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Abstract

Since the early 1980’s the use of dynamic, stochastic general equilibrium

(DSGE) models to model business cycles has become widespread in the liter-

ature. More recently there have been a number of criticisms of the way these

models are evaluated, both with respect to the data and with respect to other

models. This paper develops a method that uses a likelihood approach to di-

rectly compare two or more non-nested DSGE models. It is shown how DSGE

models can be compared across the whole sample and how this measure can

be decomposed across individual observations thus allowing models to be com-

pared across any sub-sample of the data. The method is applied to the problem

of determining whether the technology shock process in a standard Real Busi-

ness Cycle model consists of permanent or temporary, albeit persistent, shocks.
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1 Introduction

Dynamic, stochastic general equilibrium (DSGE) models are widely used in the

macroeconomic literature, especially in the Real Business Cycle (RBC) literature.

Beginning with the work of Long and Plosser (1983), Kydland and Prescott (1982),

and Hansen (1985) it is now common to investigate the business cycle using general

equilibrium models in which cycles occur through individual agents making optimal

decisions in the face random fluctuations. The development of the literature has been

to develop models that aim to model an economy; to use these models to ask and

answer questions regarding observed economic phenomena; and to use these mod-

els to conduct experiments on how the economy reacts to various changes to the

characteristics of these economies (Kydland and Prescott 1996).

The methods that have been used to validate the use of the models in the RBC

literature have come under increasing criticism. The most common method of de-

termining whether a model does a “good” job of mimicking an observed economy

has been criticized for being too informal and for not being likelihood based (Hansen

and Heckman 1996), and for not directly comparing models in the RBC literature

(Stadler 1994) . Various alternative methods have been proposed to evaluate the

ability of models with respect to observations on the economy (for example DeJong,

Ingram and Whiteman (1996), Diebold, Ohanian and Berkowitz (1998), and Cogley

and Nason (1994)). However, these alternative methods evaluate the performance

of a model with respect to the observed data rather than evaluating a model with

respect to other competing models in the literature.

Kydland and Prescott (1996) attempt to deflect this criticism by arguing that the

models used in the RBC literature should not be expected to predict the observed

economy that well, which implies that standard statistical techniques would almost

always reject the models used. This could lead to the rejection of models that could

nevertheless lead to increased understanding of the observations at hand. Their view

is that, while the models are not good at predicting observations, the models used are

useful in helping to understand the observations from the economy. If this is the case,

then it would be important to be able to distinguish which model of the type used

in the RBC literature is the “best”. Therefore, a method that is able to distinguish

among the class of models that is used in the RBC literature is needed.

This paper develops a method that is able to directly compare the types of competing

DGSE models used in the RBC literature. Importantly, the method is likelihood

based, thus evaluating, potentially non-nested, models over the full dimension of the
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data. One of the issues with working with the DGSE models that are common in

the RBC literature is that there are usually less shocks in the model than there are

variables that are being modelled. For example, it is common for an RBC model, such

as the one described in Hansen (1985), to try to explain observed fluctuations through

only a technology shock. This has implications for the likelihood function of such a

model. The assumption of less shocks than variables implies that the model predicts

that some of the variables of the model are related to each other by a deterministic

function. Therefore, if this deterministic function is rejected by the data the likelihood

of this model would be zero. In this case any attempt to estimate the parameters of

the model by maximum likelihood would fail.

A number of papers, such as Sargent (1989), Anderson, Hansen, McGratten and

Sargent (1996), and Ireland (1999), have attempted to solve this problem by assuming

that the variables of the model are measured with error thus increasing the number of

stochastic terms in the model. Other papers, such as DeJong, Ingram and Whiteman

(1997) and Landon-Lane (1998) construct likelihoods based on a subset of the data.

This paper uses principle component analysis to construct a likelihood function for

the model, using information from all of the variables that are modelled, without

adding any extra stochastic terms. However, it should be noted that the method of

model comparison that is used in this paper is not dependent on the method by which

the likelihood is constructed.

Sims (1996) argues that the appropriate way to evaluate or compare models is via

Bayesian methods (for example, DeJong et al. (1996)) as Bayesian methods treat

parameter and model uncertainty in the same manner. In this paper, the comparison

of two of more DSGE models in this paper are undertaken using Bayesian model

comparison methods described in Geweke (1999). In particular, this method of model

comparison allows for the comparison of models over subsets of the data.

The layout of the paper is as follows: Section 2 describes how the likelihood function is

calculated, Section 3 describes the model estimation and model comparison techniques

used for this paper, Section 4 contains an application of this method to the problem

of determining the appropriate error structure for the technology shock process in the

standard RBC model and finally Section 5 concludes.
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2 Calculating the Likelihood Function of an RBC

Model

In order to be able to apply the Bayesian model comparison literature to the problem

of directly comparing two or more models from the RBC literature, likelihood func-

tions for the relevant models are needed. There have been a number of attempts in

the literature to construct an approximate likelihood function for models in the RBC

literature.

One such attempt is the method of Smith (1993), where the data that is generated

from a model is represented as a VAR. The likelihood function of the VAR is con-

structed and this likelihood function is used to approximate the likelihood function

of the model. The parameters of the model are then estimated using simulated max-

imum likelihood methods.

However, Kim and Pagan (1995) show that if an RBC model is completely linearized,

that is the approximate solution to the model is linear, then the model can be rep-

resented as a vector-autoregression (VAR). However, as there are fewer stochastic

elements than the number of variables in the model, the implied variance-covariance

matrix of the VAR is singular and so the likelihood function for the VAR does not ex-

ist. Therefore, only subsets of the data can be used in the calculation of the likelihood

function. However, this raises the question of which subsets to use in the calculation

of the likelihood.

Beginning with Sargent (1989), full dimensional likelihood functions for RBC models

have been constructed by adding extra stochastic terms to the system. Typically the

extra stochastic components are in the form of data measurement errors1. However,

if you assume that all variables are measured with error you have the case where the

extended model has more stochastic terms than variables. In this case, without added

restrictions being placed on the stochastic terms, it would be difficult to identify the

individual stochastic terms of the original model. Therefore, as in Anderson et al.

(1996), only a subset of the variables are assumed to be measured with error so that

the total number of stochastic elements in the extended model are equal to the number

of variables being modelled. This immediately raises the question of which variables

to assume are measured with error.

A common approach in the calculation of the likelihood function for an RBC model in

the literature is to utilize the state-space nature of the problem. Once in state-space

1see, for example, Anderson et al. (1996) and Ireland (1999)
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form the innovations representation can be calculated using the Kalman2 filter. This

is the procedure used by authors such as Anderson et al. (1996), DeJong et al. (1997),

and Ireland (1999). Note that DeJong et al. (1997) do not add measurement error

shocks to the basic model but rather use sub-samples of the data to calculate the

likelihood using the Kalman Filter.

All of the above approaches are valid approaches to calculating a likelihood function

for a DSGE model typically used in the RBC literature. The state-space represen-

tation of a DSGE model is also utilized in this paper. It is the case that almost all

DSGE models used in the RBC literature do not have a closed form solution. A num-

ber of approaches have been suggested to find approximate solutions to the model

as reported in Taylor and Uhlig (1990). Anderson et al. (1996) describe a method

within a framework of dynamic linear-quadratic economies. The general setup is as

follows:

Let DT = {dt}T
t−1 be a series of n × 1 data vectors that are to be modelled by a

DSGE model and let ψ be an m × 1 vector of structural parameters of the model.

Let ST = {st}T
t=1 be a series of ns × 1 state vectors of the DSGE model that includes,

among other variables, the shock terms of the model. Then an approximate solution

to the model, using any of the methods described in Taylor and Uhlig (1990), in

state-space form is

st = f(st−1, ηt; ψ) ∀t = 1, . . . T s0 given

dt = g(st; ψ),
(1)

where f : Rns → Rns and g : Rns → Rn are vector valued functions and ηt is a ns×1

vector of innovations to the state variable. Typically the shock process for the RBC

model is defined as a state variable of the model and so ηt includes the innovation to

the shock process. Also, some of the elements of ηt may be zero. Combining the two

equations in (1) gives

dt = h(st−1, ηt; ψ), (2)

where h : Rn
s → Rn and is given by h = f ◦ g.

It is common in the literature to completely linearize the approximate solution to the

model in which case (1) becomes

st = A(ψ)st−1 + ηt ∀t = 1, . . . , T s0 given

dt = B(ψ)st,
(3)

2see Harvey (1989)
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where A and B are (ns × ns) and (n × ns) dimensional matrices respectively.

Now suppose that there are ne non-zero elements of ηt where 0 < nb < n. This is

the case for a large number of models that are found in the RBC literature with the

modal value of nb being one. In this case the model is singular and the value of the

shock cannot be uniquely determined from the observations DT . As already noted,

one method to solve this problem is to add enough extra stochastic terms so that the

model is no longer singular. There are two related issues with this approach. First,

there is no unique way to add extra shocks to the model. If one wanted to compare

the performance of two competing models then this is an issue. One would have

to compare the models across a number of possible extensions in order to be sure

that the comparison is independent of the way in which the extra stochastic terms

are added. The second issue is whether the added shocks would disguise some of the

characteristics of the original model, therefore weakening the result of the comparison.

Therefore, in the context of directly comparing DSGE models with less shocks than

variables, this paper constructs a likelihood function without adding extra stochastic

components. There are two approaches to constructing the likelihood function with

the addition of extra stochastic terms. The first is to use only a subset of nb elements

of dt in the construction of the likelihood function. This is the approached used in

DeJong et al. (1997) and Landon-Lane (1998).

Another way to handle the singularity problem is to use nb linear combinations of

the data, DT in constructing the likelihood function. The obvious way to construct

independent linear combinations of the data, DT , is to use principle components

analysis (Johnson and Wichern 1988). The obvious choice for the nb independent

linear combinations are the nb principle components associated with the nb highest

eigenvalues of the covariance matrix of the data. Let P be the n×nb matrix of these

principle components. Define xt = P′dt to be a nb × 1 vector of linear combinations

of the data, y. Then it follows from (2) that

xt = P′h(st−1, ηt; ψ) ∀t = 1, . . . , T, s0 given. (4)

Thus we now have a, possibly non-linear, system relating the nb stochastic terms of

the model to the nb most informative independent linear combinations of the data.

Using (4) it is possible to uniquely determine the values of the stochastic elements of

the model using information from all of the components of dt. Therefore, conditional

on the initial value of the state variable, s0, it is possible to iteratively solve for the

non-zero values of ηt for each t = 1, . . . , T implied by the observations DT . The

iterative procedure is as follows: For each t = 1, . . . , T , given st−1 and dt, solve (4)
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for ηt noting that st+1 is known once we know ηt though the first equation of (1). Let

ωt be the nb × 1 vector of the non-zero elements of ηt and let pω(ΩT ) be the joint

density function of ΩT = {ωt}T
t=1. Then the likelihood function, or data density for

the model defined in (1) is

p(DT |ψ, s0) = pω(Ω̂T (DT ))J (5)

where J is

J =

∣∣∣∣∣
(

∂(d1, . . . , dT )

∂(s0, ω1, . . . , ωT )′

)−1
∣∣∣∣∣ (6)

and Ω̂T (DT ) are the values of ωt that are the solution to (4).

3 Estimating and Comparing RBC models

The purpose of this paper is to answer the criticisms of Hansen and Heckman (1996)

and Stadler (1994) and develop a likelihood based method for directly comparing

models found in the RBC literature. Canova and Ortega (1995) discuss various ap-

proaches to evaluating RBC models but only Ortega (1995) contains a method that

allows for the direct comparison of two or more RBC models.

The standard practice in the literature is to evaluate the model by defining a metric

and measuring the distance between the “model” and the observed data. Canova

and Ortega (1995) discuss various approaches to the definition of the metric and the

measurement of the distance between model and data. They make the distinction

between formal and informal approaches. The standard approach in the literature,

for example Hansen (1985), of measuring a model’s performance by determining how

well a model can match certain observed moments in the data falls into the second

category. This approach to evaluating a model’s performance was the approach that

was criticised in Hansen and Heckman (1996) for being ad hoc and not evaluating the

models over the full dimension of the data. Another example of this informal approach

can be found in Farmer and Guo (1994) where they partly evaluate models using their

implied impulse response functions. One common attribute of the methods that can

be categorized in the informal category is that there is not a formal discussion of the

metric used to measure the model’s performance.

A number of authors have attempted to formalise the metric by which to measure

the “distance” between the model and the observed data. Watson (1993) uses the

autocovariance functions of the observed data and data generated from the models to
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define a metric, while Christiano and Eichenbaum (1992) use a variant of the J-test

of Hansen (1982). Another approach is to use the spectral density to define a metric

between the model and the data. Examples of this approach can be found in Diebold

et al. (1998) and Ortega (1995).

The method of model comparison used in this paper is the method of Bayesian model

comparison described in Geweke (1995) and Geweke (1999). A Bayesian approach

allows for the formal treatment of model uncertainty and prior beliefs. Suppose, for

example, that two models are to be compared, one of which is a fully developed model

from theory while the other is an econometric representation of the data with little

theoretical underpinnings. A priori, one might believe that the model that was devel-

oped from theory is the better model. It is a simple procedure to explicitly include

these prior beliefs using Bayesian methods. Sims (1996) argues that Bayesian meth-

ods are the most appropriate methods for the problem of comparing and evaluating

models in the RBC literature.

Another reason for using Bayesian methods is that there is a fair degree of prior

information used in the RBC literature. Models are calibrated to certain values

based on the prior beliefs of the authors. Bayesian methods are the natural way to

formally incorporate prior information with information from the observed data in

the estimation of the models.

3.1 Model Comparison

The method of comparison is as follows: Let mk be any model contained in a finite

set of models M indexed by k that aim to model the observed data DT . Let φk ∈ Φk

represent the unknown parameters of the data density p(DT |φk,mk) for model mk,

and let p(φk|mk) be the joint prior distribution over φk. Then, according to Bayes’

Theorem3, the posterior distribution of φk is

p(φk|DT ,mk) ∝ p(φk|mk)p(DT |φk,mk). (7)

Then the marginal likelihood is defined as

p(DT |mk) =

∫
Φk

p(φk|mk)p(DT |φk,mk)dφk (8)

and is interpreted as the probability of observing DT conditional on the model mk.

The marginal likelihood is the object that will be used for model comparison. For any

two models mi and mj in M, the Bayes Factor in favor of model mi over model mj is
3see, for example, Bernado and Smith (1994)
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defined to be the ratio of the marginal likelihoods of the respective models given by

Bij =
p(DT |mi)

p(DT |mj)
. (9)

If Bij > 1 it is clear that model mi is favored as this implies that p(DT |mi) >

p(DT |mj). Clearly, if a group of models are being compared then mi, for some i, is

the most favored model if Bij > 1 for all j 6= i, mj ∈ M. Another way of stating

this is to say that the most preferred model is the one that has the highest marginal

likelihood.

Prior beliefs over the relative strengths of the set of models under consideration can

be explicitly introduced using the posterior odds ratio defined as

PORij =
pi

pj

Bij (10)

where pi and pj are subjective prior probabilities for each model. Thus one way to

interpret the Bayes Factor is that it reflects how much more prior probability has to

placed on a model in order for it to have a higher posterior odds ratio than another

model. For example, if Bij = 4 then pj > 4pi for model mj to have a higher posterior

odds ratio.

Geweke (1995) describes how the Bayes Factor can be decomposed across sub-samples

of the data. That is

BT
ij,1 =

T∏
t=1

Bdt
ij,dt−1

(11)

where

Bv
ij,u =

p((du+1, . . . , dv)
′|mi)

p((du+1, . . . , dv)′|mj)
(12)

is the ratio of marginal likelihoods for the observations du+1, . . . , dv. A full derivation

of (11) can be found in Section A.1 of the Appendix.

Observations or periods of observations that make large contributions to the overall

Bayes factor in favor of model i over model j can be identified using (11). Unusually

low values of the marginal likelihood for an observation or for a group of observations

would indicate that the model did not do a good job of predicting that particular

observation or group of observations. By breaking up the Bayes factor up into a

product of intermediate Bayes factors, as in (11), we are able to see what observations

or group of observations have the biggest contribution to the overall Bayes factor.

There may be observations that are surprising to both models, but the decomposition

allows us to see which model handles the surprising event the best. The question of
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how models handle a rare but potentially important event could be extremely useful

in the evaluation of that model. Also, it may be the case that two competing models

have different strengths and therefore perform better in different sub-samples of the

data. It would be useful to know this as you would not want to discard a model

if it is able to explain some characteristics of the data, even if the majority of the

observations are better explained by another model.

3.2 Estimating RBC Models and Calculating the Bayes Fac-

tor

Estimation of a typical DSGE model found in the RBC literature will revolve around

the posterior distribution defined in (7) where the likelihood function for the model

is calculated using the method described in Section 2. Using the notation developed

in Section 2, the posterior distribution for a model mj is

p(ψ, s0|DT ,mj) ∝ p(ψ, s0|mj)p(DT |ψ, s0,mj). (13)

where p(ψ, s0|mj) is the joint prior placed over the structural parameters, ψ, and the

initial state variables, s0 conditional on model mj.

The object is to make inferences about the marginal distribution, p(ψ|DT ,mj). To

do that we first obtain a series of N draws, {φ1, . . . , φN)} from (13) where φ =

(ψ, s0)
′. Once we have these draws we also have draws from the marginal distribution

p(ψ|DT ,mj), namely {ψ1, . . . , ψN}.

There are a number of ways to make draws from (13)4 using Markov chain Monte

Carlo (MCMC) techniques. The nature of the way in which the likelihood function

is calculated leads to the use of the random-walk Metropolis-Hastings (RWMH) al-

gorithm in making draws from (13). This algorithm only requires that (13) is able

to be evaluated at any point in the parameter space Φ = Ψ ∪ S0. Other MCMC

methods require knowledge of the exact distribution of (13) or at least knowledge of

the conditional distributions of (13). This is difficult in this case as there is a compli-

cated non-linear relationship between (13) and the parameters, φ = (ψ, s0)
′, through

the approximate solution to the model given in (1). However, given a value of φ it is

simple to calculate (1) and in turn easy to calculate the value for (13) using (1).

The RWMH algorithm for this problem is as follows: Choose an initial draw from (13),

φ1 ∈ Φ. The easiest way to guarantee that the initial draw is in the domain of the

posterior is to pick a value from the prior, p(ψ, s0|mj). Then, for each l = 1, . . . , N

4see Geweke (1999) for an overview of the various sampling methods employed.
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calculate a candidate draw, φc, from (13) by setting φc = φl−1 + ν where ν is drawn

from a fixed distribution with mean zero and constant variance-covariance matrix

V. In practice drawing ν from a multivariate Gaussian distribution with mean 0 and

variance-covariance matrix V is usually successful. Tierney (1994) describes the exact

properties of the RWMH algorithm and in particular shows that the candidate draw,

φc should be accepted with probability α(φc, φl−1|mj) where

α(φc, φl−1|mj) = min

{
p(φc | DT ,mj)

p(φl−1 | DT ,mj)
, 1

}
. (14)

Thus, any candidate draw for which p(φc|DT ,mj) ≥ p(φl−1|DT ,mj) is accepted

with probability one and any candidate draw with p(φc|DT ,mj) < p(φl−1|DT ,mj)

is accepted with probability p(φc | DT ,mj)/p(φl−1 | DT ,mj). Therefore, for each

l = 1, . . . , N

φl =


φl−1 + ν with probability α(φc, φl−1)

φl−1 else
. (15)

The variance-covariance matrix V is chosen to tune the algorithm so that the draws,

{φ1, . . . , φN}, from (13) have desirable time series properties5.

Once draws are obtained from (13) an implementation of the method of Gelfand

and Dey (1994) as suggested by Geweke (1999) is used to calculate the value of the

marginal likelihood, p(DT |mj), for each model.

4 Determining the Error Structure for the Shock

Process of an RBC Model

A large part of the RBC literature has attempted to explain observed aggregate

fluctuations via a single technology shock. There have been two approaches to how

the technology shock is modelled in the literature. The first approach is to model

the technology shock process as a stationary AR(1) process with a high degree of

persistence. This is the approach in papers such as Kydland and Prescott (1982) and

Hansen (1985). Another approach is to assume that the technology process contains

a unit root as in King, Plosser, Stock and Watson (1991). Hansen (1997) performs

a comparison of variants of a standard DSGE model with a number of different

assumptions on the technology shock process. The comparison is undertaken using

5see Geweke (1999) and Tierney (1994) for a description of the desirable properties of the output
from a MCMC algorithm.
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the informal approach that is common in the literature of matching second moments

of the data.

The aim of this section is to apply the method described in Section 3 to the issue

of whether the technology shock process in the model should be stochastic or not.

Another question that will be answered is what the degree of persistence should be if

the shock process is not stochastic. The model that this application will be based on

is the simple one-sector indivisible labor model that was used in Hansen (1985) and

also used in Hansen (1997).

The model is as follows: The representative agent chooses {ct, ht, it, kt+1}∞t=1 to solve

the following dynamic problem

Max E
∞∑

t=1

ρt(log ct − A ht), 0 ≤ ρ ≤ 1, A > 0

subject to

ct + it ≤ ztk
1−β
t hβ

t , 0 ≤ β ≤ 1

kt+1 = (1 − δ) kt + it, 0 ≤ δ ≤ 1

zt+1 = zθ
t εt, 0 ≤ θ ≤ 1,∀t ≥ 2

ε ∼ (0, σ2
ε ) and z1 and k1 given,

(16)

where ct, ht, it, and kt represent consumption, hours supplied, investment and begin-

ning of period capital stock respectively. Also, yt = ztk
1−β
t hβ

t is defined to be output

with zt being the period t value of the technology shock. Note that in this model

growth has been abstracted.

Farmer (1993) describes how to approximate a model of this type. In particular, for

any variable xt define

x̂t =
xt − x∗

t

x∗
t

(17)

where x∗
t represents either the steady state value of x or the balanced growth path

for x. In the case of no growth then x∗
t = x for all t. Then taking a first order

Taylor’s series approximation to the first order conditions of (16) one gets the following

difference equation

ŝt+1 = Jŝt + η̂t (18)

where st = (kt, zt)
′ and η̂t = (0, εt)

′. Farmer (1993) also show that it is possible to

express the data variables of the model, dt = (ct, ht, it, yt)
′, as a function of the state

variables, st in the following way:

d̂t = Bŝt. (19)
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Therefore the state-space representation of (16) is given by (18) together with (19).

Therefore the likelihood function, p(DT |θ, s0,mj) for the model given in (16) is cal-

culated using the method described in Section 3 using the state-space representation

defined above in (18) and (19).

There are two models that are studied. The first model, m1, is given by (16) with

0 < θ < 1. Therefore the first model has a technology shock process that is given

by a stationary AR(1) process. The second model, m2, is given by (16) with the

restriction that θ = 1. That is, the technology shock process is a random walk.

These two models will be compared using the methods described in Section 3.

4.1 Data

The data used in this application consists of seasonally adjusted US quarterly time

series, for the period 1959:1 until 1999:4, on real consumption of non-durables and

services (ct), total hours for non-agricultural industries (ht), real gross investment

(it), and real GNP (yt). All series apart form the total hours series were obtained

from the FRED6 database. The total hours series was obtained from the Bureau of

Labor Statistics LABSTAT7 database. Two series were used in the construction of the

total-hours series used. They were average hours supplied8 and number employed9

according to the Household Labor Survey. One aspect of the Current Population

Survey is that for the years of 1959, 1964, 1970, 1981, 1987, and 1992, Labor Day fell

in the survey week. For those years the average hours supplied for September was

artificially low, as the reference week only contained four days. A dummy variable

approach was used to account for these outliers.

As the model described in (16) abstracts from growth the data were then detrended

using the Hodrick and Prescott (1997)(HP) filter with smoothing parameter set equal

to 1600. Therefore for each variable , xt, the long run trend, x∗
t , was set equal to

the smoothed trend obtained from the HP filter. This was used to calculate d̂t =

(ĉt, ĥt, ît, ŷt)
′ using (17). There is only one stochastic component in the specification

of (16). Therefore principle components were used to create a composite variable,

ât = α′d̂t, where the vector α is chosen so that ât contains the maximum amount

of the information present in d̂t. In all cases α is identified by choosing vectors that

satisfy α′α = 1.

6http://www.stls.frb.org/fred/
7http://stats.bls.gov:80/datahome.htm
8The series ID for average hours supplied is lfu1231040000000
9The series ID for number employed is lfs11104010000
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4.2 Prior Specifications

The structural parameters in (16) are ψ = (β, δ, ρ, θ, A, σ2
ε )

′ and the state variables

are s0 = (k̂0, ẑ0)
′. Then, the parameters of the model are φ = (ψ, s0) ∈ Ψ ∪ S0. The

prior, p(φj|mj), for model mj is defined to be

p(φ|mj) = p(ψ|mj) p(s0|mj). (20)

The support for the prior, p(ψ|mj) for j=1,2, is Ψ = (0, 1)4×(0,∞)2 as the parameters

β, δ, ρ, and θ are all constrained to be in the interval (0,1), while the parameters A

and σ2
ε are constrained to be positive. The joint prior distribution is assumed to be

the product of independent prior distributions with

p(φ|m1) = p(β|m1)p(δ|m1)p(ρ|m1)p(θ|m1)p(A|m1)p(σ2
ε |m1) (21)

and

p(φ|m2) = p(β|m2)p(δ|m2)p(ρ|m2)p(A|m2)p(σ2
ε |m2) (22)

where the prior for θ for model m2 is defined to be

p(θ|m2) =


1 if θ = 1

0 else
. (23)

There are a number of approaches one can take in defining a prior distribution con-

strained on the interval (0,1). One approach is to use a truncated prior such as a

truncated Gaussian prior. However, a truncated prior assigns positive prior weight

to the endpoints of the distribution and this has some drawbacks. The approach in

this paper is to define a prior on the Real line and then use the transformation

xt =
ex

1 + ex
(24)

to transform the prior to the interval (0,1). In practice a Gaussian distribution is

used for the prior defined on R. A summary of the prior specifications for model m1

is contained in Table 1.

A graphical representation of the priors can be found in Figure 1 at the end of

this section. The prior variances were chosen to reflect a reasonably large degree of

uncertainty over the values of the parameters. However they were chosen so that

the 95% prior highest density intervals lay in a region of the parameter space that

were not too unreasonable with respect to the literature. For example, the 95% prior
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Table 1: Prior Specification for model m1

Prior mode 95% Highest Prior Density Region

β 0.64 [0.538,0.737]

δ 0.025 [0.013,0.047]

ρ 0.99 [0.985,0.994]

θ 0.95 [0.915,0.975]

A 2.82 [1.84,4.09]

σε 0.007 [0.0049,0.0091]

coverage interval for β, labor’s share of income, was set to be equal to [0.538, 0.737].

Authors have suggested a variety of values for β. DeJong et al. (1996) calibrate β to

be 0.54 and use a prior for β of [0.48, 0.68]. Hansen (1985) and Kydland and Prescott

(1982) calibrate β to be 0.64. However, depending on how capital is defined and

measured, other authors have suggested higher values for β. For example, Prescott

(1986) suggests a value for β of 0.75 while Christiano (1988) suggests a value of 0.66.

The prior for δ, the depreciation rate for capital, covers a range of about 5% per

annum to about 17.5% per annum with a prior mean at 10% per annum. Most

studies calibrate δ to be 0.025. The prior for ρ, the time discount factor, has a 95%

prior coverage interval of [0.985,0.994]. This implies an economy with a real interest

rate ranging from 2.5% to about 7% with a prior mode of about 4%. The 95% prior

coverage interval for the AR(1) parameter θ is [0.915,0.975]. This implies a wide

range of persistence in the productivity shock process. Hansen (1985) calibrates θ to

be 0.95 while DeJong et al. (1996)) use a value of 0.90. A recent paper by Hansen

(1997) finds evidence to suggest that the value of θ is lower than 0.95 and closer to

0.90. Finally, the 95% prior coverage interval for ση is [0.0049,0.0091].

The prior for the initial state variables has support on S0 = R2 and is defined to be

p(s0|mj) = p(k̂0|mj) p(ẑ0|mj) (25)

where both p(k̂0|mj)and p(ẑ0|mj) are defined to be Gaussian with mean zero and

standard deviation 0.008. This prior reflects that both the technology shock and the

capital stock are expected to deviate around their balanced growth path or steady

state. The variance is chosen to reflect a reasonable amount of uncertainty over the

values of the initial state variables.

The prior specification for model m2 is the same as for model m1 except that the

prior for θ is a point mass prior concentrated at θ = 1.
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Table 2: Posterior Moments for Model 1: Transitory Shock Process

Mean Mode 95% Highest Posterior Density Region

β 0.4657 0.4637 [0.3569,0.7990]

δ 0.0580 0.0524 [0.0242,0.1997]

ρ 0.9913 0.9918 [0.9871, 0.9987]

θ 0.9614 0.9664 [0.8212,0.9871]

A 2.7910 2.7831 [1.6354,4.0441]

σε 8.403 × 10−6 8.045 × 10−6 [4.876 × 10−6, 9.984 × 10−5]

Table 3: Posterior Moments for Model 2: Permanent Shock Process

Mean Mode 95% Highest Posterior Density Region

β 0.5124 0.5119 [0.4118,0.7990]

δ 0.0428 0.0391 [0.0186,0.1996]

ρ 0.9919 0.9923 [0.9882,0.9989]

A 2.8005 2.8376 [1.6244,4.0692]

σε 1.053 × 10−5 1.015 × 10−5 [6.299 × 10−6, 9.984 × 10−5]

4.3 Results

The posterior distributions of the two variants of (16) were formed as described in

Section 3.1 and 50,000 draws from these distributions were obtained using the RWMH

algorithm outlined in Section 3.2. In all cases the numerical standard errors10 were

less than 10% of the calculated posterior standard deviations. The posterior moments

are reported in Tables 2 and 3 and the marginal distributions for each parameter are

reported in Figures 1 and 2 at the end of this section.

The first observation one can make from the results reported in Tables 2 and 3

is that the posterior distribution for some parameters are significantly different, in

location, than the prior distributions. In particular, the posterior distribution for

the depreciation rate of capital, δ, and the variance to the shock process are quite

different from their prior distributions. There is also some disparity in the posterior

distributions between the two models.

10Computations reported in this paper were undertaken [in part] using the Bayesian Analysis,
Computation and Communication software (http://www.econ.umn.edu/ bacc) described in Geweke
(1999)
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Table 4: Marginal likelihoods and Bayes Factors in favor of m2 over m1

Model m1 (Temporary) Model m2 (Permanent)

Log marginal likelihoods 574.0526 582.3541

(0.1096) (0.0280)

Log Bayes factor 8.3015 -

(0.1116)

The general results of the estimation are as follows: There is evidence that the labor

share of income is smaller than the 64% usually used in the RBC literature, there

is evidence that the depreciation rate of capital is higher than the 2.5% per quarter

that is used in the RBC literature, the variance to the innovations of the technology

shock process is significantly smaller than the values typically used, and that, for the

transitory shock model, there is evidence that the technology shock process is more

persistent than what is typically used.

The posterior distributions for the intertemporal rate of time preference, ρ, and the

dis-utility of labor parameter, A, are very similar to the prior distribution. This would

suggest that there is little information in the data with respect to those parameters.

In estimating (16) under the two error assumptions we obtained a set of draws,

{φ1
j , . . . , φN

j } for each model, m1 and m2. These draws can be used to calculate the

marginal likelihoods, p(DT |φj, s0,mj) j = 1, 2, and hence the Bayes factors and

the posterior odds ratios in favor of model m2 over model m1 using the method of

Gelfand and Dey (1994) as suggested in Geweke (1999). The marginal likelihoods

for each model and the subsequent Bayes factor in favor of model m2, the model

with the permanent shock process, over model m1, the model with the temporary

shock process is given in Table 4. Note that the standard errors for the estimates are

reported in parentheses below each estimate.

Note that Table 4 reports log marginal likelihoods and log Bayes factors. Hence the

Bayes factor in favor of the permanent shock model over the temporary shock model

is 4029.91 which implies that one would have to put 4029.91 as much prior weight

on the temporary shock model than the permanent shock model for the posterior

odds ration to favor the temporary shock model. Thus, it is fair to state that there

is overwhelming evidence in favor of the permanent shock model over the temporary

shock model. This result is opposite to the result found in Hansen (1997) where he

concludes that the shock process should be less persistent than than what is typically

used. Even if we restrict ourselves to the case of temporary shocks it is found that
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a higher degree of persistence is preferred. The posterior mean of θ for model m1

is 0.9614 which is greater than the value of 0.95, which is commonly used in the

literature.

There may be a number of reasons for why the results are different to those of Hansen

(1997). First is that the results reported here are obtained using likelihood methods,

and hence uses all of the information in the data, while Hansen (1997) concentrates on

certain moments of the data and implied impulse response functions of the model in

making his conclusions. Second is that Hansen (1997) only allows for the parameters

that affect the shock process to vary in his study whereas in this study all of the

parameters are allowed to vary. It can be seen that the posterior distribution of the

labor share parameter, β, and the depreciation of capital parameter, δ, are quite

sensitive to the choice of shock process.

The above results are for the data set as a whole. It would be wise to check to see if

this overall result is mirrored across the whole sample. To do this the log Bayes factor

is decomposed across every observation using the method described in Section 3.1.

The particular, using the priors defined above, the first five observations are used to

make draws from p(φ, s0|D5,mj) for each model. Then for each t = 5, . . . , T−1 draws

are made from the distribution p(log(p̂t+1
t )|Dt,mj) for each model. This distribution

is the distribution of the log predictive likelihood for dt+1 given information up to

and including period t. The log Bayes factor in favor of model m2 over model m1,

for each observation is the difference in the log predictive likelihoods. The means of

the log Bayes factor for 1960:2 until 1999:4 are reported in Figure 3 at the end of this

section. The cumulative log Bayes factor is reported in Figure 4.

It should be noted that the cumulative log Bayes factor represents the sum of the

means of the individual Bayes factors. Hence there needs to be a confidence band

reported around this line. It is not expected that the final value of the cumulative

log Bayes factor equals exactly the log Bayes Factor reported in Table 4. In fact,

one would expect the confidence band to be quite large as there would be a large

uncertainty over the values of the structural parameters when they are drawn from

the posterior in the case when T is small. The most important information from the

graphs of the decomposed log Bayes factor and the cumulative Bayes factor is the

general shape.

Periods where the decomposed log Bayes factor is less than zero are periods where the

transitory shock model is favored. This also implies that the cumulative log Bayes

factor graph would be declining. Conversely, periods where the log Bayes factor is

greater than zero or periods where the cumulative log Bayes factor has a positive
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slope implies that the permanent shock model is favored.11

It is clear that the permanent shock model is favored in the early periods of the

sample. However it is also clear that there are periods when the transitory shock

model is more favored and from the middle 1980’s onwards it appears that the two

models are hard to distinguish from each other. Thus, while there is strong evidence

for the permanent shock model using all of the data from 1959:1 to 1999:4 it is also

clear that the data from 1959:1 to the early 70’s is where the permanent shock model

is most favored. From the early 1970’s onwards there is not much between the two

models and this would suggest that a model that had a shock process with both

temporary and permanent components might be optimal.

11The log Bayes factor that is referred to is the log Bayes factor in favor of the permanent shock
model over the transitory shock model. If the ordering is reversed then the interpretation of the
slopes of the cumulative log Bayes factor would also be reversed.
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Figure 1: Posterior and Prior Distributions for Model 1: Transitory Shock Process
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Figure 2: Posterior and Prior Distributions for Model 2: Permanent Shock Process
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Figure 3: Decomposed Log Bayes Factor
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Figure 4: Cumulative Log Bayes Factor
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5 Conclusion

The aim of this paper was develop a method that could directly compare two or more

DSGE models used in the RBC literature using likelihood methods. The reason for

this was to answer the criticisms of Hansen and Heckman (1996) that most of the

methods used to evaluate models in the RBC literature did evaluate models over the

full dimension of the data.

The method developed in this paper constructs a likelihood function for a DSGE

model using the approximate state-space representation of the model. The problem

of calculating a likelihood for a model that contained more observables than stochastic

components was solved using the method of principle components rather than adding

additional stochastic terms which is common in the literature. This allows the method

of comparison to compare models based solely on the description of the model without

any additional components. Bayesian methods were used to estimate and compare

models. These methods allowed for the use of prior information with information

from the data in a formal way. Hence, RBC models were estimated and compared

using all of the information contained in the data. It was also shown how models

could be compared across different sub-samples of the data in a formal and consistent

way.

The method was applied to the problem of determining the appropriate technology

shock mechanism for the standard one sector growth model of Hansen (1985). Two

types of shock processes were modelled with one having persistent but temporary

technology shocks while the other model had permanent technology shocks. It was

found that the permanent shock model was preferred for the whole data set. This

result contradicted the result reported in Hansen (1997). However, when the com-

parison was decomposed across the whole sample it was found that the permanent

shock model was strongly favored only in the first part of the data. In the second

part of the data the two shock process were very similar in terms of their out of sam-

ple prediction performance with the transitory shock process being favored for some

periods and the permanent model being favored for others. Thus the final conclusion

on what is the appropriate shock process to use is quite different depending on what

part of the data is being studied.
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A Appendix

A.1 Decomposition of Bayes Factor

Suppose that we have data DT = {dt}T
t=0 and we wish to predict the values of

dT+1, . . . , dT+m . The predictive density of dT+1, . . . , dT+m conditional on model

mk ∈ M and data DT is

p(dT+1, . . . , dT+m|DT ,mk) =

∫
ΦK

p(φk | DT ,mk)
T+m∏

t=T+1

p(dt | Dt−1, φk,mk)dφk.

(A.1)

The predictive density applies prior to observing the data and as usual we can define

the analogous predictive likelihood function,

p̂T+m
T (mk) =

∫
ΦK

p(φk | DT ,mk)
T+m∏

t=T+1

p(dt | Dt−1, φk,mk)dφk. (A.2)

Note that p̂T
1 (mk) = p(DT |mk). Given any 0 < u < v it follows that

p̂v
u(mk) =

∫
Φk

p(φk | DT ,mk)
v∏

t=u+1

p(dt | Dt−1, φk,mk)dφk

=

∫
Φk

p(φk|mk)
∏u

t=0 p(dt | Dt−1, φk,mk)∫
Φk

p(φk|mk)p(Du|φk,mk)dφk

v∏
t=u

p(dt | Dt−1, φk,mk)dφk

=
p(φk|mk)

∏v
t=0 p(dt | Dt−1, φk,mk)dφk

p(φk|mk)
∏u

t=0 p(dt | Dt−1, φk,mk)dφk

=
p(Dv|mk)

p(Du|mk)
.

(A.3)

Thus the predictive likelihood function for observations u+1 through v is just the

ratio of the marginal likelihood’s for the sample of observations 0 through v and 0

through u respectively.

The predictive likelihood can then be decomposed using (A.3). Consider any sequence

of numbers such that 0 ≤ u = s0 < s1 < . . . < sq = v . Then it follows from (A.3)

that
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p̂v
u(mk) =

p(Ds1|mk)

p(Ds0)
. . .

p(Dsq |mk)

p(Dsq−1|mk)
=

q∏
τ=1

p̂sτ
sτ−1

(mk). (A.4)

As the marginal likelihood can be decomposed into the product of ratios of predictive

likelihoods, we can see that the marginal likelihood represents the out of sample

prediction performance of the model. Thus, by using the Bayes factor, which is just

the ratio of the respective marginal likelihood’s for each model, we are comparing

models on their ability to predict out of sample.

Another application for the decomposition given in (A.4) is for direct model diag-

nostics. Consider the complete decomposition in which u=0 and v=T and where

si − si−1 = 1 . A relatively low value of p̂si
ksi−1

would indicate that the observation

indexed by si was surprising given observation si−1 and model k. Thus, one could

use this decomposition to evaluate the performance of models in regard to predicting

large movements in the data. For example, a large movement may be surprising to

all models but some may do better than others. The decomposition is also useful in

getting some insight into the Bayes factor. Using the decomposition of the marginal

likelihood in A.4, one can do the same for the Bayes factor. That is,

Bv
ij,u =

p̂v
u(mi)

p̂v
u(mj)

=

q∏
τ=1

(
p̂sτ

sτ−1
(mi)

p̂sτ
sτ−1

(mj)

)
=

q∏
τ=1

Bsτ
ij,sτ−1

(A.5)
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