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Abstract

Econometric modds are often formulated in terms of the firgt difference or the percentage
change, generdized by the Box-Cox difference transformation. The choice of suitable functiond
forms has relied heavily upon established Satistical procedures which adopt primarily the
likelihood approach and confine to a single transformation parameter only. We have derived an
exact test for the parameter vector of trandformation in linear models. By utilizing Taylor series
gpproximations this reduces to a choice between two regression equations. The test datistic
which has an exact F-digtribution can be easily cdculated from these two regressions by least
squares agorithm. Monte Carlo results demonstrate that our proposed test is more capable than
the likelihood approach in capturing the correct sSze yet is as powerful as the latter. It is
therefore a smple and ready datistical procedure for assessing the suitable choice of the
combination of first differences and percentage changesin economic forecast models.
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1. Introduction
The Box-Cox transformetion of a positive series{ y, } isgiven by

(11) =i

where y, is an economic varigble & time period t and | is a Box-Cox transformation
parameter. Typicaly many econometric gpplications examine not the leve of the variable, but its
change per time period. Examples include the St. Louis equation due to Anderson and Carlson
(1970), the money demand modd by Hafer and Hein (1980) and the consumer index of
Colclough and Lange (1982). A discrete gpproximation to the time derivative of y'” is given by
Layson and Seaks (1984) as

(1.2) Dy =y Dy, t=L.., T,

where Dy; = y; - V.1 denotes the firgt difference. The usefulness of (1.2) isthat | =1 yieds the
firg difference while | =0 gives the percentage change. This is termed the Box-Cox difference
transformation by Seaks and Vines (1990). Both the first difference and the percentage change
of an economic variable may therefore be generalized by Dy;!). Thus a regression model which

utilizes both the first difference and the percentage change can be represented by
(13) Q/EI 1) = alX].t +-ta pot + DZStZ)bZ_i_' ' +DZC(|!( q)bq + et J

where | ; (i=1, .., q) are Box-Cox difference transformation parameters, x;; (j=1, 2, ..., p) are

observations on the p independent variables which are not transformed, Dy'* is defined asin
(1.2), Dz\", (i=2, ..., q) aesmilaly defined, a; (j=1, ..., p) and by (i=2, ..., Q) are regression

coefficients, and g is the error term. We may regard (1.3) as a genera model in which the



transformed parameters permit more generd forms than first differences or percentage changes
though| =0 or 1 has a Sraightforward and Ssmple interpretation.

Unfortunatedly mode sdection is a very difficult task in practice. As Dhrymes et d.
(1972, p294) have pointed out that economic theory typically provides little guidance as to the
proper functiona form appropriate to the specification of the economic relationships. The choice
of suitable functiond forms in econometric goplications thus relies heavily upon established
datistical procedures.

In this paper, we shal develop an Andrews (1971) type procedure for testing the
choice of the st of Box-Cox difference transformation parameters in (1.3), dlowing different
transformation parameters for different variables. Its statistical methodology follows the line of
Milliken and Grayhill (1970) and is based on the F-digtribution. Section 2 reviews existing
sngle transformation parameter procedures. In section 3 we shdl develop the testing procedure
which reduces to a choice between two regresson equations. The dternative regresson, though
of no economic interest, is easy to understand. Section 4 outlines the steps how the test Setistic
can be computed using a standard datistical package. In section 5 the new procedure is
compared with the likelihood ratio gpproach by Monte Carlo modds. Section 6 presents the

conclusions of this paper.

2. Single Transformation Parameter Procedures

Exigting procedures include the likelihood ratio (LR) test and variants of the Lagrange
multiplier (LM) tests. They assume the same transformation parameter be used on both the
dependent and independent variables. The procedure of Layson and Seeks (1984) is primarily
aLR ted. It requires a search for an optima solution of the unrestricted model which in practice
can be completed by a sequence of regressions on transformed data with various vaues of the
transformation parameter over agrid. Though the first difference of the dependent varigble and
percentage change of the regressor are used in the poverty and growth modd of Thornton et d.
(1978) Layson and Seaks (1984) have only applied their procedure to test the latter choice but
not the use of the firgt difference of the dependent variable. The search could be very expensive
if not impossble when different parameters of transformation are alowed. Those of Coulson



and Robins (1985) and of Park (1991) are different variants of LM tests, constructed from
rather complicated auxiliary regressons in which the regressors involve ether the time
derivatives of the transformed variables or the derivatives of the unrestricted log-likelihood
function with respect to the individud variables. The regressons are atificidly congtructed to
generate tests for misspecification and their relations to the hypothesis to be tested are not
obvious. The computation involved is by no means smple or sraightforward. Further, the LR
and LM procedures are asymptotic and therefore are only approximate in smal and moderate
sample Stuations. The test datistic of the proposed procedure can be calculated easly by
ordinary least squares estimation of two regresson equations, thus avoiding the rdatively more

laborious search over agrid of vaues.

3. TheTest Procedure

Using matrix notation we may express (1.3) as

(31) Dy =Xa+DZ"?b+e

where 1 =(1 213 ... 1 )¢ Dy’? isthe Tx1 vector of transformed dependent variables, X is

the Txp matrix of origind independent varicbles DZ“? = (Dz{? Dz{? ... Dz,"’) is the
T (g-1) matrix of transformed independent varigbles, a=(a; a; ... ap)tisap” 1 and b=(b, b;
.. bg)tis a @-1)" 1 vectors of coefficients, and e isthe T" 1 vector of independently and
normally distributed disturbances with zero mean and congtant variance s Thus the modd
selection problem reduces to testing the hypothesis about the transformation parameter vector
I =(I11;...1¢)¢inmodd (3.2).



Expanding Dy ? in Taylor series about ahypothetica vaue | (¥ yields

(32 Dy » Dy + (1, - 19w (i )

wherew(l {2 )=1Dy"? /1l ; evdluated at | ;=1 {? . It can be readily shown that w(l () has t-

th dement
(33) w1 @) = (Inyea) Dy
Smilaly, we have

DZ"2 »DZ" +v (1 @)1 ,- 1)
where 1 37 = (15 19 »x| ) ¢isahypothetica valueof I »,

(34) V() =[v,(157) va(15) xxv (1 )]

and vi(1 @ )=1Dz"? /1l ; being evduated a | =1 ?, i=2, ..., . The individud eements of
vi(1 ) are given smilaly to (3.3). Subgtituting (3.2) and (3.4) into (3.1) and writing
o= (19 15 5 ()¢, we shall obtain

(35) Dy =xa+Dz" " b+[-w( )iV V)bl - 1,)+e

which, onletting g=I -1 o and U(l o, b)=[-w(l {*):V(1 ©)b], may be rewritten as



(3.6) Dy =xa+Dz"'b+U(l ,,b)g+e.

Box (1980) calsthe new explanatory variable U a constructed variable. The testing of the null
hypothessHy: | =l  againg the dternative Hy: | * 1 ¢ has become a choice between (3.6) and
the null model

(37) Dy"” =xa +Dz"b+e.

Equivdently, we ae testing Ho: g=0 agang H;: g* 0 in modd (3.6). To diminate the
dependence of U on e in (3.6) the former will be replaced by its least squares estimate from the
null model. Let & and b be the least squares estimates of a and b in (3.7), the fitted values

D9 of Dy"” can be computed from (3.7) after replacing the regression coefficients by

their least squares estimates, and the fitted values of """ can thus be determined recursively

by
NEC ~(] (O (0)
g =Dy 4yt
A 0) ~
y(| )_Dy(I )+ (| ))
(3.8) %
X
,\(|(0)) Dy(|(0)) ,\(|(0))

By the inverse of the Box-Cox formula (1.1) the fitted vaues of y; are given by

109" 4yu? o g
t1=1 .,T

17 =0

(39) Y =

(9
ent ,



Substituting D9 and In §,__ into (3.3) we shall get W, (1 (%) and hence W (I (?), the lesst

squaresestimate of w(l (%), and findly

(3.10) U=[-w(l ?):v{ 9)b]
upon substituting b inU(l o, b). Replacing U in (3.6) by U gives
(3.11) Dy =xa+Dz""'b+Ug+e

which stisfies the standard conditions of ordinary leest squares. The use of U to replace the
unobservable U has been put forward by Milliken and Grayhbill (1970) for two obvious reasons,
namdly, U can be computed from the data and is independent of the disturbance. The same
tactic has also been used in Andrews (1971). Let S and S, be the residual sums of squares by
least squares on the regresson equations (3.7) and (3.11) respectively. It follows from the
resultsof Milliken and Grayhill (1970) that the quantity

_ (SO - 81)/q
S/T - p- 29+1)

(3.12)

will fallow a F-digribution with g and T-p-2qg+1 degrees of freedom. Hence F is atest of the
hypothesisg=0or | =I .

A detaled development of the above results can be found in Milliken and Grayhill
(1970) who have shown that F has a F-digtribution when Hy: g=0 istrue. The test is ‘exact’
in the sense that an ‘exact’ dgnificance will be obtained from which ‘exact’ confidence limits
may be calculated when H, is true. However, little is known about F when g! 0. See Ward
and Dick (1952). Andrews (1971) has pointed out that the precision in (3.11) may affect the
efficiency of the test but it will not affect the ‘exactness of the distribution of the test datistic.



The proposed procedure is therefore more capable of capturing the correct size of the test than

any other asymptotic ones. For more discussion of other advantages of the proposed procedure

over asymptotic ones, see Andrews (1971).

4.

Computing Procedures
This section briefly outlines procedures for computing the test datitic F. The

procedures described here assume the use of a statistical package.

The steps are asfollows:

1.

Tranform y and Z asin (1.2) to gt Dy"*” and DZ"*" and to form the regression

equation (3.7).

. Estimate equation (3.7) by least squares to obtain coefficient estimates & and b, and the

error variance etimate 7, say.

ComputeDy ‘1" = Xa + Dz "*"b, from which calculate §*” using the recursive relations
(3.8) and ¥, by theinverse Box-Cox formula (3.9).

Compute W, (I {?) by (3.3) using computed vaues from step 3 and form the vector
w(l ). Compute V(I ) using a formula smilar to (3.3). Augment -w(l {?) and

V(1 @)b toform U givenin (3.10).

Form the regression equation (3.11) and estimate it by least squares to obtain error variance
edimae s’ , sy.

Findly cdculate the test gatistic F in (3.12) by putting S=(T-p-q+1)s? and S=(T-p-

20+1) s’ .
When the package such as RATS used has built-in testing procedure for the regression

coefficient vector, Steps 5 and 6 would be combined to one of testing g=0 in the regresson

equation (3.11). The null modd is only used to compute the fitted vaues U of the alterndtive
modd.



5. TheMonteCarlo

procedure programmes in RATS are written to generate data for models with combinations of
first differences and percentage changes. Sample sizes of 20, 30, 40, 60 and 100 are selected
s0 that both the smdl sample and asymptotic properties can be studied. Each experiment

To evauate our proposed F-test and to compare its performance with that of the LR

involves 2000 replications. The four modds studied are:

MOO:

MO1:

M10:

M11:

turn, at 1%, 5% and 10% significance levels. The empirical sgnificance level is recorded, when

the null hypothesisistrue thisis the Type | error and when the null is false thiswill be the power

%Dy, = 0.01+ 0.9 %Dz + q
%Dz ~ U(0, 0.07), @~ N(0, 0.015%, z =10, yo=5.0

%Dy, = 0.01+0.03Dz +@q
Dz ~ U(-0.5, 1.5), a~N(0, 0.015%, 2 =5.0, yo = 15.0

v = 100 + 55 %Dz + &
%Dz ~ U(0, 0.07), &~N(0, 1), 2 = 10, yo = 100

Dy:= 10+2Dz + ¢
Dz ~U(0,2), e~N(0,1), =10, y,=100

The population R are .593, .571, .553 and .571 respectively. M0O and M11 have
been used by Seaks and Vines (1990). The modes are tested under each of the null
hypoth%: Ho: (l 1=0, [ 220), Ho: (l 1=0, I 2:1), Ho: (l 1=1, I 2:0) and Ho: (l =1, | 2:1) in

of the rdevant test.

A dight modification of Layson and Seek’s (1984) result gives the log likelihood

function under normdlity:



1

—zae+(-Damny.,

t=1

Do

| =- %[In(Zp)Hnsz]-

—-
11
JLLY

The RATS procedure MAXIMIZE is used to compute the maximum likelihood estimate I of
| andtocdculatethe LR test statistic

c2=21(1)-1(1 )] ~c2.

While our F procedure took few seconds the LR procedure took severa minutes to
few hours to complete 2000 replications even though the true parameter vaues were used to
gart with. When vaues other than the parameter vaues were used as initid vaues the latter
procedure often located the optimal solution after severa hundred iterations,

Tablela
Size/Power of Test a 1% Significance Level Nomind
TrueModd: | ;=0, | ,=0

Null

) =0, 1,=0|1:=0,1,=1]1:=11,=0 [,=1 1,=1
Hypothess 1 2 1 2 1 2 1 2
Test F LR F LR F LR F LR

20 0.8 2.1 70 143 | 341 314 3.0 5.4
Sample 30 1.0 14 426 587 | 952 955 | 108 29.8
40 0.9 11 896 96.2 | 1000 1000 | 234 79.2
Sze 60 0.8 09 | 100.0 100.0 [ 100.0 100.0 | 410 100.0

100 0.9 0.8 | 100.0 100.0 [ 100.0 100.0 | 651 100.0




Table1b

Size/Power of Test a 5% Significance Level Nomind
TrueModd: | ;=0, | ,=0

Null

Hypothesis 11=0,1,=0 ] 1,=0,1,=1]1,=11,=0 1,=1,1,=1

Test F LR F LR F LR F LR
20 5.0 4.8 233 281 | 60.7 520| 124 12.9
Sample 30 5.6 4.3 706 760 | 987 987 | 270 50.3
40 4.9 3.8 975 99.0 | 100.0 100.0 | 441 91.2
Sze 60 5.0 3.7 | 100.0 100.0 | 100.0 100.0 | 64.6 100.0
100 5.0 45 | 100.0 100.0 | 100.0 100.0 | 796 100.0

Tablelc
Size/Power of Test at 10% Significance Level Nomind
TrueModd: | 1=0, | ,=0

H;L')Omas 1150, 1,20 | 1,20, 1,51 | 1,51 1,0 | 1,51, [ ,=

Test F LR F LR F LR F LR
20 94 7.9 33 36| 725 638 211 200
Sample 30 10.5 7.3 815 841 95 994 | 380 60.7
40 99 72 988 995 | 1000 1000 | 570 947
Sze 60 100 7.9 | 1000 100.0 | 1000 1000 | 742 100.0
100 96 89 | 1000 100.0 | 1000 100.0 | 853 100.0

10




Tables 1a-1c give the size and power of the tests for model M0OO. The F-test appears
generdly to capture the correct Sze while the LR test overstates the Type | error at the 1% leve
in smal samples and underdtates it a the 10% levd for dl sample Szes. It does not gppear to
give the correct size even for sample sizes as large as 100. The two procedures perform equally
well under Ho: (I =0, | ,=1) and Ho: (I =1, | ,=0). They both lead to correct decision by
rgecting the incorrect nulls Hy: (I 1=0, | ,=1) when T3 60 and Ho: (I 1=1, | ,=0) when T3 40 in
al cases. When testing under Hy: (I 1=1, | ,=1) F appearsless powerful than LR in rgecting the

incorrect null.
Table 2a
Size/Power of Test a 1% Significance Level Nomind
TrueModd: | 1=0, | ,=1
Null _ _ _ _ _ _ _ _
Hypothess 1 2 1 2 1 2 1 2
Tes F LR F LR F LR F LR

20 | 108 121 0.8 1.6 292 348 31 3.6

Sample 30 | 522  55.9 1.0 1.3 940 96.0| 26.0 38.6
40 | 8.8 992 1.0 16 | 100.0 1000 | 673 1000

Sze 60 | 98.9 100.0 0.9 0.8 | 100.0 100.0 | 98.2 100.0
100 | 100.0 100.0 0.9 1.0 | 100.0 100.0 [ 100.0 100.0

11



Size/Power of Test a 5% Significance Level Nomind

Table2b

TrueModd: | 1=0, | ,=1

Null

Hypothesis 11=0,1,=0 ] 1,=0,1,=1]1,=11,=0 1,=1,1,=1

Test F LR F LR F LR F LR
20 281 251 49 2.8 571 544 | 119 11.0
Sample 30 | 771 76.7 4.7 3.8 94 989 | 484 47.6
40 | 96.0 100.0 5.0 4.7 | 1000 1000 | 847  100.0
Sze 60 | 99.8 100.0 4.2 49 | 1000 100.0 | 100.0 100.0
100 | 100.0 100.0 4.7 41 | 100.0 100.0 | 100.0 100.0

Teble2c
Size/Power of Test a 10% Significance Level Nomind
TrueModd: | 1=0, | =1

H;gothegs 1320, 1,=0 | 1,20, 1,=1 | 1,51 1,=0 | [,=11,=1

Test F LR F LR F LR F LR
20 421 349 9.5 7.9 71.1 66.7 | 20.7 18.1
Sample 30 | 869 984 9.9 73 | 998 994 | 613 58.6
40 | 98.6 100.0 9.7 80 | 100.0 100.0| 913 1000
Sze 60 | 99.9 100.0 9.0 6.9 | 100.0 100.0 | 100.0 100.0
100 | 100.0 100.0 9.9 7.8 | 100.0 100.0 | 100.0 100.0

12




The size and power for model MOL1 are given in Tables 2a-2c. The F procedure is seen
agan to state the correct nomina sze. On the other hand, LR tends to overdtate the Size at the
1% level in smdl samples and overdate it a the 5 and 10% leves for dl sample Szes
considered. The Type | error of LR by no means agppear to converge to the nomind one even
when the sample size is 100. When testing under incorrect hypotheses, both test procedures
seem to perform equally well in rgjecting the incorrect null. In some cases, asamplesize of 40 is
aufficiently large to lead to rgection of wrong nullsin 100% of the times.

Table3a
Size/Power of Test a 1% Significance Level Nomind
TrueModd: | ;=1,1 ,=0

H;gothesis =1 1220 =t 1=t
Test F LR F LR
20 0.7 19 37 44
Sample 30 0.8 13 21.7 335
40 10 16 61.8 785
Sze 60 0.9 11 995 100.0
100 | 09 10 1000 100.0

13



Table3b

Size/Power of Test a 5% Significance Level Nomind

TrueModd: | =1, | ,=0

Null _ _ _ _

Hypothes's ! 2 ! 2

Test F LR F LR
20 4.6 4.8 15.3 105

Sample 30 4.7 3.8 46.1 52.0
40 4.7 4.8 83.7 90.4

Sze 60 52 4.6 100.0 100.0
100 51 45 100.0 100.0

Table3c

Size/Power of Test a 10% Significance Level Nomind

TrueModd: | =1, I 2:O

H;:zlaothesis = h 1220 =l 1221
Test F LR F LR
20 | 102 78 25,5 1655
Sample 30 9.6 73 58.8 61.3
40 95 87 91.3 94.0
Size 60 | 103 7.9 100.0 100.0
100 9.9 9.0 1000 100.0

14




For modd M10 the two tests are equdly powerful when in fact the null were fase.
When the null isHo: (I 1=0, | ,=0) or Hy: (I 1=0, | ,=1) both of them rgect the incorrect null in
al cases and therefore results are not presented here. As visible from Tables 3a-3c they do not
appear to outperform the other under the incorrect null Hy: ( =1, | ,=1). They only differ in
gating the size under the true null. F generdly gives correct Szes a dl levelswhile LR overgtates
or understates it in most cases.

From Tables 4a-4c it can be seen that F yields Type | errors that are very close to the
nomina ones. In contrast LR only produces close to sated szesin large samples. For example,
itstype | error isa least two times the nomina vaue when TE£40 a the 1 % level. When the null
isHo: (I 1=1, | ,=0) both tests do not gppear differently in their ability of rgjecting the null. When
the null isHy: (I 1=0, | ,=0) or Ho: (I 1=0, | ,=1), both approaches rgect the wrong null in al of

the cases.
Tableda
Size/Power of Test a 1% Significance Level Nomind
TrueModd: | =1, 1 ,=1
Null _ _ _ _
Hypothesis ! 2 ! 2
Tes F LR F LR
20 19.2 28.8 1.3 25
Sample 30 83.6 88.8 11 34
40 97.0 98.4 1.1 2.0
Sze 60 99.9 99.9 1.1 1.1
100 100.0 100.0 1.0 1.0
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Table4b

Size/Power of Test a 5% Significance Level Nomind

TrueModd: | =1, 1 ,=1

Null — — — —
Hypothes's ! 2 ! 2
Test F LR F LR
20 42.7 447 5.7 6.9
Sample 30 95.8 96.3 5.3 7.7
40 99.6 99.8 4.7 5.7
Sze 60 99.9 100.0 5.2 52
100 100.0 100.0 51 5.0
Table4c
Size/Power of Test a 10% Significance Level Nomind
True Modd: | =1, I =1
Null
: l,=1 1,=0 =1, I,=1
Hypothes's ! 2 ! 2
Test F LR F LR
20 56.1 57.7 10.9 10.5
Sample 30 98.2 98.2 10.2 109
40 99.9 99.9 10.9 9.3
Sze 60 100.0 100.0 111 9.9
100 100.0 100.0 10.1 9.4

16




6. Conclusion

We have derived an exact test for the parameter vector of transformation in linear
models. By utilizing Taylor series gpproximations this reduces to a choice between two
regresson equations. The foregoing analysis need not specificdly assume the transformation
parameters to be 0 or 1. Our proposed test is thus gpplicable to any other transformation
parameter vaues though interpretation is straightforward when they are equa to 1 or 0. The test
datistic which has an exact F-digtribution can be easily caculated from these two regresson
equations by least squares algorithm. Monte Carlo results have demonstrated that our proposed
procedure is generaly more capable than the likelihood gpproach in gating the correct size of
the test, yet it is equdly powerful to the latter in rgecting false null hypotheses. It is therefore a
smple and ready dterndtive to the likelihood ratio test for assessing the suitable choice of the
combination of firgt differences and percentage changes in lineer moddls, thereby alowing more
flexible and appropriate economic relations be formulated and their validity be tested.
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