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Abstract

Econometric models are often formulated in terms of the first difference or the percentage

change, generalized by the Box-Cox difference transformation. The choice of suitable functional

forms has relied heavily upon established statistical procedures which adopt primarily the

likelihood approach and confine to a single transformation parameter only. We have derived an

exact test for the parameter vector of transformation in linear models. By utilizing Taylor series

approximations this reduces to a choice between two regression equations. The test statistic

which has an exact F-distribution can be easily calculated from these two regressions by least

squares algorithm. Monte Carlo results demonstrate that our proposed test is more capable than

the likelihood approach in capturing the correct size yet is as powerful as the latter. It is

therefore a simple and ready statistical procedure for assessing the suitable choice of the

combination of first differences and percentage changes in economic forecast models.
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1. Introduction

The Box-Cox transformation of a positive series { ty } is given by
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where ty  is an economic variable at time period t and λ is a Box-Cox transformation

parameter. Typically many econometric applications examine not the level of the variable, but its

change per time period. Examples include the St. Louis equation due to Anderson and Carlson

(1970), the money demand model by Hafer and Hein (1980) and the consumer index of

Colclough and Lange (1982). A discrete approximation to the time derivative of yt
(λ) is given by

Layson and Seaks (1984) as

(1.2) ( ) Ttyyy ttt ...,,1,1
1 =∆=∆ −

−
λλ ,

where ∆yt  =  yt  - yt-1 denotes the first difference. The usefulness of (1.2) is that λ=1 yields the

first difference while λ=0 gives the percentage change. This is termed the Box-Cox difference

transformation by Seaks and Vines (1990). Both the first difference and the percentage change

of an economic variable may therefore be generalized by ∆yt
(λ). Thus a regression model which

utilizes both the first difference and the percentage change can be represented by

(1.3)
( ) ( ) ( )∆ ∆ ∆y x x z zt t p pt t qt q t

qλ λ λα α β β ε1 2

1 1 2 2= + + + + + +L L ,

where λi (i=1, .., q) are Box-Cox difference transformation parameters, x jt (j=1, 2, ..., p) are

observations on the p independent variables which are not transformed, )( 1λ
ty∆  is defined as in

(1.2), )( i
itz λ∆ , (i=2, …, q) are similarly defined, αj (j=1, ..., p) and βi (i=2, ..., q) are regression

coefficients, and εt is the error term. We may regard (1.3) as a general model in which the
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transformed parameters permit more general forms than first differences or percentage changes

though λ =0 or 1 has a straightforward and simple interpretation.

Unfortunately model selection is a very difficult task in practice. As Dhrymes et al.

(1972, p294) have pointed out that economic theory typically provides little guidance as to the

proper functional form appropriate to the specification of the economic relationships. The choice

of suitable functional forms in econometric applications thus relies heavily upon established

statistical procedures.

In this paper, we shall develop an Andrews (1971) type procedure for testing the

choice of the set of Box-Cox difference transformation parameters in (1.3), allowing different

transformation parameters for different variables. Its statistical methodology follows the line of

Milliken and Graybill (1970) and is based on the F-distribution. Section 2 reviews existing

single transformation parameter procedures. In section 3 we shall develop the testing procedure

which reduces to a choice between two regression equations. The alternative regression, though

of no economic interest, is easy to understand. Section 4 outlines the steps how the test statistic

can be computed using a standard statistical package. In section 5 the new procedure is

compared with the likelihood ratio approach by Monte Carlo models. Section 6 presents the

conclusions of this paper.

2. Single Transformation Parameter Procedures

Existing procedures include the likelihood ratio (LR) test and variants of the Lagrange

multiplier (LM) tests. They assume the same transformation parameter be used on both the

dependent and independent variables. The procedure of Layson and Seaks (1984) is primarily

a LR test. It requires a search for an optimal solution of the unrestricted model which in practice

can be completed by a sequence of regressions on transformed data with various values of the

transformation parameter over a grid. Though the first difference of the dependent variable and

percentage change of the regressor are used in the poverty and growth model of Thornton et al.

(1978) Layson and Seaks (1984) have only applied their procedure to test the latter choice but

not the use of the first difference of the dependent variable. The search could be very expensive

if not impossible when different parameters of transformation are allowed. Those of Coulson
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and Robins (1985) and of Park (1991) are different variants of LM tests, constructed from

rather complicated auxiliary regressions in which the regressors involve either the time

derivatives of the transformed variables or the derivatives of the unrestricted log-likelihood

function with respect to the individual variables. The regressions are artificially constructed to

generate tests for misspecification and their relations to the hypothesis to be tested are not

obvious. The computation involved is by no means simple or straightforward. Further, the LR

and LM procedures are asymptotic and therefore are only approximate in small and moderate

sample situations. The test statistic of the proposed procedure can be calculated easily by

ordinary least squares estimation of two regression equations, thus avoiding the relatively more

laborious search over a grid of values.

3.  The Test Procedure

Using matrix notation we may express (1.3) as

(3.1) εεββαα λλ +∆+=∆ )()( 21 ZXy λ

where λλ 2=(λ2 λ3 ... λq)′, y )( 1λ∆  is the Tx1 vector of transformed dependent variables, X is

the Txp matrix of original independent variables, ) ...  ( )()(
3

)(
2

)( 322 q

q
λλλ zzzZ ∆∆∆=∆ λλ  is the

T×(q-1) matrix of transformed independent variables, αα=(α1 α2 ... αp)′ is a p×1 and ββ =(β2 β3

... βq)′ is a (q-1)×1 vectors of coefficients, and εε  is the T×1 vector of independently and

normally distributed disturbances with zero mean and constant variance σ2. Thus the model

selection problem reduces to testing the hypothesis about the transformation parameter vector

λλ =(λ1 λ2 ... λq)′ in model (3.1).
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Expanding y )( 1λ∆  in Taylor series about a hypothetical value )0(
1λ yields
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1λ )=∂ y )( 1λ∆ /∂λ1 evaluated at λ1= )0(

1λ . It can be readily shown that w( )0(
1λ ) has t-
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1λ ) = (ln yt-1) 

)( )0(
1λ

ty∆ .

Similarly, we have
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and vi( )0(
iλ )=∂ )( iλz∆ /∂λi being evaluated at λi= )0(

iλ , i=2, …, q. The individual elements of

vi( )0(
iλ ) are given similarly to (3.3). Substituting (3.2) and (3.4) into (3.1) and writing

)( )0()0(
2

)0(
10 ′⋅⋅⋅= qλλλλ , we shall obtain
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which, on letting  γγ =λλ -λλ 0 and U(λλ 0, ββ )=[-w( )0(
1λ )MV( )0(

2λλ )ββ ], may be rewritten as
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(3.6) εεγγββλλββαα λλ ++∆+=∆ ),( 0
)()( )0(

2
)0(

1 UZXy λ .

Box (1980) calls the new explanatory variable U a constructed variable. The testing of the null

hypothesis H0: λ λ =λλ 0 against the alternative H1: λλ ≠λλ 0 has become a choice between (3.6) and

the null model

(3.7) εεββαα λλ +∆+=∆ )()( )0(
2

)0(
1 ZXy λ .

Equivalently, we are testing H0: γγ =0 against H1: γγ ≠0 in model (3.6). To eliminate the

dependence of U on εε  in (3.6) the former will be replaced by its least squares estimate from the

null model. Let αα̂  and ββ̂     be the least squares estimates of αα  and ββ  in (3.7), the fitted values

y tˆ )( (0)
1λ∆ of y t

)( (0)
1λ∆  can be computed from (3.7) after replacing the regression coefficients by

their least squares estimates, and the fitted values of )( )0(
1λ

ty can thus be determined recursively

by

(3.8)

 yyy

yyy

yyy

TTT ˆˆˆ

ˆˆˆ

ˆˆ

)(
1

)()(

)(
1

)(
2

)(
2

)(
0

)(
1

)(
1

)0(
1

)0(
1

)0(
1

)0(
1

)0(
1

)0(
1

)0(
1

)0(
1

)0(
1

λλλ

λλλ

λλλ

−+∆=

⋅
⋅

+∆=

+∆=

.

By the inverse of the Box-Cox formula (1.1) the fitted values of yt are given by
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Substituting y tˆ )( (0)
1λ∆  and ytˆln 1−  into (3.3) we shall get )(ˆ )0(

1λtw and hence )(ˆ )0(
1λw , the least

squares estimate of )( )0(
1λw , and finally

(3.10) ]ˆ)()(ˆ[ˆ (0)
2

)0(
1 ββλλVwU Mλ−=

upon substituting ββ̂  in U(λλ 0, ββ ). Replacing U in (3.6) by Û  gives

(3.11) εεγγββαα λλ ++∆+=∆ UZXy ˆ)()( )0(
2

)0(
1λ

which satisfies the standard conditions of ordinary least squares. The use of Û  to replace the

unobservable U has been put forward by Milliken and Graybill (1970) for two obvious reasons,

namely, Û  can be computed from the data and is independent of the disturbance. The same

tactic has also been used in Andrews (1971). Let S0 and S1 be the residual sums of squares by

least squares on the regression equations (3.7) and (3.11) respectively. It follows from the

results of Milliken and Graybill (1970) that the quantity

(3.12)
1)+2/(

)/(

1

10

qpTS

qSS
F

−−
−

=

will follow a F-distribution with q and T-p-2q+1 degrees of freedom. Hence F is a test of the

hypothesis γγ =0 or λλ =λλ 0.

A detailed development of the above results can be found in Milliken and Graybill

(1970) who have shown that F has a F-distribution when H0: 0=γγ  is true. The test is ‘exact’

in the sense that an ‘exact’ significance will be obtained from which ‘exact’ confidence limits

may be calculated when H0 is true. However, little is known about F when 0≠γγ . See Ward

and Dick (1952). Andrews (1971) has pointed out that the precision in (3.11) may affect the

efficiency of the test but it will not affect the ‘exactness’ of the distribution of the test statistic.
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The proposed procedure is therefore more capable of capturing the correct size of the test than

any other asymptotic ones. For more discussion of other advantages of the proposed procedure

over asymptotic ones; see Andrews (1971).

4.  Computing Procedures

This section briefly outlines procedures for computing the test statistic F. The

procedures described here assume the use of a statistical package.

The steps are as follows:

1.  Transform y and Z as in (1.2) to get y∆ )( (0)
1λ   and )( )0(

2λλZ∆  and to form the regression

equation (3.7).

2.  Estimate equation (3.7) by least squares to obtain coefficient estimates αα̂  and ββ̂ , and the

error variance estimate 2
0s , say.

3.  Compute ββαα λλ ˆˆ )()( )0(
2

)0(
1 ZXy ∆+=∆ λ , from which calculate y tˆ )( (0)

1λ  using the recursive relations

(3.8) and y tˆ by the inverse Box-Cox formula (3.9).

4.  Compute )(ˆ )0(
1λtw by (3.3) using computed values from step 3 and form the vector

)(ˆ )0(
1λw . Compute V( )0(

2λλ ) using a formula similar to (3.3). Augment - )(ˆ )0(
1λw  and 

V( )0(
2λλ ) ββ̂  to form Û given in (3.10).

5.  Form the regression equation (3.11) and estimate it by least squares to obtain error variance

estimate 2
1s , say.

6.  Finally calculate the test statistic F in (3.12) by putting S0=(T-p-q+1) 2
0s  and S1=(T-p-

2q+1) 2
1s .

When the package such as RATS used has built-in testing procedure for the regression

coefficient vector, Steps 5 and 6 would be combined to one of testing γγ =0 in the regression

equation (3.11). The null model is only used to compute the fitted values Û of the alternative

model.
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5.  The Monte Carlo

To evaluate our proposed F-test and to compare its performance with that of the LR

procedure programmes in RATS are written to generate data for models with combinations of

first differences and percentage changes. Sample sizes of 20, 30, 40, 60 and 100 are selected

so that both the small sample and asymptotic properties can be studied. Each experiment

involves 2000 replications. The four models studied are:

M00: %∆yt =  0.01 + 0.9 %∆zt + εt

%∆zt ~ U(0, 0.07),   εt ~ N(0, 0.0152),  z0 = 1.0, y0 = 5.0

M01: %∆yt =  0.01 + 0.03 ∆zt + εt

∆zt ~ U(-0.5, 1.5),   εt ~ N(0, 0.0152),  z0 = 5.0, y0 = 15.0

M10: ∆yt =  100 + 55 %∆zt + εt

%∆zt ~ U(0, 0.07),   εt ~ N(0, 1),  z0 = 10, y0 = 100

M11: ∆yt =  10 + 2 ∆zt + εt

∆zt ~ U(0, 2),   εt ~ N(0, 1),  z0 = 10, y0 = 100

The population R2 are .593, .571, .553 and .571 respectively. M00 and M11 have

been used by Seaks and Vines (1990). The models are tested under each of the null

hypotheses: H0:  (λ1=0, λ2=0), H0:  (λ1=0, λ2=1), H0:  (λ1=1, λ2=0) and H0:  (λ1=1, λ2=1) in

turn, at 1%, 5% and 10% significance levels. The empirical significance level is recorded, when

the null hypothesis is true this is the Type I error and when the null is false this will be the power

of the relevant test.

A slight modification of Layson and Seak’s (1984) result gives the log likelihood

function under normality:
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The RATS procedure MAXIMIZE is used to compute the maximum likelihood estimate λλ̂  of

λλ  and to calculate the LR test statistic

2
0

2 ~)]()ˆ([2 qll χλλχ −= .

While our F procedure took few seconds the LR procedure took several minutes to

few hours to complete 2000 replications even though the true parameter values were used to

start with. When values other than the parameter values were used as initial values the latter

procedure often located the optimal solution after several hundred iterations.

Table 1a

Size/Power of Test at 1% Significance Level Nominal

True Model: λ1=0,  λ2=0

Null
Hypothesis 1 2= 0 = 0λ λ, 1 2= 0 =1λ λ, 1 2=1 = 0λ λ, 1 2= 1 =1λ λ, 

Test F LR F LR F LR F LR

  20 0.8 2.1     7.0   14.3   34.1   31.4    3.0    5.4

Sample   30 1.0 1.4   42.6   58.7   95.2   95.5  10.8   29.8

  40 0.9 1.1   89.6   96.2 100.0 100.0  23.4   79.2

Size   60 0.8 0.9 100.0 100.0 100.0 100.0  41.0 100.0

100 0.9 0.8 100.0 100.0 100.0 100.0  65.1 100.0
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Table 1b

Size/Power of Test at 5% Significance Level Nominal

True Model: λ1=0, λ2=0

Null
Hypothesis 1 2= 0 = 0λ λ, 1 2= 0 =1λ λ, 1 2=1 = 0λ λ, 1 2= 1 =1λ λ, 

Test F LR F LR F LR F LR

 20 5.0 4.8   23.3   28.1   60.7   52.0   12.4   12.9

Sample  30 5.6 4.3   70.6   76.0   98.7   98.7   27.0   50.3

 40 4.9 3.8   97.5   99.0 100.0 100.0   44.1   91.2

Size  60 5.0 3.7 100.0 100.0 100.0 100.0   64.6 100.0

100 5.0 4.5 100.0 100.0 100.0 100.0   79.6 100.0

Table 1c

Size/Power of Test at 10% Significance Level Nominal

True Model: λ1=0, λ2=0

Null
Hypothesis 1 2= 0 = 0λ λ, 1 2= 0 =1λ λ, 1 2=1 = 0λ λ, 1 2= 1 =1λ λ, 

Test  F LR F LR F LR F LR

 20     9.4 7.9   35.3   36.6   72.5   63.8   21.1   20.0

Sample  30   10.5 7.3   81.5  84.1   99.5   99.4  38.0   60.7

 40     9.9 7.2   98.8   99.5 100.0 100.0   57.0   94.7

Size  60   10.0 7.9 100.0 100.0 100.0 100.0   74.2 100.0

100    9.6 8.9 100.0 100.0 100.0 100.0   85.3 100.0
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Tables 1a-1c give the size and power of the tests for model M00. The F-test appears

generally to capture the correct size while the LR test overstates the Type I error at the 1% level

in small samples and understates it at the 10% level for all sample sizes. It does not appear to

give the correct size even for sample sizes as large as 100. The two procedures perform equally

well under H0:  (λ1=0, λ2=1) and H0:  (λ1=1, λ2=0). They both lead to correct decision by

rejecting the incorrect nulls H0:  (λ1=0, λ2=1) when T≥60 and H0:  (λ1=1, λ2=0) when T≥40 in

all cases. When testing under H0:  (λ1=1, λ2=1) F appears less powerful than LR in rejecting the

incorrect null.

Table 2a

Size/Power of Test at 1% Significance Level Nominal

True Model: λ1=0, λ2=1

Null
Hypothesis 1 2= 0 = 0λ λ, 1 2= 0 =1λ λ, 1 2=1 = 0λ λ, 1 2= 1 =1λ λ, 

Test F LR F LR F LR F LR

  20 10.8 12.1     0.8    1.6   29.2   34.8    3.1    3.6

Sample   30  52.2 55.9    1.0    1.3   94.0   96.0  26.0   38.6

  40 85.8 99.2    1.0    1.6 100.0 100.0  67.3  100.0

Size   60 98.9 100.0    0.9   0.8 100.0 100.0  98.2 100.0

100 100.0 100.0    0.9   1.0 100.0 100.0 100.0 100.0
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Table 2b

Size/Power of Test at 5% Significance Level Nominal

True Model: λ1=0, λ2=1

Null
Hypothesis 1 2= 0 = 0λ λ, 1 2= 0 =1λ λ, 1 2=1 = 0λ λ, 1 2= 1 =1λ λ, 

Test F LR F LR F LR F LR

  20 28.1 25.1     4.9    2.8   57.1   54.4   11.9   11.0

Sample   30  77.1 76.7    4.7    3.8   99.4   98.9  48.4   47.6

  40 96.0 100.0    5.0    4.7 100.0 100.0  84.7  100.0

Size   60 99.8 100.0    4.2   4.9 100.0 100.0 100.0 100.0

100 100.0 100.0    4.7   4.1 100.0 100.0 100.0 100.0

Table 2c

Size/Power of Test at 10% Significance Level Nominal

True Model: λ1=0, λ2=1

Null
Hypothesis 1 2= 0 = 0λ λ, 1 2= 0 =1λ λ, 1 2=1 = 0λ λ, 1 2= 1 =1λ λ, 

Test F LR F LR F LR F LR

  20 42.1 34.9     9.5   7.9   71.1   66.7   20.7   18.1

Sample   30  86.9 98.4    9.9   7.3   99.8   99.4  61.3   58.6

  40 98.6 100.0    9.7   8.0 100.0 100.0  91.3  100.0

Size   60 99.9 100.0    9.0   6.9 100.0 100.0 100.0 100.0

100 100.0 100.0    9.9   7.8 100.0 100.0 100.0 100.0
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The size and power for model M01 are given in Tables 2a-2c. The F procedure is seen

again to state the correct nominal size. On the other hand, LR tends to overstate the size at the

1% level in small samples and overstate it at the 5 and 10% levels for all sample sizes

considered. The Type I error of LR by no means appear to converge to the nominal one even

when the sample size is 100. When testing under incorrect hypotheses, both test procedures

seem to perform equally well in rejecting the incorrect null. In some cases, a sample size of 40 is

sufficiently large to lead to rejection of wrong nulls in 100% of the times.

Table 3a

Size/Power of Test at 1% Significance Level Nominal

True Model: λ1=1, λ2=0

Null
Hypothesis 1 2= 1, = 0λ λ  1 2= 1, = 1λ λ  

Test F LR F LR

 20 0.7 1.9    3.7     4.4

Sample  30 0.8 1.3  21.7   33.5

 40 1.0 1.6  61.8   78.5

Size  60 0.9 1.1  99.5 100.0

100 0.9 1.0 100.0 100.0
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Table 3b

Size/Power of Test at 5% Significance Level Nominal

True Model: λ1=1,  λ2=0

Null
Hypothesis 1 2= 1, = 0λ λ  1 2= 1, = 1λ λ  

Test F LR F LR

 20        4.6 4.8   15.3   10.5

Sample  30  4.7 3.8   46.1   52.0

 40  4.7 4.8   83.7  90.4

Size  60  5.2 4.6 100.0 100.0

100  5.1 4.5 100.0 100.0

Table 3c

Size/Power of Test at 10% Significance Level Nominal

True Model: λ1=1, λ2=0

Null
Hypothesis 1 2= 1, = 0λ λ  1 2= 1, = 1λ λ  

Test F LR F LR

 20 10.2 7.8       25.5   16.5

Sample  30  9.6 7.3   58.8   61.3

 40  9.5 8.7   91.3   94.0

Size  60 10.3 7.9 100.0 100.0

100  9.9 9.0 100.0 100.0
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For model M10 the two tests are equally powerful when in fact the null were false.

When the null is H0:  (λ1=0, λ2=0) or H0: (λ1=0, λ2=1) both of them reject the incorrect null in

all cases and therefore results are not presented here. As visible from Tables 3a-3c they do not

appear to outperform the other under the incorrect null H0: (λ1=1, λ2=1). They only differ in

stating the size under the true null. F generally gives correct sizes at all levels while LR overstates

or understates it in most cases.

From Tables 4a-4c it can be seen that F yields Type I errors that are very close to the

nominal ones. In contrast LR only produces close to stated sizes in large samples. For example,

its type I error is at least two times the nominal value when T≤40 at the 1 % level. When the null

is H0: (λ1=1, λ2=0) both tests do not appear differently in their ability of rejecting the null. When

the null is H0: (λ1=0, λ2=0) or H0: (λ1=0, λ2=1), both approaches reject the wrong null in all of

the cases.

Table 4a

Size/Power of Test at 1% Significance Level Nominal

True Model: λ1=1, λ2=1

Null
Hypothesis 1 2= 1, = 0λ λ  1 2= 1, = 1λ λ  

Test F LR F LR

 20   19.2       28.8        1.3 2.5

Sample  30   83.6 88.8   1.1 3.4

 40   97.0       98.4   1.1 2.0

Size  60   99.9       99.9   1.1 1.1

100     100.0     100.0   1.0 1.0
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Table 4b

Size/Power of Test at 5% Significance Level Nominal

True Model: λ1=1, λ2=1

Null
Hypothesis 1 2= 1, = 0λ λ  1 2= 1, = 1λ λ  

Test F LR F LR

 20   42.7     44.7        5.7  6.9

Sample  30   95.8     96.3   5.3  7.7

 40   99.6     99.8   4.7  5.7

Size  60   99.9   100.0   5.2  5.2

100     100.0   100.0   5.1  5.0

Table 4c

Size/Power of Test at 10% Significance Level Nominal

True Model: λ1=1,  λ2=1

Null
Hypothesis 1 2= 1, = 0λ λ  1 2= 1, = 1λ λ  

Test F LR F LR

 20   56.1 57.7       10.9       10.5

Sample  30   98.2 98.2  10.2 10.9

 40   99.9 99.9  10.9   9.3

Size  60     100.0     100.0  11.1   9.9

100     100.0     100.0  10.1   9.4
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6.  Conclusion

We have derived an exact test for the parameter vector of transformation in linear

models. By utilizing Taylor series approximations this reduces to a choice between two

regression equations. The foregoing analysis need not specifically assume the transformation

parameters to be 0 or 1. Our proposed test is thus applicable to any other transformation

parameter values though interpretation is straightforward when they are equal to 1 or 0. The test

statistic which has an exact F-distribution can be easily calculated from these two regression

equations by least squares algorithm. Monte Carlo results have demonstrated that our proposed

procedure is generally more capable than the likelihood approach in stating the correct size of

the test, yet it is equally powerful to the latter in rejecting false null hypotheses. It is therefore a

simple and ready alternative to the likelihood ratio test for assessing the suitable choice of the

combination of first differences and percentage changes in linear models, thereby allowing more

flexible and appropriate economic relations be formulated and their validity be tested.
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