  the social science with a reasonable balance

of relevance, realism and rigour.

In a nutshell Simon distinguishes between  substantive rationality —we prefer to call it declarative

knowledge, taking from Anderson (op. cit.)— and  procedural rationality. Substantive rationality refers

to behaviour that is appropriate to the achievement of given goals within the limits imposed by given

conditions and constraints. On the other hand, behaviour is procedural rational when it is the outcome

of appropriate deliberation. It is the outcome of some strategy of reasoning within the repository of valid

rules, and it is selected  among those credited as the best so far. 
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The following classroom example, Pindyck et al. (1995) will help to clarify the two concepts. Three

contestants A. B and C, each have a balloon and a pistol.  From fixed positions, they fire at each others

balloon.  When a balloon is hit, its owner is out of the game.  When only a balloon remains, his owner

is the winner and receives a $1000 prize.  At the outset, the players decide by lot the order in which they

will fire, and each player can choose any remaining balloon as his target.  Everyone knows that A is the

best shot and always hits the target; that B hits the target with probability 0.9 and C with probability 0.8.

Which contestant has the highest probability of winning the $1000?  When asked to advance an answer

within five minutes, some will come up with a reasonable and correct one: Contestant C.

The intuitive argument —cognitive efficient— is that, as in real life, under perfect rationality , the

observed fact is that mediocre are the winners as well: this is procedural rationality. Of course, in this

case, declarative learning will lead to the same answer that substantive one. Ancillary assumptions about

the emotional attitudes of the contestants: aggressive selfishness are needed. There is a well specified

protocol for the game, a sequentially random order.

In the rest of the paper we shall describe how these ideas have been implemented in a two players

repeated game with asymmetric information. First the observed behaviour is taken from a Lab.

experiment with human players. Then the artificial agents are modelled using the SDML as developed

by Moss et al. (1998). Simulations with this last model do  reproduce the observed strategies in the real

experiment.  For full details see López op.cit. [chapter 4].

3.-EXPERIMENTAL ECONOMICS: A TWO STAGE REPEATED GAME.

To obtain knowledge of the players strategic behaviour, an experiment was conducted at the Lab with

students in their fifth year and young teachers of the Department of B.& Ec. There are two players. P1

takes his decision with information about a state of nature. But then  P2 has to make his choice without

knowing the true  state of nature. Perhaps P1 supplies to P2  a product-service of alternative quality, say

H or L. The associated probabilities for states H and L are 2/3 and 1/3 and are known to both players. P1

can take either action A or B, once he knows about the true state of nature (H, L). Then P2 knowing the

action that P1 took, makes his decision, C or D. The payoff matrix is as in figure 1.

We can verify that a rational player will order his preferences as follows:

B – C > A – C >> A – D > B – D

If we compute the different cases:

Option B – C:  Ing P2 B – C = 120•1/3 + 140• 2/3 = 133.33 u.m.

Option B – D: Ing P2 B – D = 80•1/3 + 60• 2/3 = 66.67 u.m.
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Option A – C: Ing P2 A – C = 140•1/3 + 120• 2/3 = 126.67 u.m.

Option A – D: Ing P2 A – D = 60•1/3 + 80• 2/3 = 73.33 u.m.

The intuitive equilibrium of this new game predicts that P1 will always select B and P2 select C. With

this form of decision, both players obtain half the maximum possible payoff during the session.

Nevertheless, since there are no negative payoffs, there will be a bias towards higher risk bearing,

particularly for P2.

P1 can  initially take a selfish attitude: choose A when the product is L and decide B when the product

is H. This conduct will induce P2 to play strategically most of the time. On the other hand if  P2 tries to

play to guess if the state is H or L, he will play C if he thinks is facing H and D if he thinks is facing L.

This risk taking is not considered in game theory models and it is a human attitude that can not be

ignored. If  P2 plays and he is right he will get 125 units in each round, independent of P1`s decision. If

he is  wrong he will be short of 50 units. But when he is correct he will get the maximum payoff. Even

more he will have the extra satisfaction to go over P1`s payoff,  who  having more information  is initially

favoured by the payoff matrix.

If P2 plays strategically and adventurously, P1 may suffer a substantial decrease in his earnings. He could

react doing nothing or trying to gain advantage of  P2 mistakes. Thus he will play sometimes A and

sometimes B. 

The result of the experiment after thirty sessions (with an average of twenty-five rounds per session)

indicates that the most repeated decisions are B-D and A-C (see table 1).

P2

% C D

P1 A 32 % 20%

B 12% 36%

Table 1.  Real players’ decisions.

After a certain amount of sessions, a stable decision pattern seem to emerge. The players tended to repeat

their decisions till the end of the game. The most relevant result is of course the wide variation of

outcomes, at odds with a rational behaviour (optimizing) of both agents. If the objective of the

experiment would have been to discover useful guides for strategic behaviour in this type of game, to

perhaps compare them with similar experiments, we should have controlled for real gain and losses. But

since what we want is to show that the strategic behaviour can be modelled under a cognitive MAS, this

is not a relevant question. 
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4.-MODELLING THE  BEHAVIOUR OBSERVED IN THE LAB-EXPERIMENT.

The complexity of this problem is not due to a lack of information about the environment, but about the

characteristics of each participant. Each player knows that he can classify his opponent as being one of

the following types: altruistic, co-operative, normative or perverse. This taxonomy allows to establish

an initial decision making behaviour for each agent. Furthermore, during the sequential process, each

agent creates his own model of the others and uses this information before taking his decision (see Cesta,

et al., 1996 for a study of the interactions between different attitudes). The taxonomy that we have finally

adopted is very similar to that introduced by Rizzo et al. (1998).

This taxonomy allows us to  recover an important feature of the  experiment. The results and the

decision-taking vary according to the idiosyncrasy of each participant. The description of the

characteristics of the four previous groups can be briefly described as follows:

An altruistic agent is always concerned with the general well-being; his desire to help includes sacrificing

his own particular goals. It is not absolutely important to him what strategy his opponent adopts as he

works to select a strategy, taking into account the advance information, which is better for both; him and

his opponent. He is never trying to change  the attitude of his opponent, and he will not alter his own

emotional state even when he knows his adversary is of a perverse type, trying to fool him.

A co-operative agent is always keen to help the group, so long as his helping does not cause damage to

him and he will be corresponded. He will even try to modify the behaviour of the other player, to induce

him towards a coordinated higher payoff. His emotional state could be affected by "opportunist" conduct

from the other players. He is ready to partially lowering his rewards in order to obtain a better  sharing

of the total payoff and achieving stable cooperation.

A normative (egoistic) agent is fundamentally concerned with getting the maximum profit from the

opportunities  at his disposal. He will solely look for deals or agreements only when these can bring any

extra benefits. His emotional state can be affected by the relative distribution of earnings, according to

the situation of every participant in the business.

A perverse agent especially enjoys doing bad things to others, interfering in their plans and, in general,

harming others. The satisfaction he gains from economic earnings (for example) is less than that gained

from harming his opponent. He fixes his strategy according to this spitting principle.

These four types of behaviour are essential in the development of the decision-making process and

expectations formation. Every participant will construct and modify his conception about the others based

on a series of initial beliefs as well as the decisions and results obtained.
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The complexity of the system studied is generated by the possibility of the participants’ choice, aided in

part by the ignorance of the opponent. There exists in the model another source of uncertainty: the lack

of information that player P2 has about the quality of the product that player P1 receives. Although he

knows that approximately two thirds of the time, the quality is high; he does not have information on the

actual  probability distribution.

Both participants know the rest of the information about the problem. For the individual participants in

the experimental sessions, the difficulty of taking a decision has different origins. Player P1 does not

know what type of agent P2 is. Player P2  does not know neither what type of agent P1 is, but he places

more importance on knowing the quality of the product, which is information that P1 has.

We would like to note that although we are well aware that real individuals have a distinct form of

reacting when they are confronted with losses instead of earnings, the lack of experimental evidence in

this respect does not allow us to use this characteristic in this first exercise. However, it will not be

complicated to incorporate this aspect of the problem later. The modularity of the models that we use

and their easy extensibility is one of the fundamental properties of the methodology of the programming

language that we have selected.

In addition to the experimental results, the participants were asked to explain formally their strategy all

along the bargaining game. We grouped the revealed behaviour in several types, detailed in López  (2000,

op.cit.). We further consolidated these patterns into the four types we set-up before. The result could be

directly correlated with the type of players, since it looked as if most of them are normative or

cooperative players (see table 2).

Player/Type Altruist Cooperative Normative Perverse

P1 8% 21% 62% 9%

P2 5% 26% 55% 14%
Table 2. Extrapoled human participants’ behaviour.

We observe that for P2 will have the largest percentage of possible perverse behaviour because  the game

is asymmetric e, and  P2 appears to be disfavoured in the payoff  matrix as compared with P1.

It will also be important to report about the level of satisfaction achieved from the results of the game.

Approximately 60% of the participants are dissatisfied with the results and their opponents  decisions.

These two characteristics are considered fundamental to allowing a modelling of agents more realistic

than that  of conventional  models in game theory  because of the difficulty of a mathematical treatment:

a) Emotional state: happy, angry or indifferent;  the same for P1 as for P2



1  SDML stands for Strictly Declarative Modelling Language. SDML has been developed by the Centre for Policy

Modelling of the Manchester Metropolitan University.
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b) Character or initial conduct: aggressive and/or benevolent for whichever of the participants. Two

players with aggressive character fell nearly irremediably into a“fight”  that either led to undefined

situations B-D, or to random choices from all the four alternatives  A-C/A-D/B-C/B-D. In all of the

sessions where P2 has a  benevolent character he will end up at situation B-C. In all sessions that P1 has

a benevolent character he will end up at situations A-C/A-D.

Nearly 90 % of the participants have a very limited “computational rationality”. Only eight to ranked

their decisions on initial calculations. The majority opt to start taking decisions of an accidental or

intuitive way, and modify these adaptively, based on past results.

5.-MODEL STRUCTURE.

To build a good agent based model  using SDML 1, one  should begin with a detailed and complete

definition of the structure of the model.. The multiple heritage property is a  clear advantage that will

improve the efficiency of the system if it is part of a well-defined structure. The first thing to do is to

define  the hierarchy container and the  time levels. The system that we will develop has the following

elements:

The market with its given fixed rules, is where the distribution of profits (or payoffs) takes place, at the

end of each bargaining round and is the source of the information to each player. And of course where

the decision-making takes place. 

The decision-taking agents: player-agent P1 and player-agent P2. Each one will have an individual rule

base, although they will share many parameters and characteristics .

We need at least  two levels of time. The complete session starts with agent P1 receiving information

about the quality of the product and ends when the payoffs are distributed once P2 made his choice.

Stages exist in each session as to the sequence of the distinct processes that take place. P1 receives

information; P1 thinks; P1 takes a decision; and P1 sends his choice to P2. P2 receives the information

from P1; P1 thinks, and P2 takes a decision. "Market" processes the decisions. "Market" sends the results

to P1 and P2. "Market" continues or stops the sessions.

Once we know  the agents that are part of our model ("Market", P1 and P2) we define the hierarchy of

types (see figure 2)
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"Market" is an entity that contains various agents and that will process and transmit information to the

agents it contains. Therefore, the market is an entity that is a type of container, without cognitive capacity

and that will not take pro-active decisions. On the other hand, P1 and P2 will take sequential decisions,

firstly P1 then P2. Both have a cognitive capacity that they will inherit from the Cognitive agent

hierarchy of types. Because P1 and P2 have many common features, it is convenient  to have duplicated

rules, predictions and various objects that can be used for both. For this reason, it is convenient to define

an intermediate type that we have named as Player, whose common characteristics are inherited by both.

The hierarchy structure can support Rule bases and data bases associated with different levels of defined

time. Besides the agents observed in the hierarchy, we observe that there are other entities that inherit

Object Type, including: Strategy, Behaviour, Play, Emotions, Endorsement and Endorsement Scheme.

These entities are Objects and therefore they cannot have Rule bases or have their own behaviour. They

are used with this type to define instances that permit identification of associated concepts. Thus, the

object Behaviour will have four defined instances: altruist, co-operative, normative and perverse.

After the definition of the container hierarchy, and the definition of the hierarchy of types, we introduce

into the model the hierarchy of levels of time. In our case, it is necessary to add two instances of Time

Level: session and round, and activate them within the Universal Agent, in the Rule base corresponding

to Initial Eternity.

This is a starting point for programming the model through the introduction of rules for each agent,

grouped within categories and within the corresponding levels of time. The rules consist of antecedents

and consequents  and can  be fired forwards or backwards. Therefore, the antecedents, like the

consequents, can be  simple and can have just one or several clauses. The clauses are defined by the user

from the available predicates. Normally the user will define, besides the predicates and primitives that

are available (clustered by  categories) his own predicates, with forward or backward chaining.

We should proceed with the programming of our agents P1 and P2 in the following way.  Both will have

declarative knowledge  of the system, a priori information and behavioural patterns,  that are stored in

a set of rules. Furthermore, both will have a capacity to learn and develop procedural knowledge about

the rules that performed better. This capacity is given by the set of predicates that have been inherited

from the Cognitive agent and stored in the Endorsement category. For this to be effective, one has to

decide the instances that we want to reinforce (objects of Endorsement type). For example the agent has

his model of the other player and this model changes as new information is available from each round

in response to his own choice.

In figure 3 we show the instances of Endorsement type given in our model under Player type, that are

common to P1 and P2 players.
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The representation of the elements  introduced till now is the following. Each agent is characterised

as follows:

— The entities of the type of container in which they are contained: CC (Container Constraints)

— The type of heredity, receiving predicates, rules and object instances: ST (Super Types)

— The predicates, they use by forward or backward chaining: CS (clause sets)

— The Rulebases stored in Content and the ones corresponding to the different Initial and Final levels

of time: RB (Rulebases)

— The instances defined in  Object: O (Objects)

We can therefore represent an agent by the following tuple:

Agentk {CCk , STk, CSk, RBk, Ok }

This agent's description will allow an easier understanding of what our agents consist of. This will also

help other researches to  reproduce  our models, perhaps  using  other programming languages.

In this model, each simulation will have only one instance of Agent Market, another of Agent First and

another of Agent Second. In other models like that presented in Hernández et al. (1999 op.cit.) there are

multiple instances of each one of the types Buyer and Seller to allow a replicate of the functioning of the

market.

6.-CODING THE BEHAVIOURAL RULES.

The programming of our agent-based model is carried out within the categories defined under the

hierarchy of types to support them. Thus we will carry out the programming of Market, Player, First and

Second.

The programming is done at two levels. Firstly, we define the Object types that will be necessary for our

Rules and  the predicates that will be part of the rules that will feed each agent’s Rule base. Then new

rules keep feeding the Rule bases, from these more elemental blocks.

For each agent the Rule base has various levels associated with distinct temporary blocks defined in the

model. The fundamental programming is done in the Content Rule base and in the initialisation of

attributes and necessary values like parameters, for  the distinct temporary levels associated with Initial.

Finally, we introduce rules into the Rule base that is associated with the Final to  present  results and

other output  data for each of the different temporary levels.
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6.1 The Market Type

Programming the market is carried out under Market Type. In the types hierarchy we can see the legacy

of Serial Composite Agent and Looping Agent. The first relation permits to construct the Market under

the Entity where other agents exist and start their Rule base  in sequential form. The second relation

allows the Market, and all the entities included in it, to activate Rule bases at different levels of time.

The  representation of the Market  is: AgentMarket {CCMarket, STMarket, CSMarket, RBMarket, OMarket} where:

CCMarket = [ ]. The instance or agent Market, that will be contained directly under universe. 

STMarket = [LoopingAgentSerial | CompositeAgent]. These types  will be contained directly under the

module Standard and are a part of the standard SDML platform.

CSMarket = [backward rules | parameters | players | time ]. Each of these categories has defined predicates

that are necessary to construct rules (see the predicates defined in figure 4).

RBMarket = [communication (Content) | final experiment (Content) | report (Content) | reward information

(Content) | set-up game (Initial Eternity) | set-up players (Initial Eternity) | set-up time level (Initial

Eternity) ].

OMarket = [Behaviour | Choice | Emotions | Endorsement Scheme | Quality | Strategy ]. Different instances

exist defining each one of these types.Thus for example, we define four types of behaviour {altruist,

cooperative, normative, perverse}; four for choice {a, b, c, d}; three for emotions {angry, happy,

neutral}; three for Endorsement scheme {behaviour Endorsement scheme, strategy Endorsement scheme,

emotions Endorsement scheme}; two for quality {high, low}; and four for Strategy {deliberative, reactive

Downing, reactive Tit for Tat, retaliator}.

6.2 The Player Type

Player is a category created to construct objects, predicates and rules that are common for the agent P1

(or first) and for agent P2 (or second). Therefore, there cannot be an instance of an agent during the

simulations  reproducing  a Player-type entity. Following this notion then, the Player entity is represented

by: AgentPlayer {CCPlayer, STPlayer, CSPlayer, RBPlayer, OPlayer }.

CCPlayer = [Market]. It allows for every instance of Player, and for those of its subtype, to directly read

the information contained in the Database (associated with the distinct temporary levels) for the instances

that we define as the Market type. Any clause or object that is defined under the Market is inherited by

Player and its subtypes.
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STPlayer = [Cognitive Agent]. Cognitive agent is the agent type defined under the Cognitive module. Player

and its subtypes ,First and Second, inherit all of the characteristics of the Cognitive Agent (and therefore

of EndorsingAgent) besides the heritage of properties gained from the hierarchy of modules.

CSPlayer = [parameters | players ]. Within this category of parameters (inherited from the hierarchy of

containers), we define new predicates under Player, which are shown in figure 5.

RBPlayer = [endorsement (Content) | compute performance (Content) | set-up experiment (Initial Eternity)

| endorsement (Initial Eternity) | set-up experiment (Initial Session) ]. In figure 6 we observe the grouping

of rules into their  categories in accordance with the temporary level of the Rulebase in which they are

constructed.

OPlayer = [ Endorsement | Player ]. There exists multiple defined instances of  the Endorsement Type that

allows to construct  the endorsement scheme from the rules “ endorsement For + Object + Type + [+

Ground Term]”. With the rules we define various instances of Endorsement for the types: Behaviour,

Emotions and Strategy.

Thus each agent will construct and modify his mental model of his opponents’ behaviour; build and vary

his emotional state; and select the strategy he considers most appropriate at each moment. The Play

Objects  {choice A, choice B, choice C, choice D, randomly, repeating} define  each player choices in

each session.

6.3  The First and Second Types

The player P1 will be an instance of the First Type in our model. The representation of this agent will

be the following: AgentFirst {CCFirst, STFirst, CSFirst, RBFirst, OFirst}

Similarly, player P2 will be: AgentSecond {CCSecond, STSecond, CSSecond, RBSecond, OSecond}

Agent First and Agent Second share various elements of their representation:

CCFirst = CCSecond = [Market], from their definition as, Player, which elects Market as the Container

STFirst = STSecond = [Player].

OFirst = OSecond = [ ]. There is not an object, or some kind of instance, which could be specific to a player.

All the instances of Object  have been inherited from the super type and from the container.

The differences between P1 and P2 are fundamentally part of the decision rules that both use. This means

that specific clauses for each agent exist as well, although not many. These clauses are shown in figure

7.
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We extracted the rules of thumb used by the participants in the experimental sessions, from their on

description , after the experiment ended.  Some of these rules are shown in tables 3, 4 and 5.There you

can find the description of the rules, their antecedents  as well as their consequents. All of the rules used

in the model have been obtained from the “natural conduct” of the participants in the experiment.

 

Description: quality-past_decisions memory.

P1 intends to relating P2´s decisions with decisions he has made, and differentiate if the quality was high or low

when he decided on A or B. This rule gives us a predicate that P1 will use to proceed to a different endorsement.

Antecedents Consequents

and

time session ?ts\

time round 1\

quality ?quality\

last session (fullListOfChoices ?oldList)\

sortedList ?setChoices ?group

(and

includes ?oldList ?item\

= ?item [?pair ?quality]\

occurrences ?oldList [?pair ?quality]

?num\

= ?group [?num ?pair])\

memoryOfChoices ?setChoices\

Table 3

Description: my opponent is not looking for a compromising strategy for both of us (he endorses

common defection).

P1 uses the information from the rule above, to know how many times P2 has deceived.

Antecedents Consequents

and

time session ?ts\

memoryOfChoices ?setChoices\

total ?value ?num

includes ?setChoices [?num [?a d]]\

is ?half ?ts / 2\

greater ?value ?half\

includes [pervers normative angry]\

all session (endorsementFor

?endorsement commonDefection

?ts)\

Table 4.
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The second rule states that if P2 has chosen D more than half the time, then P1 considers that P2 is

perverse or egotist (normative). Beside this, P1 alters his emotional state, being very disgusted with P2´s

attitude.

An example of a rule used for individuals who participate in the game as a P2 did, using a “retaliator”

strategy, is the selection of C or D guessing if the quality of the product was high or low. This strategy

forces  P2 to discover the correlation between the decisions of P1 and the quality that he in fact received.

Description: correlation of P2 decisions and product quality.

P2 mentally estimates the correlation between P1´s previous decisions and the quality of the product

Antecedentes Consecuentes

and

last session (fullListOfChoices ?oldList)\

pairList ?oldList ?reducedOldList ?otherList\

pairList ?reducedOldList ?firstList ?secondList\

pairList ?finishList ?otherList ?firstList\

sortedList ?averageList ?cumulo

(and

index [a b] ?i ?elem\

occurrences ?finishList [?it ?elem] ?ex\

= ?cumulo [?elem [?ex ?it]])\

listOfChoiceAndQuality

?averageList\

Table 5.

7.- MAIN RESULTS AND CONCLUSIONS.

The simulation was set up so that both participants were “artificial decision makers”. It would not be a

problem to substitute either of them for a human decision-maker. Furthermore, it was simpler to think

of only constructing an artificial agent that was the first or second decision-maker, whilst the other was

a human player.

The number of sessions for each simulation run is introduced by the model’s user. A minimum of 15

sessions is recommended to allow the  emergence of certain patterns in the player’s decision making. 

We run approximately 120 simulations of the repeated game, whose average running time was five

minutes each. We set up the simulation sessions, to analyse the following dimensions of the problem:

a) Path dependency. The importance of the sequence of the states of nature (quality product values:

high/low), with the same pair and types of players. If the length of the game is not too long, as in real
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strategic competition, path dependence should be important. Four fixed sequences were used, to control

for this feature.

b) The relevance of the combination in pairs of different players’ behaviour, for a given quality states

sequence.

c) The effect of N , the number of times the game is played.

In the figure 8 we can see  the sequences of quality in four different scenarios. In the figure 9 we show

the evolution of the decisions in different simulations with some pairs of normative players.

In general terms, the human players agreed that they have been influenced by path dependency in a

similar way that in our artificial experiment for pair of normative players. If for the same  sequence of

quality, they tend to be very “learning”, they show an unstable strategy, which led to poorer rewards

towards the end of the game.

If the initial variability of the players is not high, for the same quality sequence, the players settle down

very early in the game and stay there repeating their moves.

If the quality sequence is very variable, and either of the players reaches  a negative emotional state, the

evolution of the game is that P2 repeats taking D whilst P1 also repeats the same decision. Both players

lose interest in obtaining a good result and focus on getting better  rewards than their opponent.

P2 ‘s negative attitude normally means repetition of decision D, independently of what P1 might do or

the quality state. This harms P1 more because his earnings diminish substantially.

In general terms, the comparison leads us to conclude that if the two players have normal (egotist)

behaviour, P2 gets more earnings than P1, contrary to what one could expect from normal analysis with

rational players in a purely expected utility optimization.

Total earnings are less than we possibly expected, and although both players approximately get half of

the total profits (on average over all the simulations), P2 will do better than P1, at odds with the

prediction of a normative theory (see figure 10).

We think that the following are some reasonable conclusions.

We totally agree with Erev’s statement, that  to approximate the strategies used by players, will be the

area of future research in which low-rationality adaptive game theory will need to interact most closely

with cognitive theory. Our paper shows a possible way to achieve this goal. Evidence can be taken from,

actual competing strategies observed in real cases, or from experimental Lab. sessions with human
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agents. Then different behavioural patterns can be looked for by simulating with artificial agent cognitive

models like the one used in here.

The aim of the work was just to show that this goal is not wishful thinking, and to give a detailed account

of the steps in cognitive ACE modelling. It can be extended in many ways, since the model is very

flexible. Many kinds of controlled learning can be implemented, although we rather think that it is better

to see learning growing without a priori  assumptions on learning or recommended strategies.

This approach is not incompatible with Nash analysis that it will always convenient as a benchmark. But

clearly the process of learning matters.

The relevance of experimental economics for research on market strategies and market design, it will be

enhanced by cognitive approaches , as we have shown.

The repeated game with asymmetric information that we have use for our analysis and experimental

simulation is rather versatile and generic. Agency theory, advertising and bargaining can be

accommodated in our basic model.

We could not  finish this report of our ongoing work on cognitive adaptive game simulation without

recognizing that the way ahead is long and hard. But hard is Economics as a social science. Certainly

it is harder than natural sciences. Failing to accept this fact will widen the gap between Economics, as

it stands now, and the Economy.
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Figure 1 Final payoff real players faced in the experimental sessions with Labex.

Figure 2   Type Hierarchy for the model.
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Figure 3 Instances of Endorsement in the model.

Figure 4   Clauses and predicates into Market type.
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Figure 6 Rulebases of Player Type. Antecedents and consequents for: define strategy scheme.

Figure 5  Clauses defined under Player Type. Sintax of a clause: reward.
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Figure 7   Clauses defined in the Types First and Second.

Different sequences of quality H / L in the proportion 2/3 to 1/3

0 5 10 15 20 25 30 35 40 45

E-1 E-2 E-3 E-4

Figure 8 The four sequences [E-1, E-2, E-3 & E-4] we used to evaluate the relevance of path dependency in the sequence

H/L for player’s decisions.
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Figure 9   Different simulations with some couple of normative artificial players.
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Incom e s in  E3: 9 sim ula tions
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Figure 10  Total earnings obtained by P1 and P2 in different simulations

where both players were normal (egoist-normative). Incomes for two

‘rational’ players would be J1�6000 and J2 �5000.


