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Abstract

This paper presents a computational model of learning which is intended
to capture some basic observations of recent studies of game experiments.
Furthermore it should give a satisfactory explanation for the convergence of
coordinating behavior in the context of evolutionary games. The model com-
bines elements from replicator dynamics and exponential fictitious play; every
player has a collection of behavioral rules and updates it by a genetic algo-
rithm. The game environment is chosen following the experimental settings
of Van Huyck, Battalio and Rankin (1997). Depending on the matching pro-
tocol and the label treatment distinct levels of coordination emerge, but even
within the same settings quite different courses of the experimental sessions
can be observed. The presented model is able to capture the qualitative prop-
erties of the experimental behavior, especially it can explain all the courses
in terms of varying the size of agents’ memory and the experimentation rate.
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1 Introduction

How do player behave in evolutionary games if there is no unique rational
strategy? Individual rationality is not sufficient to attain a coordination in
this context. The required rationality is a social not merely an individual
phenomenon (Arrow 1986). A game is social rational, if players expect the
game to be consistent with the equilibrium. In the presence of anonymous
opponents and random matching protocol the players have to construct a
strategic model of their environment in response to their experiences.

The model presented here combines experimental and theoretical results
of learning in games. We explicitly model the out-of-equilibrium-behavior of
heterogeneous agents. Furthermore we assimilate elements of real decision-
making-processes and explain the coordinating processes in unknown envi-
ronments with a computational model of learning.

Especially we investigate a simple asymmetric coordination game. With-
out fitting the parameters of the model we explain the observed degrees of
coordination under different experimental settings in terms of the agent ’s
memory and the experimentation rate.

This work is in a line with other papers comparing their learning models to
observed experimental behavior (see e.g. Cheung and Friedman (1998), Erev
and Roth (1999)). However, here we make use of genetic operators (Dawid
1996) combined with elements of exponential fictitious play(Fudenberg and
Levine 1998).

In section 2 we introduce the model environment and the design of the
algorithm, in section 3 we discuss the simulation results and compare them
with experimental findings of (Van Huyck, Battalio and Rankin 1997). Fi-
nally we give some conclusions.

2 A Computational Model of Learning in Games

2.1 The Model Environment

The simulated model environments, 2x2 matrix games, are chosen as simple
as possible. We concentrate on the explanation of the coordination behav-
ior and the construction of beliefs concerning the opponent’s actions. Not
captured are moral or psychological aspects as fairness, altruism or envy.
Furthermore there is no incentive or possibility to cooperate or to play mul-
tistage strategies.
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We rather explicate stylized facts from recent game experiments, such
as that subjects act non-deterministically, response to changes in oppo-
nent s behavior even if they occur in very late periods(Erev and Roth 1998),
they form beliefs about their opponent(Cheung and Friedman 1998), use
the expected future performance of their strategies as selection criterion
(Van Huyck forthcoming) and play at least temporarily suboptimal strate-
gies.

These observations violate game theoretical predictions and suggestions
from other learning and evolutionary concepts as replicator dynamics.

2.2 Learning by Experimentation and Recombination

At the beginning of a game sequence every player has a possibly different
collection of ideas how to react to observed opponent’s behavior. In the
first period she chooses one rule per chance and applies it. Then she notices
her opponent ‘s action and her yielded payoff. She updates her assessment
of behavior and strengthens or weakens the importance of the applied rule.
Through this the probability with that the rule is played in the next period is
altered. After a round the agent revises her rules. At the end of the revision
process she checks whether the newly created rules promises better results
than the old ones. If this is the case she maintains the changes, otherwise
she cancels them.

2.3 Evolutionary Algorithm Application

Eight subjects are playing a 2x2 matrix game against each other in four
simultaneous games per trial. The players know that they are matched ran-
domly and don’t know their opponent. Every player is totally defined by an
array of six behavioral rules and her data collection of opponent “s behavior.
A rule i of player j is encoded by a string p;" of length 6, its structure is
shown in table 1.

Alet| e 3 ct e

i | Db | Pho | Phu | Pos | P

table 1: rule structure

o,

.8

All elements c* are drawn from the interval [0,1]. The player uses this rule
to determine her next action. Firstly she transforms the perceived history of
her opposing players into an assessment of the opponent ‘s actual behavior

Yt-
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mmax m )
i) _ A D g (2.1)
T
with
NCONE 1 if j’s opponent takes strategy 1 in period t
¢ 0 otherwise

The discount factor ¢, is prescribed by subject ‘s j ith rule. This assessment is
widely used and a generalization of the assessment in fictitious play (Cheung
and Friedman 1998). But in addition we impose a memory constraint of
Mmax Periods. Through this procedure player j using strategy i has formed
t}(l_e.)expectation that her opponent will play strategy 1 with the probability
.

In the next step the agent chooses a response p;(y;)* that specifies the
probability strategy 1 is played by agent j and is determined by the behav-

ioral rule 3.

c1  fiir y€[0;0,2)
¢y fiir y4€[0,2:0,4)
pe(y) = cs fiir ye[0,4;0,6) (2.2)
cq fiir y,€[0,6;0,8)
cs  fir y,€[0, 8; 1]
The player reacts in the same way if she assesses the opponent is playing
strategy 1 with 0 or 19%?*. After executing a rule ¢ the agent collects the

action af] ) and updates the weight of rule i

J

al(i) = — -] (2.3)

qgwt71(2

This fitness definition is deducted from the analysis of smooth fictitious
play(Fudenberg and Levine 1998), @ is the payoff of player j in period t,
ﬁgflthe average payoff realized by j during the course of the game. w; 1(7) is
the number of times rule ¢ has been applied during the last my,., periods, ¢
is the ex-ante-probability of rule 7, i.e., the probability with that ¢ has been

'If the context is clear, for simplicity indices are omitted.
2Consequently an assessment of the opponent playing strategy 1 of "almost sure” (80-
100%) to "unlikely” (0-20%) would be sufficient.
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chosen before the round. This probability equals the relative fitness of rule 4
according equation (2.4)

L)
) 24

where S7 is the set of rules of subject j. After the weighting up of the
executed rule all rules are subjected to a mutation, crossover and election
operator.

Because of the coding of real numbers the mutation operator has to be
altered compared to the standard genetic operator (see as a reference Gold-
berg (1986)). A mutation of an element of the string representing the rule
occurs with probability py.;. If mutation takes place in ¢, ., at position k,
the element is transformed into

0 falls ¢f +m - 0,1 <0
= 1 falls ¢f +m-0,1>1 (2.5)
cF+m-0,1 sonst

where m is random variable with following distribution

m -5 -4 -3 -2 -1 1 2 3 4 5
P | 0.0375 | 0.0625 | 0.0625 | 0.0375 | 0.25 | 0.25 | 0.125 | 0.0625 | 0.0625 | 0.0375
The mutations are blind and not endogenously determined.

Subsequently the crossover operator is applied. We realized uniform
crossover; the rules are randomly paired. With probability pe.ss = 0.7
crossover takes place and every component is exchanged with the correspond-
ing component of the juxtaposed rule with a probability of 50%.

ps 10,7 0,8 0,3 0,3 0,1 0,3 N 0,7 1 03 0,4 0,6 0,1
oF 1 1 0,5 0,4 0,6 0,1 i 10,8 0,5 0,3 0,1 0,3

An example for uniform crossover

At the end of the revision process the player judges whether the newly cre-
ated rules have a higher expected future performance than the old ones. For
this she calculates the potential of the rule m(p') that is the weighted ex-
pected return of the rule over all possible probability distributions over the
opponent ‘s strategies.
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A B
Al0,0]1,1
B[1,1]0,0

table 2: a simple coordination game

For the simple coordination game (table 2 ) we will investigate later on, the

potential is computed by

NN

m(p') =

5
i i i i 1 i 1201
v - (L =)+ (A —y) -] + 5 ch'(l__—)+1_

where ¢, is the component of the rule that prescribes the reaction to y;.
This is somehow the expected profit of the next period; the component of
the rule, that is expected to be the most relevant, gets a higher weight than
the others. If the potential of the created strings is larger than that of the
old ones, the changes by mutation and crossover are maintained, otherwise
the player keeps the old rules unchanged. The new rules inherit the fitness

from the old ones.

3 Simulation results

We compare our simulation results with the experimental findings of Van
Huyck et al. (1997). They investigate two sources of mutually consistent
behavior, population and label treatment. A group of eight to 14 players is

randomly paired and plays the matrix game shown in table 3.

No labels

Labels

Other participant ‘s choice

Column choice

1 2

) 1 0 40 ) 1
Your Choice 9 0 0 Row Choice 9

table 3: payoff matrix in the experiments of (Van Huyck et al. 1997)

1 2
0 40
40 0

The experimental game sequences last for 30 to 75 periods. An overview
over the results is given in figure 8. In the simulation studies first beliefs are
always set according to the first choices in the experimental observations.
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Figure 1: frequency of strategy 1, 1-population-game
3.1 A 1-Population Game

In this setting the players don’t know if they are row or column players.
There is no chance to coordinate. Consequently the analysis of the Nash
equilibria and replicator dynamics suggests that players use the asymptoti-
cally stable equilibrium mixed strategy p(strategy 1)=0.5.

The simulation results in figure 1 report the development of the frequency
of strategy 1 in the population. Every data point is an aggregation over
five periods and all players. The simulation course exhibits a persistent
fluctuation around the predicted equilibrium frequency. The average earning
per period of 0.25% equals almost exactly the predicted earning under the
equilibrium strategy.

Testing the null hypothesis on population level that the players don 't
use the equilibrium mixed strategy can be rejected in both, experimental
and simulation data. But investigating the transitions between states reveal
that states beyond the equilibrium strategy are more likely to persist than
below , in the simulation data states below the equilibrium strategy are
more likely to persist. Consequently regarding the transition states in both,
experimental and simulation data, the null hypothesis that players use the
equilibrium mixed strategy can be rejected. Furthermore there doesn ‘t exist
a purification of the equilibrium strategy in which one half of the population
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0,5

Figure 2: frequency of strategy 1, 2-population game, course 1

is always playing strategy 1 and one half always playing strategy 2.

The deviations from equilibrium strategy become greater if the memory
decreases. Coinciding with this the subjects favor rules that specify a dis-
count factor near 1.

3.2 A 2-Population Game

Using a 2-population protocol the players are divided into two subgroups.
Every round one member of a subgroup is randomly paired with a member
of the other subgroup. Replicator dynamics predict an unstable fixed-point
(0.5,0.5) and two asymptotically stable fixed-point (1,0) and (0, 1).

Quite different courses can be observed here. The figures 2-4 the fre-

quency of strategy 1 in population 1 on the horizontal axis and of popula-
tion2 at the vertical axis. Each data point is an aggregation over all players
of the subgroup and five periods.
With the usual setting of a memory constraint of 20 periods and a mutation
rate of 3 % the course shown in figure 2 is created. Players of population
1 stick on rules that impose a high probability of playing strategy 2 and
consequently strengthen this rule. A convention is totally established after
14 periods.

However, if the experimentation rate is increased to 10 % and the mem-
ory size shrinks down to ten periods the course of figure 3 arises. Caused
by the higher degree of randomization in player s behavior the coordination
sequences are interrupted several times. After 45 periods a degree of coor-
dination of 85 % in the simulated and 89% in the experimental session is
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0,5

h(S1) von Population 2

0 0,5 1
h(S1) von Population 1

Figure 3: frequency of strategy 1, 2-population game, course 2

attained.

The third course shown in figure 4 results from players starting with misspec-
ified rules. The populations get caught by the mixed equilibrium and after
45 periods still 65% of population 1 and 60 % of population 2 play strategy
1.

This is the only case —in the simulation and in the experiment— when
the average earning stays with 0.17 $ distinctly under the average earning
that is attained if the equilibrium mixed strategy is taken. However, in the
simulation player starts to coordinate after about 100 periods towards (0,1).

3.3 Label Treatment

Another possibility to allow for coordination processes is to tell a player at he
beginning of every round whether he is row or column player. Van Huyck et
al. test if the players realize that their payoff matrix has changed according
to table 4.

011 012 021 022
o11 0,0 | 20,20 | 20,20 | 40,40
o012 | 20,20 | 40,40 | 0,0 | 20,20
o091 | 20,20 | 0,0 | 40,40 | 20,20
o099 | 40,40 | 20,20 | 20,20 [ 0,0

table 4: payoff matrix, if strategies depend on labels

0,; means "play strategy 1 as row player and j as column player”.
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Figure 4: frequency of strategy 1, 2-population protocol, course 3
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Figure 5: frequency of strategy 1, 1-population game with labels, course 1

To deal with the label treatment our model design has to be extended.
A rule is now encoded by a string of length 11, the elements 2 to 6 (7 to 11)
encode the player s response if she is row (column) player. She collects the
data about the opponent ’s actions separated for each label.

The experimental and the simulation results demonstrate that the sub-
jects generally make use of the additional information given by the labels.
However, the achieved degree of coordination is significantly lower than in
the two-population treatment. The courses in figure 5-7 show the frequency
of strategy 1 token by players labeled "row player” on the horizontal and of
”column players” on the vertical axis. Data points are aggregations over five
periods and all row and column players respectively .
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h(S1) von "Spieler 2"
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Figure 6: frequency of strategy 1, 1-population game with labels, course 2

The first course in figure 5 is somehow atypically because there is a
straight forward development to the equilibrium (1,0). The average earn-
ing of 0.37$ is the highest achieved in all courses. This can be explained
by the high degree of coordination (0.75, 0.15) established already at the
beginning of the game sequence.

If there isn’t a straight development to an efficient equilibrium in the
very first periods, there persists a high rate of experimentation for a couple
of rounds. The figures 6 and 7 show courses in which the experimentation
rate is 30%.

Depending on the first choices the players get caught by the equilibrium
mixed strategy in figure 6 or they circle around a degree of coordination of
65% in figure7. In both courses the players don’t learn to make use of their
labels to establish a convention. There doesn “t evolve a unidirected structure
in the rules.

3.4 Summary of results

Figure 8 sums up the results of the experimental sessions by Van Huyck
et al. and our simulation studies. During the course of the experimental
sessions a full degree of coordination can only be observed in one session of
the 1-population-label treatment and in one of the 2-population sessions.

However, the simulation results show that in the intermediate term the
equilibrium mixed strategy is not stable in the 2-population-protocol.
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Figure 7: frequency of strategy 1, 1-population protocol with labels, course

3

h(S1) von "Spieler 2"

0,25 0,5

0,75 1

h(S1) von "Spieler 1"

degree of average degree of
periods to |average earning |[coordination in| periods to |earning per|coordination in
matching | convergence per period last 5 periods |convergence period last 5 periods
protocol | experiment experiment experiment simulation | simulation | simulation
1-no label n.o.(75)( 0,19; 0,20; 0,22 - n.o.(150) 0,2025 -
1-label, 1 10 0,39 100 13 0,37 100
1-label, 2 n.o.(45) 0,23 70 n.o.(150) 0,22 65
1-label, 3 n.o.(45) 0,20 - n.o.(150) 0,206 -
2nol, 1 15 0,37 100 14 0,35 100
2-no 1,2 n.o.(45) 0,17 - 148 0,17 -
2-no 1,3 n.o.(45) 0,28 89 60 0,26 85

11

Figure 8: experimental results by Van Huyck et al. and simulation results
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Some more general conclusions are that the short- and intermediate-
term learning depend highly on the first choices. A development to a non-
equilibrium-state is possible, also to a non-efficient equilibrium.

The players processes additional information about the population treat-
ment more efficiently than the information about labels.

4 Conclusions

We presented a computational model of learning in evolutionary games that
is able to capture the qualitative and aggregated quantitative experimental
observations by (Van Huyck et al. 1997). The model design overcomes sev-
eral shortcomings of the application of genetic algorithms and of analytical
learning theories as replicator dynamics.

Our main results are that first choices, the experimentation rate and the
agents ‘memory size are crucial for the course of the sessions. Additional
informations concerning labels or populations are not processed efficiently.
Experimentation, recombination, the future performance and the diversity
of rules are identified as important elements of the decision making process.
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