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ABSTRACT

A systematic validation of evolutionary techniques in the �eld of bargaining is presented. For this purpose, the

dynamic and equilibrium-selecting behavior of a multi-agent system consisting of adaptive bargaining agents is

investigated. The agents' bargaining strategies are updated by an evolutionary algorithm (EA), an innovative

computational method to simulate collective learning in societies of boundedly-rational agents. Negotiations

between the agents are governed by the well-known \alternating-o�ers" protocol. Using this protocol, the

inuence of various important factors (like the �nite length of the game, time preferences, exogenous breakdown,

and risk aversiveness) is investigated.

We show that game theory can be used successfully to interpret the equilibrium-selecting behavior observed

in computational experiments with adaptive bargaining agents. Agreement between theory and experiment

is especially good when the agents experience an intermediate time pressure. Deviations from classical game

theory are, however, observed in several experiments. Violent nonlinear oscillations may for instance occur in the

single-stage ultimatum game. We demonstrate that the speci�c evolutionary model governing agent selection

is an important factor under these conditions.

In multiple-stage games, the evolving agents do not always fully perceive and exploit the �nite horizon of

the game (even when time pressure is weak). This e�ect can be attributed to the boundedly-rational behavior

of the adapting agents. Furthermore, when the agents discount their payo�s at a di�erent rate, the agent with

the largest discount factor is not able to exploit his bargaining power completely, being under pressure by his

impatient opponent to reach an early agreement.

Negotiations over multiple issues, a particularly important aspect of electronic trading, are studied in a

companion paper [8]. We are currently investigating the behavior of more complex and powerful bargaining

agents.
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1. Introduction

Recently, interest in the development of trading and negotiating agents has surged among economists

and computer scientists [4]. A nice example of the potential of automated negotiation is given in [5].

This paper describes a system in which a utility agent (acting on behalf of an electricity company) is

negotiating with consumer agents to prevent excessive peaks in the demand for electricity. Another
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example is the agent-based heating system of the Xerox company. In this climate control system

each agent controls an o�ce thermostat and the allocation of resources is market-based. Practical

applications of distributed multi-agent systems are surveyed in [24, Ch. 9].

The rapid establishment of a global communication network (in the form of the Internet) together

with the development of standard negotiation protocols [15] will certainly result in a fast proliferation

of systems of this kind. The complexity of large multi-agent systems increases strongly, however, if the

negotiating agents are not using �xed decision rules but adapt their strategies to deal with changing

opponent strategies and changing user preferences. Two important and fundamental questions should

therefore be raised: (i) which complex dynamic behavior will emerge in this kind of complex adaptive

systems, and (ii) to which state will these systems converge over time (if a stable steady state is

reached at all).

We address these two issues in a computational setting by using evolutionary algorithms (EAs).

EAs, inspired by Darwin's theory of evolution, are an attractive tool to model collective learning in

societies of boundedly-rational agents [14, 6]. In an evolutionary setting, the adaptive agents learn in

three di�erent ways: (i) learning by imitation (by reproduction and selection of successful strategies),

(ii) communication and exchange of strategic information (by recombining or \crossing over" genetic

information), and (iii) random experimentation (by \mutating" their strategies).

Oliver [12] was the �rst to demonstrate that a system of adaptive agents can learn e�ective nego-

tiation strategies. Computer simulations of both distributive (i.e., single-issue) and integrative (i.e.,

multiple-issue) \alternating-o�ers" negotiations are presented in [12]. Binary-coded strings represent

the agents' strategies. Two parameters are encoded for each negotiation round: a threshold which

determines whether an o�er should be accepted or not and a counter o�er in case the opponent's o�er

is rejected. These strategies were then updated in successive generations by a genetic algorithm (GA).

More elaborate strategy representations are proposed and evaluated in [9]. O�ers and counter o�ers

are generated in this model by a linear combination of simple bargaining tactics (time-dependent,

resource-dependent, or behavior-dependent tactics). As in [12], the parameters of these di�erent

negotiation tactics and their relative importance weightings are encoded in a string of numbers.

Competitions were then held between two separate populations of agents, which were simultaneously

evolved by a GA.

We intend to bridge the gap between computer experiments as performed in [12, 9] and the analysis

of bargaining by game theorists [20, 17, 13, 11]. This connection is not far-fetched. Consider �rst

how agents in the computer experiments learn to bargain in an evolutionary model. Initially, agents

will typically use a random strategy. As a consequence, many di�erent paths through the game tree

will be explored (i.e., many subgames will be sampled). Only the agents with relatively successful

strategies in many di�erent subgames will be selected as parents for the next generation of agents. In

each successive generation, this process of variation and selection is then repeated and more and more

robust strategies evolve in the long run.

Now consider the key equilibrium concept used by game theorists to analyze extensive-form games:1

the subgame-perfect equilibrium (SPE) [18, 19]. Two strategies are in SPE if they constitute a Nash

equilibrium in any subgame which remains after an arbitrary sequence of o�ers and replies made

from the beginning of the game. Rubinstein successfully applied this notion of subgame-perfection to

bargaining games [17]. His main theorem states that the in�nite-horizon alternating-o�ers game has

a unique SPE in which the agents agree immediately on a deal.2

Recent work in evolutionary game theory illustrates the link between subgame-perfectness and

(mathematical) evolutionary models. A nice example is given by Binmore et al. [3]. They consider

an evolutionary model in which �nite-state machines play Rubinstein's in�nite-horizon bargaining

game against each other. For such a system, Binmore et al. prove that if both agents use a so-

called \modi�ed evolutionarily stable strategy" a Nash equilibrium is constituted in which immediate

1That is, games with a tree structure [2].
2The �nite-horizon variant of Rubinstein's game (which we use in our computer simulations) has been analyzed

earlier by St�ahl [20].
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agreement is reached. Furthermore, each agent's share of the surplus is bounded between the shares

received by the two agents in the SPE of the in�nite-horizon game.

Hence, the results in [3] indicate that agents with a bounded rationality may actually display

subgame-perfect behavior in the evolutionary alternating-o�ers game. Our computational experiments

con�rm this point. Moreover, we encounter phenomena beyond the reach of classical game theory. For

example, if the agents' discount factors are very small (i.e., when time pressure to reach an agreement

is extremely large) strongly nonlinear behavior is occasionally observed (depending on the speci�c

evolutionary selection scheme). If discount factors are large, on the other hand, (i.e., when time pres-

sure is weak) the �nite horizon of the game is not fully exploited by the agents. Signi�cant deviations

from game-theoretic predictions are also observed if the agents discount their payo�s at a di�erent rate.

The remainder of this paper is organized as follows. Section 2 gives an overview of the bargaining

models that we investigate. A description of the setup of the computational experiments is then given

in Section 3. Sections 4-8 provide an overview and discussion of the main results.

The �nite-horizon variant of Rubinstein's alternating-o�ers model [17] is analyzed in Sections 4

through 6. In Section 4 the agents have symmetrical time preferences (i.e., their discount factors

are identical). If the agents' discount factors approach zero in this model (i.e., when the bargaining

surplus completely vanishes after one round), this game becomes payo�-equivalent with the well-

known ultimatum game. This limiting case is studied in detail in Section 4.1. Another extreme case

is obtained if the agents' discount factors approach unity (i.e., when the bargaining surplus remains

constant over time). This situation is investigated in Section 4.2. The general case (i.e., discount

factors in between zero and unity) is analyzed in Section 4.3. The robustness of the experimental

results with respect to changes in the evolutionary model is assessed in detail in Section 5. The

inuence of asymmetric time preferences (i.e., unequal discount factors) is evaluated in Section 6.

Section 7 considers a variant of Rubinstein's model in which there exists a risk of premature break-

down during the negotiations. Extending this model, the behavior of risk averse agents is examined

in Section 8. Section 9 concludes.

2. Alternating-Offers Bargaining Models

We consider several variants of the alternating-o�ers game in this paper, ranging from the very simple

ultimatum game in Section 4.1 to a multiple-stage game with breakdown and risk averse agents

in Section 8. Before presenting these models in more detail, we like to mention that the existing

literature on alternating-o�ers bargaining [13, 11] mainly considers in�nite-horizon games. However,

in our computational experiments bargaining obviously cannot continue for arbitrary lengths of time.

We therefore perform a game-theoretic analysis of �nite-length games in Appendix 1. For games with

a very long horizon, correspondence with existing results for in�nite-length games is shown.

It is also important to note that we assume in the game-theoretic analysis of Appendix 1 that

the bargaining agents behave fully rational and have complete information (for instance about their

opponents' preferences). Both assumptions are obviously not valid for the evolving agents in our

computational experiments (who learn by trial-and-error instead of abstract reasoning). However,

the (subgame-perfect) equilibrium behavior of fully rational agents will serve as a useful theoretical

benchmark to interpret the behavior of the boundedly-rational agents considered in Sections 4-8.

The ultimatum game (Section 4.1) The ultimatum game is the most simple bilateral bargaining

game with perfect information. Agents bargain over the partitioning of a given bargaining surplus.

Without loss of generality, we can set the size of this surplus equal to unity. We also assume that the

agents have opposite preferences. One agent (which is denoted in this paper as \agent 1") then starts

the play by demanding a certain fraction x1 of the surplus. The other agent (\agent 2") has only two

options: he can either accept or reject agent 1's proposal. In case the o�er is accepted agent 1 receives

x1 and agent 2 the remainder (i.e., 1� x1). Both agents receive nothing if the o�er is rejected.
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Multiple-stage games (Section 4.2) In the multiple-stage variant of the ultimatum game, the agents

again bargain over the partitioning of a constant surplus. O�ers are now made at discrete points in

time: namely, at times t = 0; :::; (n� 1), where n is the maximum number of stages of the bargaining

game.3 The two agents bargain in an alternating fashion. At t = 0, agent 1 makes an o�er. Agent 2

then accepts or rejects this initial o�er. If the initial o�er is rejected, agent 2 makes a counter o�er in

the next round (at t = 1). This alternating process of making proposals then continues until an o�er

is accepted or until the bargaining deadline is reached (at t = n). If no agreement has been reached

before the deadline (that is, for t < n) both agents receive nothing.

Model with time preferences (Sections 4.3 through 6) Agents are now under time pressure because

they prefer to reach an agreement early. Following Rubinstein [17] we model the time preferences of

agent i = 1; 2 with a discount factor �i, with 0 < �i < 1. In case of an agreement, agent i's discounted

payo� is equal to xi�
t
i , where xi is the share of the surplus agent i receives (recall that the time interval

between two rounds is equal to unity). This model is in fact the �nite-horizon variant of Rubinstein's

well-known alternating-o�ers protocol [17].

Two special cases of this model can be identi�ed directly. When �1 = �2 ! 0 the entire bargaining

surplus vanishes after a single round. This game is therefore equivalent (in terms of payo�) with the

abovementioned ultimatum game (see Section 4.1). The special case in which the agents' discount

factors approach unity (�1 = �2 ! 1) is studied in Section 4.2.

Model with a risk of breakdown (Section 7) The alternating-o�ers game with a risk of breakdown

is examined next. This model is also an extension of the model studied in Section 4.2. However,

negotiations do not always proceed to the next stage in this case. Instead, continuation of the bar-

gaining process occurs with a probability p < 1. Breakdown of the negotiations may occur in reality

when agents get dissatis�ed as negotiations take too long, and therefore walk away from the nego-

tiation table, or when intervention of a third party results in a vanishing bargaining surplus. When

a negotiation is broken o� prematurely both agents receive nothing. In the game-theoretic analysis

(see Appendix 1), the continuation probability p plays a similar role as a common discount factor �

(� �1 = �2) in the above model with time preferences.

Model with risk averse agents (Section 8) This model extends the previous one by introducing risk

averse agents. In this case, agent i's payo� at time t is equal to ui(xi)p
t, where the degree of risk

aversiveness is reected in the shape of the (concave) utility function ui. The preferences of the risk

averse agents are modeled in this paper with an elementary power-law function, i.e., ui(xi) = x
ri
i

(with 0 < ri < 1 and i = 1; 2). The degree of risk aversiveness of agent i is then controlled by the

\risk coe�cient" ri.

3. Experimental Setup

We use an evolutionary algorithm (EA) to evolve the negotiation strategies of the agents. Section 3.1

gives an outline of the EA, and discusses how such a system can be interpreted as a model for social

or economic learning processes. Our implementation is based on \evolution strategies"(ES), a branch

of evolutionary computation that traditionally focusses on real-coded problems [1].4 The \genetic"

representation of the agents' strategies is presented in Section 3.2. The main components of the EA

(selection, mutation, and recombination) are discussed in more detail in Sections 3.3 through 3.5.

3.1 The Evolutionary Algorithm

Our evolutionary model consists of two separate populations. Agents in population 1 always start

the game (i.e., they are of the \agent 1" type); agents from population 2 are of the \agent 2" type.

During a �tness evaluation, an agent plays against a group of opponents who are drawn at random

3The time interval between two stages is set equal to unity in the simulations.
4The widely-used genetic algorithms (GAs) are more tailored toward binary-coded search spaces [10].
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(without replacement) from the other population. The agent's �tness is then equal to the mean utility

obtained against these opponents.

This model with two coevolving populations is appropriate if one group of agents has the privilige

to open the negotiations. In reality this situation frequently occurs when a potential client wants to

buy something from a professional seller. Normally, the seller takes the initiative: he or she can either

refer to the indicated price on the product, or propose an initial price.

The EA updates the agents' strategies in successive iterations (also called \generations"). The

di�erent stages within one generation are depicted in Fig. 1. First, the �tness of the parental agents

Offspring

Population 2

Population 1

Population 2

Offspring

ne
go

tia
te

reproduce

reproduce
Population 1

Population 2

replace

negotiate

Population 1

Parental

Parental

New parental

New parental

replace

select

select

Figure 1: Iteration loop of the evolutionary algorithm (EA). Two populations of agents are evolved

separately. Agents in population 1 always start the bargaining process. In the �tness evaluation, both

the o�spring and the parental agents compete against agents in the two parental populations. The

best candidates of the union of parents and o�spring are then selected to be the parents in the next

iteration.

is determined by competition between the agents in the two populations. In the next stage (see

Fig. 1), \o�spring" agents are created. An o�spring agent is generated in two steps. First, an agent

in the parental population is (randomly, with replacement) selected. This agent's strategy is then

mutated to create a new o�spring agent (the mutation model is speci�ed in detail in Section 3.4). The

�tness of the new o�spring is evaluated by interaction with the parental agents. A social or economic

interpretation of this parent-o�spring interaction is that new agents need to be able to compete with

existing or \proven" strategies before they gain access to a market.5 In the �nal stage of the iteration

(see Fig. 1), the �ttest agents are selected as the new \parents" for the next iteration (see Section 3.3

for more details). This �nal step completes one iteration of the EA.

All relevant settings of the evolutionary system are listed in Table 1. Pseudo-code of the EA can

be found in Appendix 2.

3.2 Genetic Representation

Each agent's strategy is encoded as a sequence of real-coded genes (together called a \chromosome").

Assume that agent i from population 1 competes against agent j from population 2. At t = 0,

agent i then starts the bargaining game and reads the �rst gene on his chromosome. This \o�er"

gene, denoted as oi(t = 0), contains agent i's initial proposal to partition the surplus (i.e., agent i

demands a fraction of oi(t = 0) of the bargaining surplus). Agent j evaluates this o�er by inspecting

his �rst gene, which contains the \threshold" value �j(t = 0). Agent j accepts agent i's proposal if

5In an alternative model, not only the parental agents are used as opponents, but also the newly-formed o�spring.

This leads to a much more diverse collection of opponents. The �tness of the agents therefore becomes more subject to

noise.
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Encoding of chromosome Real coding

Length of chromosome (l) n

Mutation Zero-mean Gaussian (� = 0:1)

Recombination No recombination (see Section 3.5)

Selection (�+ �)-ES

Parent population size (�) 100

O�spring population size (�) 100

Number of opponents 25

Table 1: Default settings of the evolutionary model.

uj(oi(t = 0)) � �j(t = 0). Otherwise, the bargaining process continues. Roles then switch and agent j

inspects his second gene, which contains a (counter) o�er oj(t = 1). Agent i evaluates this proposal

by inspecting his second gene, which contains a threshold value �i(t = 1). If ui(oj(t = 1)) � �i(t = 1),

agent i accepts the counter o�er. Agent j then receives a share of oj(t = 1) (and agent i the remainder).

Otherwise, play continues in an alternating fashion until an agreement occurs or until the deadline is

reached (after n rounds).

Note that the length l of each agent's chromosome is equal to n. Because the agents bargain over a

surplus of size 1, the o�ers and thresholds are restricted to the unity interval. The agents' strategies

are initialized at the beginning of each EA run by drawing a random number in the unit interval for

each gene (from a uniform distribution).

3.3 Selection Scheme

Selection is performed using the (� + �)-ES selection scheme [1]. In conventional notation, � is the

number of parents and � is the number of generated o�spring (� = � = 100, see Table 1). The �

survivors with the highest �tness are selected from the union of parental and o�spring agents. This

selection scheme is therefore an example of an \overlapping generations" model, in which successful

agents can survive for multiple generations. A nonoverlapping generations model, in which all parents

are discarded after one generation, is investigated in Section 5.1. A probabilistic variant of (�+�)-ES

selection is studied in Section 5.4.

An o�spring agent is generated in two steps. First, an agent in the population is (at random, with

replacement) selected to be a parent. The chromosome of this parental agent is then mutated to

generate a new o�spring agent (the mutation model is speci�ed below in Section 3.4). By default the

parent-to-o�spring ratio is set equal to unity (i.e. � = �). In Section 5.2 we report several experiments

in which this ratio is not equal to unity, to determine the inuence of the selection intensity.

In an economic context, selection can be interpreted as imitation of behaviour which seems promis-

ing. In general, EAs use two additional operators: mutation and recombination. These operators are

explained in detail below.

3.4 Mutation Model

Mutation can be interpreted as undirected exploration of new strategies, or as mistakes made during

imitation. In the default mutation model, the o�spring's genes xi are created by adding a zero-mean

Gaussian variable, with standard deviation �i = 0:1 [i.e., Ni(0; 0:1)],
6 to each corresponding gene xi

of the parent.7 All o�spring genes with a value larger than unity (or smaller than zero) are reset

to unity (respectively zero). A mutation model with self-adaptive standard deviations is studied in

Section 5.5.

6The notation Ni(:; :) denotes that the random variable is drawn again for each value of the index i.
7Notice that the symbol xi is used in two di�erent meanings. xi denotes the share received by the i-th agent in

bargaining literature and an agent's i-th gene in the �eld of evolutionary computing. Which usage is appropriate can

be inferred easily from the context.
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3.5 Recombination Model

Communication between the agents is often modeled by a recombination (or \crossover") operator,

which typically exchanges parts of the parental chromosomes to produce new o�spring. Recombination

of genetic information has proven to be a very e�ective search operator if the individuals are binary-

coded [10]. Following this lead, several recombination models have also been proposed for evolutionary

models with real-coded individuals [1].

We performed experiments with two recombination models frequently used in the �eld of ES: discrete

recombination and intermediate recombination [1, pp. 73-78]. However, we did not �nd a signi�cant

change of the �tness of the evolving agents if recombination was allowed (compared to experiments

with mutation only). We therefore focus on mutation-based models in this paper.

4. Model with Symmetric Time Preferences

All agents have identical discount factors in this section (i.e., �1 = �2). Results for �1 6= �2 are

presented in Section 6. Unless indicated otherwise, the negotiations are terminated after 10 rounds

in our experiments (i.e., n = 10). Figure 2 shows the SPE partitioning of the bargaining surplus for

a 10-stage game as a function of the common discount factor � (see Table 2 in Appendix 1). SPE
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Figure 2: Subgame-perfect partitioning of the bargaining surplus for a 10-stage game. Predictions

for an in�nite-horizon game are also shown for comparison. Notice the signi�cant di�erences between

these models if the agents' discount factors approach unity.

predictions for the in�nite-horizon model are shown as well for comparison. Note that the predictions

of the in�nite-horizon model only match well with the results of the (exact) �nite-horizon model if

� < 0:6 (for n = 10). For larger values of � the discrepancies become signi�cant.

We �rst investigate two extreme cases. In Section 4.1 we let � ! 0. Agents then receive nothing

if they do not reach agreement in the �rst round. In payo� terms, this situation is equivalent with

the ultimatum game. Another extreme case is obtained by letting � ! 1. In this case, analyzed in

Section 4.2, the agents are payo�-indi�erent between reaching a deal sooner or later (provided t < n).

Figure 2 already shows that the �nite horizon of the game becomes important under these conditions.

Results for intermediate values of � (0 < � < 1) are summarized in Section 4.3. The inuence of



8

changes in our evolutionary model (e.g., di�erent selection schemes, selection intensities, etc.) on the

predictions is assessed in Section 5.

4.1 � ! 0 (The Ultimatum Game)

Figure 3 shows the evolution of the mean �tnesses of the agents in population 1 (the proposers) and

population 2 (the responders) in the ultimatum game. Notice that the �tness of agents in population 1
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Figure 3: Evolution of the mean �tnesses of agents in population 1 and population 2 in the ultimatum

game. Note the clear advantage of agents in population 1 (proposing an o�er). Means and standard

deviations are calculated across 25 runs.

increases rapidly (i.e., the proposers increase their o�ers for t = 0) whereas the �tness of agents in

population 2 simultaneously decreases (i.e., the responders lower their thresholds for t = 0). Game

theory predicts that a rational proposer demands the whole surplus, which the responder accepts (see

Appendix 1). This unique (subgame-perfect) equilibrium indeed appears to be an attractor for the

evolutionary system.

A closer look at the long-term evolution in Fig. 3 reveals, however, that there is no complete conver-

gence to subgame-perfect behavior. The standard deviations in the �tnesses remain signi�cantly larger

than zero, even in the long run, which indicates that the outcomes vary in individual experiments.

Figure 4 indeed shows that quite large and sudden transients can occur in individual experiments.

The strongly nonlinear behavior visible in Fig. 4 is typical for a \relaxation" oscillation [23, Ch.

12]. Relaxation oscillations are periodic phenomena with very special features during an oscillation.

Such an oscillation is typically characterized by intervals of time in which the system changes slowly,

followed by short intervals of time in which notable changes occur.8

The mechanism causing the oscillations in Fig. 4 is as follows. From an initial start, the agents in

population 1 discover that they can increase their o�er. The agents in population 2 simultaneously

decrease their thresholds (otherwise many disagreements would result, yielding a payo� equal to zero).

8Relaxation oscillations have also been encountered in coevolving populations of predators and preys in natural

ecosystems. A simple mathematical model describing such a system has been proposed by Lotka and Volterra (see [23,

Ch. 12] for more details and other examples of relaxation oscillations).
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Figure 4: Evolution of the mean population �tnesses in an individual experiment. The strongly

nonlinear oscillations occurring in separate runs are masked in the average results shown in Fig. 3.

The sharp drops in �tness for agents in population 1 are accompanied by a signi�cant number of

disagreements, indicating that agents in population 2 are not accepting the extreme proposals from

agents in population 1.

This process continues until e�ectively all agents in population 1 demand the whole surplus and all

agents in population 2 accept this extreme deal (see Appendix 1). At this point, �rst reached after

� 175 generations in Fig. 4, agents in population 2 become (payo�) indi�erent between accepting or

refusing (they receive nothing in both cases). The ongoing mutation process then creates o�spring

agents with a threshold larger than zero. These agents have the same �tness as their all-accepting

counterparts in population 2. Therefore, some of them invade population 2. This results in a signi�cant

number of disagreements and a sharp drop in �tness for agents in population 1. Consequently, some

agents in population 1 decrease their demand in order to stop this process and the �tness of the agents

in population 2 increases. Then the race between proposers and responders starts all over again, and

the process repeats itself (see Fig. 4).

4.2 � ! 1 (Time Indi�erence)

Figure 5 shows the evolution of the mean �tness of agents in population 1 in the n-stage alternating-

o�ers game (without payo� discounting). Game theory predicts that the last agent in turn rejects all

proposals from his opponent and demands the entire surplus in the last round (i.e., at t = n � 1).

Subgame-perfection then predicts that the opponent accepts this extreme deal (see Appendix 1).

Hence, we would expect the �tness of agents in population 1 to converge to unity if n is odd and to

converge to zero if n is even. This tendency is indeed clearly visible in Fig. 5, even for games as long

as 20 rounds.

Most agreements also occur just before the deadline in the long run. Consider for instance the

10-stage game. In the �rst few generations of the evolutionary process, nearly all agreements are

reached quickly (� 97% of all agreements occur in the �rst �ve rounds) and virtually no deals are

delayed until the very last round. However, after 25 generations the mean percentage of last-round
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Figure 5: Evolution of the mean �tness of agents in population 1 in n-stage alternating-o�ers games

without payo� discounting. When the agents in population 1 have the opportunity to make the last

o�er (i.e., when n is odd) they receive the largest share of the surplus in the long run. Exactly the

opposite happens when agents in population 2 are the last in turn (i.e., when n is even).

agreements has already increased to 42 � 16%. After 500 generations this percentage has increased

even further to 80� 3%. Interestingly, this deadline-approaching behavior has also been observed in

bargaining experiments with humans [16].

Figure 5 furthermore shows that the standard deviations in the mean �tness increase in the long

run for short games (i.e., small n). This e�ect has been observed before in Section 4.1, where it

was attributed to unstable population dynamics in the vicinity of the SPE. For multiple-stage games

the mechanism triggering these transients is similar (namely, agents who increase their thresholds for

t = n�1), but the resulting changes in �tness are relatively small when n > 1. Major �tness collapses

as detected in the ultimatum game are for instance not occurring in this case.

Partly, stability increases in multiple-stage games (in comparison with the ultimatum game studied

in Section 4.1) because convergence towards extreme SPE behavior takes longer for larger n (see

Fig. 5). Recall that agents with a non-zero threshold for t = n � 1 can only invade the population

if the SPE is actually reached (see Section 4.1). The computer experiments also show that when the

SPE is reached temporarily more agreements occur in earlier rounds. The timing of the agreements

changes because the proposers in the last round decrease their o�ers and thresholds in earlier rounds

in order to avoid the occurrence of disagreements in the very last round. In the ultimatum game the

proposers do not have this opportunity. This leaves them with just one tactic to avoid the occurrence

of disagreements (i.e., rapidly increasing the amount they o�er to their opponents).

4.3 0 < � < 1

Figure 6 shows that the �tnesses of the two populations converge very rapidly to a steady state

if � = 0:6. Game theory predicts that the agents agree immediately on a deal if the agents are

under time pressure (see Appendix 1). The computational experiments indeed show that the agents

hasten to reach a deal. Initially, 51 � 4% of all agreements are reached in the �rst round. After 25
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Figure 6: Evolution of the mean �tness for both populations in the 10-stage alternating-o�ers game

(with � = 0:6). A very rapid convergence of the �tnesses is visible. For comparison, the SPE

partitioning for n = 10 is also indicated.

generations this percentage has already increased to 91� 8%. After 500 generations this percentage

is essentially unchanged (91� 5%). Note that we encountered exactly the opposite behavior (namely,

the postponement of agreements) for � = 1 in Section 4.2.

This suggests that the speed of convergence is a�ected signi�cantly by the initialization procedure

of the agents' strategies at the beginning of each EA run. As noted before in Section 4.2, the random

initialization of the chromosomes gives rise to many agreements in the �rst few rounds. The initial

timing of agreements is therefore already very close to the optimal situation for � < 1 (all Pareto-

e�cient deals are made in the �rst round). Hence, the evolving agents quickly �ne-tune their strategies

and after a short period of time almost all agreements are indeed reached immediately. On the other

hand, if � = 1 the random initialization leads to a far from optimal timing (because initially almost

no agreements are reached in the last round). The evolving system therefore converges slowly to a

steady state [compare the slow transient in Fig. 5 (for n = 10) with the rapid convergence in Fig. 6].

The SPE partitioning of the surplus is also indicated in Fig. 6 for comparison. Note that the

SPE prediction accurately predicts the share of the surplus that agents in population 1 receive in

our experiments. The evolving agents in population 2 receive less than predicted by game theory,

however. The total share divided by the evolving agents is smaller than unity in the experiments,

because some agreements (� 10% of all deals) are not reached in the �rst round. Taking this e�ect

into account, it becomes clear from Fig. 6 that the agents in population 1 receive a relatively large

share of the (partially discounted) surplus compared to the agents in population 2.

We study the partitioning of the surplus for a wider range of discount factors in Figs. 7 and 8. These

�gures again show that agents in population 1 receive more than game theory predicts (see Fig. 7),

whereas agents in population 2 negotiate relatively poor deals (see Fig. 8). This e�ect is particularly

clear in case of strong time preferences (for instance when � � 0:3). An explanation might be that

rejecting o�ers in the �rst round has a strong negative e�ect on the �tness of agents in population 2 if �

is small. Agents in population 2 will therefore strongly prefer to reach an agreement in the �rst round.
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Figure 7: Performance of agents in population 1 as a function of the discount factor. Game theo-

retic predictions for the 10-stage game and the in�nite-horizon game are also shown for comparison.

Notice the signi�cant deviations from these predictions if the agents have either weak or strong time

preferences.
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Figure 8: Performance of agents in population 2 as a function of the discount factor. Notice that the

agents in population 2 negotiate poor deals [relative to game-theoretic (SPE) predictions].
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This tendency can subsequently be exploited by agents in population 1 by demanding a relatively

large share of the surplus (as in the ultimatum game discussed in Section 4.1). This hypothesis is

supported by the experimental observation that almost all agreements are reached immediately (after

500 generations, more than 98% of all agreements are reached in the �rst round for � = 0:3). This

means that in almost all cases a very short game is played (only one stage).

Figures 7 and 8 furthermore show that in case of weak time pressure (for instance when � � 0:9) the

bargaining outcome deviates signi�cantly from the SPE prediction for n = 10. Figure 8 for instance

shows that the agents in population 2 do not fully exploit their last-mover advantage under these

circumstances (their mean �tness is far below the SPE level). This e�ect can be explained by the

boundedly-rational behavior of the adaptive agents. These agents do not reason backwards from the

deadline (as is done in game theory, see Appendix 1), but focus on the �rst few rounds, where expected

utility is relatively high. This means that only few agreements are reached in later rounds. As a result,

the deadline of the game is not perceived accurately by the evolving agents.

In fact, the experimental results agree much better with SPE predictions for longer games. Almost

perfect agreement is for instance obtained (for large �) if we compare the experimental results with

SPE predictions for a 30-stage game. This lends more support to Rubinstein's analysis of an in�nite-

horizon game: in reality an in�nite game length may be a good modeling assumption if the agents

do not perceive the �nite deadline of the game. Figures 7 and 8 indeed show that the experimental

outcome is predicted quite well (for � up to 0.9) by theoretical predictions for an in�nite-horizon game.

5. Alternative Evolutionary Models

The speci�c choice of settings for an evolutionary model can a�ect the obtained results substantially.

A telling example has recently been given for the evolutionary prisoner's dilemma [21]. In particular, it

was shown in [21] that the course of evolution in a multi-agent system can be very sensitive to modeling

choices like (i) whether successive generations of agents overlap or not, or (ii) the selection intensity

in the population. The inuence of these two factors will therefore be investigated in Sections 5.1

and 5.2. In addition, we evaluate the inuence of the population size in Section 5.3. Section 5.4

investigates an alternative selection model, in which selection is probabilistic instead of deterministic.

Finally, Section 5.5 investigates a model in which the agents can adapt their own mutation step-sizes.

Figure 9 summarizes results for the model variants considered in the remainder of this section. This

�gure shows the long-term �tness of agents in population 1 (measured after the initial transients have

died out). Predictions of the default selection scheme [the (100 + 100)-ES model, see Table 1] are

indicated with a solid line.

5.1 Overlapping vs. Nonoverlapping Generations Models

As we mentioned before in Section 3, the (�+�)-ES selection scheme is an \overlapping generations"

model in the sense that well-performing agents can survive for extended periods of time. As an

alternative, we also consider a \nonoverlapping generations" selection scheme proposed in the �eld

of ES. In this (�; �)-ES model [1] � parents produce � > � o�spring. All parents are discarded after

one period and only the � best o�spring are transferred to the next generation. Unless indicated

otherwise, we set � equal to 2� = 200 in this model. Hence, the number of agents competing for

survival is the same as in the experiments with the default (100 + 100)-ES model.

Figure 9 shows that predictions of the (100; 200)-ES model di�er signi�cantly from those obtained

with a (100+ 100)-ES scheme. Di�erences become especially large for � ! 0 and � ! 1. Under these

circumstances, the agents basically play the ultimatum game: either in the �rst round (when � ! 0)

or in the last round (when � ! 1).

As an example, we investigate the limiting case � ! 0 in more detail. In this situation, game theory

predicts (see Appendix 1) that the agents in population 1 demand the whole bargaining surplus in

the �rst round (i.e., at t = 0). This behavior is not observed in the evolutionary experiments: the

o�er gene o(t = 0) of the agents in population 1 evolves to a value of 0:90� 0:04.9 The threshold gene

9The standard deviation is a measure of how widely the o�ers (at t = 0) of the agents in population 1 are dispersed



14

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

m
ea

n 
fi

tn
es

s 
po

pu
la

tio
n 

1 
(o

ve
r 

25
 r

un
s)

discount factor

default: (100 + 100)-ES
(100 , 200)-ES
(100 +  50)-ES

(100 + 150)-ES
(100 + 100)-EP

self-adaptive mutation model

Figure 9: Long-term �tness of agents in population 1 as predicted by di�erent evolutionary models

(for n = 10). Apart from the (100; 200)-ES model, all models yield rather similar results. Note that

deviations for the (100; 200)-ES model become especially large for � ! 0 and � ! 1. (For clarity,

standard deviations are not shown.)

�(t = 0) of the agents in population 2 evolves to a value close to zero (� 0:01), in good agreement

with the SPE prediction that these responding agents accept all proposals (see Appendix 1). As a

consequence, the mean �tness of the agents in population 1 [which is � 0:87 for � ! 0, see Fig. 9] is

approximately equal to the mean o�er they submit.

The deviation from SPE behavior by the agents in population 1 is speci�c for the nonoverlapping

generations model under consideration here. In such a model, only the o�spring are transferred to

the next generation. Because all o�spring have just been mutated, a signi�cant spread occurs in the

proposals submitted by these agents. In ultimatum game situations, the mean o�er of the proposing

agents is therefore signi�cantly lower than the extreme o�er of 1.0 predicted by game theory. As a

result, the �tness of the proposing agents converges to a level below unity.10

Based on the above discussion one may expect that the agents' behavior agrees better with SPE

predictions if their mutation step sizes �i become smaller. If we set �i equal to 0.025 (in the default

model �i = 0:1, see Table 1), o(t = 0) converges to a value of 0:95 � 0:01. As a consequence, the

�tness of the agents in population 1 increases to � 0:95. This value is already much closer to the SPE

prediction of 1.0.

Increasing the selection intensity should have a similar e�ect, because selection discards inferior

o�spring (such as o�spring in population 1 submitting low o�ers). If we increase the selection intensity

by setting � equal to 4� (instead of 2�), o(t = 0) converges to a value of 0:96� 0:02. This leads to a

long-term �tness of � 0:93 for the agents in population 1. When �=� becomes large (for instance when

�=� = 7, a common setting for the (�; �)-ES model [1]) the evolving system can approach the SPE.

from the mean.
10Convergence to an equilibrium which is not subgame-perfect in the ultimatum game has been reported before in

the �eld of evolutionary game theory [7]. In [7] the evolution of strategies for the ultimatum game is governed by a

nonoverlapping generations variant of the replicator dynamics [2, Ch. 9].
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Under these circumstances relaxation oscillations occur, for reasons pointed out before in Section 4.1.

Note that the assumption that successive generations of agents do not overlap is essential to explain

the convergence to equilibria which are not subgame-perfect in the ultimatum game. In overlapping

generations models only well-performing o�spring can enter the populations of proposers and respon-

ders.11 This means that o�spring submitting low o�ers will not gain access to the next generation.

The same holds for o�spring with a relatively high threshold. These will not gain access to the popu-

lation of responders (except when the SPE is actually reached), because such agents cause relatively

many disagreements and therefore earn a lower payo� than their parents.

5.2 Inuence Selection Intensity

We now further investigate the (default) (�+�)-ES model. Figure 9 shows that decreasing the selection

intensity in this model, by setting � equal to 50, does not a�ect the mean results (in comparison with

the default model in which � = 100, see Table 1). The same conclusion holds if we increase the

selection intensity by setting � equal to 150. The mean results in Fig. 9 may, however, mask sudden

collapses in �tness when � ! 0, as we noticed before in Section 4.1. Individual experiments for � ! 0

show that these collapses occur more frequently if � is increased to 150. Unstable behavior disappears

almost completely, on the other hand, if � = 50. Inspection of individual runs shows that major

collapses in �tness only occur if all agents adopt subgame-perfect behavior (see Fig. 4). This explains

the impact of the selection intensity on stability: a population is more likely to converge to a uniform

state if the selection intensity becomes large.

5.3 Inuence Population Size

The above discussion suggests that evolutionary stability might deteriorate for � ! 0 in undersized

populations, because in this case genetic diversity is rapidly lost as a result of natural selection.

This e�ect is indeed observed in additional experiments. Small populations converge more quickly

toward SPE behavior initially, but are very unstable in the long run. The �tnesses of the coevolving

populations even start to oscillate with a period as short as 25 generations if the population size is

reduced to 25 (and � ! 0). This oscillation period becomes much larger (� 5000 generations) if the

population size is increased to 200. Relaxation oscillations are therefore most likely to occur in small

populations of adaptive agents.

5.4 Deterministic vs. Probabilistic Selection

One may argue that selection in economic markets is often of a probabilistic nature. The assumption

in deterministic models that the worst agents are never selected (\imitated") can for instance be con-

sidered as an idealization: in reality imperfect selection occurs in actual market situations. Selection

of the agents may also be based on a limited number of comparisons with other competitors. Such a

\tournament setting" introduces additional uncertainty in the selection process. Inferior agents can

for instance survive if they are paired with even weaker competitors, whereas relatively �t agents can

be eliminated in a tournament with top-performers.

We investigate the inuence of these stochastic processes by considering a probabilistic variant of

the (�+�)-ES selection scheme. This alternative scheme has been proposed in the �eld of evolutionary

programming (EP) [1, pp. 96-99]. In this model, denoted here as (�+ �)-EP selection, the parental

and o�spring populations have an equal size � (i.e., � = �). Each agent is evaluated against q agents

from the union of parents and o�spring. These opponents are selected at random (with replacement).

A typical setting for the tournament size q is 10 (or smaller) [1, p. 102]. If an agent's �tness is larger

than (or equal to) his opponent's �tness, he is attributed a \win". The � agents with the largest

number of wins are transferred to the next generation. It has been shown in [1, p. 96-99] that this

tournament scheme selects the same agents as the deterministic (�+ �)-ES if q !1.

Figure 9 shows that predictions for the (100+ 100)-EP model (with q = 10) are in �rst approxima-

tion rather similar to results obtained with the deterministic (100+ 100)-ES model. Slight deviations

11Assuming that selection is strictly deterministic. See Section 5.4 for a further discussion.
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occur, however, for � ! 0 and � ! 1. To explain these di�erences, we study the situation in which

� ! 0 in more detail. We observed earlier in Section 4.1 that under these (ultimatum game) condi-

tions the evolving system can actually reach the SPE in individual runs. This state was subsequently

undermined by responding agents with nonzero thresholds. In case of probabilistic selection this desta-

bilizing process might actually start before the SPE is reached. An additional e�ect of probabilistic

selection is, however, that the selective pressure decreases. This has a stabilizing e�ect, as we pointed

out in Section 5.2.

Inspection of individual runs (for � ! 0) shows that the latter (stabilizing) e�ect is dominant. The

evolving system converges to a rather stable state which is close to, but removed from, the SPE. We

can therefore conclude that relaxation oscillations are less likely to occur when selection is stochastic

instead of deterministic.

More extreme cases (viz., q = 2 or q = 100) have also been studied in additional experiments.

As expected, results for q = 100 are very similar to predictions of the deterministic (100 + 100)-ES.

If q = 2, signi�cant deviations from SPE predictions occur (especially if � ! 0 or � ! 1). The

mean long-term �tness of the agents in population 1 is for instance equal to 0:83 � 0:01 for � ! 0,

signi�cantly below the SPE prediction of 1.0. Inferior agents in population 1 remain in the population

with a relatively large probability in this case. This leads to a spread in the o�ers submitted by these

agents in ultimatum game situations. Their mean o�er therefore converges to a value below the SPE

level (follow the similar discussion in Section 5.1).

5.5 Fixed vs. Self-Adaptive Mutation Step-Sizes

The default mutation model studied in this paper, see Section 3.4, sets the standard deviations of all

agents to a common value. This value then remains constant during the course of evolution. A more

natural approach would be to enable individual agents to control the magnitude of the mutations

in their genetic code. An elegant mutation model which can be used for this purpose has been

described in [1, pp. 71-73]. This model allows an evolutionary self-adaptation of both the genes and

the corresponding standard deviations at the same time. More formally, an agent consists of object

variables [x0; :::; xl�1] and strategy parameters [�0; :::; �l�1] in this model.

The mutation operator �rst updates an agent's strategy parameters �i into �
0

i-values in the following

way:

�
0

i := �iexp[�
0

N(0; 1) + �Ni(0; 1)]; (5.1)

where �
0 and � are the so-called \global" and \individual" learning rates. We use commonly recom-

mended settings for these parameters.12 After the strategy parameters have been modi�ed, the object

variables are mutated: x0i := xi + �
0

iNi(0; 1).

The initial standard deviations �i(0) are set to a value of 0.1 (the same value as in the default

mutation model) to close this mutation model. The particular value chosen for �i(0) is not expected

to be crucial, because the self-adaptation process rapidly scales the step sizes into the proper range.

To prevent complete convergence of the population, we force all standard deviations to remain larger

than a small value "� = 0:025 [1, pp. 72{73]. Note that this self-adaptive model reduces to the default

mutation model with �xed standard deviations if we set the learning rates � 0 and � equal to zero.

We observe in the experiments with this self-adaptive mutation model that the agents in general

reduce their mutation step-sizes in the course of evolution (i.e., their search in the strategy space

becomes more local instead of global). Figure 9 nevertheless shows that the prediction of the mean

�tness is very similar to the prediction of the model without step-size control. This indicates that the

(�+ �)-ES selection scheme successfully discards less successful mutants in the mutation model with

constant step-sizes.

We demonstrated in Section 5.1 that the proliferation of inferior o�spring leads to signi�cant devi-

ations from SPE behavior in a (�; �)-ES model. It can be expected that these discrepancies become

12Namely, � 0 = (
p
2l)�1 and � = (

p
2
p
l)�1 [1, p. 72].
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smaller in such a model if the agents are able to reduce the magnitude of the mutations and produce

more similar o�spring. This is indeed the case. If we use a (100; 200)-ES and let � ! 0, the mean

long-term �tness of the agents in population 1 is � 0:93 (compared to � 0:87 in the experiments with

�xed mutation step-sizes, see Section 5.1). This value is indeed in better agreement with the SPE

prediction of 1.0.

6. Model with Asymmetric Time Preferences

We now continue our experiments with the default evolutionary model speci�ed in Table 1. Figure 10

shows the long-term performance of the evolving agents in case of asymmetric time preferences. For

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

m
ea

n 
fi

tn
es

s 
(o

ve
r 

25
 r

un
s)

discount factor 2 (discount factor 1 = 0.6)

EA (gen. 500): pop. 1
EA (gen. 500): pop. 2
SPE (n = 10): pop. 1
SPE (n = 10): pop. 2

Figure 10: Long-term �tnesses of agents in population 1 and population 2 in case of asymmetric time

preferences. The discount factor for agents in population 2 (�2) is varied between zero and unity in

this �gure. Agents in population 1 have a �xed discount factor (�1 = 0:6). Notice that agents in

population 2 do not fully exploit their bargaining power (in particular when �2 > �1).

comparison, the game-theoretic predictions are shown as well.13 All agents in population 1 have a

�xed discount factor �1 (equal to 0.6) while the discount factor of agents in population 2 (�2) is varied

between zero and unity. The �tnesses of the agents converge very rapidly (within 50-150 generations)

to the values reported in Fig. 10. Note that the performance of the agents in population 2 is not

as good as predicted by game theory when �2 > �1, whereas the agents in population 1 actually do

better. This e�ect becomes especially clear if �2 ! 1. We will study this case in more detail below.

When �2 ! 1, the agents in population 2 experience no time pressure to reach an early agreement.

Time pressure is, on the other hand, relatively large for the agents in population 1 (their payo�

dimishes proportional to 0:6t as a function of the round number t). The agents in population 1

thus become more and more (payo�) indi�erent as the bargaining game proceeds. This reduces the

evolutionary pressure against agents in population 1 with large values for their threshold and o�er

genes (for large t). In the experiments we even observe that these genes evolve to random values (in

the unit interval) for t � 4.

13The SPE partitioning for an in�nite-horizon game is not indicated in Fig. 10. Di�erences with the prediction for

the 10-stage game are very small (at most of the order of 0.01 for �2 � 0:85).
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Agents in population 2 who try to exploit their bargaining power by delaying agreements will

therefore encounter opponents with random strategies in later rounds. This deprives these agents

partly of their bargaining power: they cannot force their indi�erent opponents to adjust their behavior

in later rounds. In fact, exactly the opposite occurs in the evolutionary system. In an attempt to

avoid the occurrence of disagreements, the agents in population 2 reduce their o�ers and thresholds

in later rounds.14

Experiments with the alternative models discussed in Section 5 lead to similar results for �2 > �1.

Hence, the deviations from game-theoretic predictions in the computational experiments cannot be

attributed to the speci�c settings of the (100 + 100)-ES (which was used to generate Fig. 10).

7. Model with a Risk of Breakdown

Our bargaining model with stochastic breakdown generates exactly the same game-theoretic solutions

as the model studied in Section 4 if the continuation probability p is set equal to � (see Appendix 1). It

is therefore instructive to compare the experimental results in Fig. 11 with those reported previously in

Figs. 7 and 8. This comparison shows that the long-term behavior of the evolving agents is di�erent for
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Figure 11: Performance of agents in population 1 and population 2 as a function of the continuation

probability p. Note that the experimental trends are predicted very accurately by game theory if p is

smaller than 0.7. Deviations become signi�cant, however, for larger continuation probabilities.

small values of p and �. Notice for instance that the experimental trends in Fig. 11 correspond rather

well with game-theoretic predictions for p < 0:7, whereas we observed more signi�cant deviations for

� < 0:7 in Figs. 7 and 8. This improved agreement between experiment and theory is due to the

stochastic nature of bargaining with a risk of breakdown. The additional randomization leads to a

relatively large diversity of strategies in the early stages of evolution. A premature convergence to

\ultimatum game" behavior (as we observed in Figs. 7 and 8 for small values of �) does therefore not

occur for small values of p. The signi�cant deviations from SPE predictions for large � (see Figs. 7

and 8) do also occur in a model with breakdown as p becomes large (see Fig. 11).

14�(t = 0) evolves for instance to 0:78�0:14 in population 2, whereas �(t = 4) = 0:64�0:26 and �(t = 8) = 0:32�0:25 in
the long run. The o�er genes evolve to values of o(t = 1) = 0:90�0:09, o(t = 5) = 0:76�0:32, and o(t = 9) = 0:55�0:31.
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Additional experiments with alternative overlapping generations models (e.g., with a di�erent se-

lection intensity, or with a self-adaptive mutation model) lead to very similar results as those reported

in Fig. 11. Simulations with the nonoverlapping generations (100; 200)-ES model show, on the other

hand, that signi�cant deviations from the SPE predictions occur if p is either close to zero or close

to unity. This is not surprising, however, because letting p ! 0 in the model with breakdown yields

exactly the same bargaining model (viz., the ultimatum game) as by letting � ! 0 in the model with

time preferences. In a similar fashion we can identify p ! 1 with � ! 1. We already explained

in Section 5.1 why the evolutionary system can converge to equilibria that are not subgame-perfect

under these extreme conditions.

8. Model with Risk Averse Agents

Figure 12 shows the e�ect of risk aversiveness on the respective shares received in a 10-stage game with

breakdown (with p = 0:6). In Fig. 12 the risk coe�cient of one of the agents is varied between zero
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Figure 12: Partitioning of the surplus as a function of the degree of risk aversiveness of both agents

(for n = 10 and p = 0:6). For each curve the risk coe�cient of one of the agents is varied between

0.1 and 1.0, whereas his opponent remains risk neutral. Notice that an agent's share increases if

his opponent becomes more risk averse. Also, this (positive or negative) e�ect is not equal for both

agents. Notice that the experimental results closely follow the trends predicted by game theory. (EA

statistics obtained after 500 generations.)

and unity, while the other agent remains risk neutral (or, equivalent, whose risk coe�cient remains

equal to unity). The solid line in Fig. 12 for instance indicates that agent 1 receives a smaller share of

the surplus if he becomes more risk averse (while agent 2 remains risk neutral). On the other hand,

agent 1's share increases if agent 2 becomes more risk averse (while agent 1 remains risk neutral).

This e�ect of risk aversion has been noticed before in literature on bargaining [11].

We also like to point out another, quite subtle, e�ect. Figure 12 shows that the (SPE) share received

by agent 1 increases from 0.625 to � 1.0 if the risk coe�cient of agent 2 decreases from 1.0 to 0.1. On

the other hand, agent 1's share only slightly decreases (from 0.625 to � 0.4) if his own risk coe�cient

is reduced from 1.0 to 0.1. Exactly the opposite e�ect is visible for agent 2. This indicates that if
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agent 1 becomes more risk averse, this has a relatively small e�ect on his share, whereas if agent 2

becomes more risk averse, this agent rapidly loses share to his opponent. Figure 12 shows that this

subtle e�ect is also detected by our evolutionary system. The trends predicted by game theory are in

fact followed very closely for a wide range of risk coe�cients.

These results indicate that it is feasible to investigate the inuence of an agent's attitudes toward

risk in an evolutionary setting. The evolutionary system correctly predicts that an agent's share of the

bargaining surplus diminishes if he becomes more risk averse. We also identi�ed a more subtle second-

order e�ect, namely that the impact of risk aversion on an agent's negotiated share is depending on

the bargaining order (i.e., whether the agent can start the negotiations or not).

9. Conclusions

We study equilibrium selection in evolutionary bargaining models. Computational experiments are

performed using evolutionary algorithms (EAs). Negotiations between the adaptive agents are gov-

erned by a �nite-horizon version of Rubinstein's well-known \alternating-o�ers" protocol. Besides Ru-

binstein's standard model (with exponential payo� discounting) an alternative model with stochastic

breakdown in negotiations is examined. Using this model variant, the inuence of risk aversion on the

behavior of adaptive agents is assessed.

This paper shows that game-theoretic approaches are very useful to interpret equilibrium-selecting

behavior in evolutionary systems of adaptive bargaining agents. The adaptive agents are boundedly

rational because they only experience the pro�t of their interactions with other agents. Nevertheless,

they display behavior that is surprisingly \rational" and fully informed in many instances. Agreement

between theory and experiment is especially good when the agents experience an intermediate time

pressure.

In extreme situations (i.e., when time pressure becomes either extremely strong or negligible) more

signi�cant deviations from game-theoretic predictions emerge. We demonstrate that the speci�c evo-

lutionary model governing agent selection is an important factor in this case. In \overlapping gener-

ations" models, the evolutionary system rapidly converges to subgame-perfect behavior (but highly

nonlinear transients can occur in this case). In \nonoverlapping generations" models, on the other

hand, convergence to equilibria which are not subgame-perfect is observed.

Two other experimental observations should be mentioned here. First, the �nite horizon of the

negotiations is not always fully exploited by the last agent in turn (even if time pressure is rather

weak). In fact, the boundedly-rational agents often act as if the length of the game is actually much

longer. This lends more support to the \in�nite-horizon" assumption frequently employed in game-

theoretic work. This approximation may yield surprisingly accurate results in evolutionary systems

when the agents do not perceive the deadline of the negotiations. Second, we observe (and explain)

discrepancies between theory and experiment if the agents are asymmetric (i.e., when they discount

the bargaining surplus at di�erent rates).

More in general, this work presents a systematic validation of evolutionary and computational

techniques in the �eld of bargaining. As a promising line of research we are currently studying

adaptive agents with more complex bargaining strategies. Another important aspect of electronic

trading, negotiations over multiple issues, is discussed in a companion paper [8].

1. Alternating-Offers Games: Analysis

Subgame-perfect equilibrium strategies for the �nite-horizon models considered in Sections 4-8 are

derived below by applying the following basic principle [2, pp. 199{200]:

In (subgame-perfect) equilibrium, a proposer always plans to o�er the responder an amount

that will make the responder indi�erent between accepting and refusing. In equilibrium,

the responder always plans to accept such an o�er or better, and to refuse anything worse.

This principle will be used �rst to analyse the one-stage ultimatum game. Subgame-perfect equilibrium

strategies for multiple-stage games (with complete information) are then derived by using a backward-
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induction approach [22, Ch. 1]. It is assumed in this appendix (as has been done throughout this paper)

that the size of the bargaining surplus is equal to unity at t = 0.

The ultimatum game (Section 4.1) Applying the above principle to the ultimatum game, we im-

mediately �nd that there is a unique SPE in which the proposer (i.e., agent 1) demands 1, and the

responder (i.e., agent 2) accepts this o�er (and therefore receives nothing). Note that there does not

exist a SPE in which agent 2 rejects this extreme proposal. A clear justi�cation of this (at �rst sight

somewhat counterintuitive) result can be given by analyzing a �nite version of the ultimatum game,

in which o�ers should be made in multiples of a smallest monetary unit � [2, pp. 200{201]. In this

game there actually exist two SPEs (viz., a SPE in which agent 1 demands 1 and agent 2 accepts all

proposals, and a second SPE in which agent 1 demands 1� � and agent 2 accepts all demands except

1). However, these two solutions converge to the single SPE of the limiting game with continuous

o�ers if � becomes very small.

Multiple-stage games (Section 4.2) Both agents are indi�erent between accepting a deal sooner or

later in this model. Hence, the last agent in turn has the opportunity to reject all proposals from his

opponent and demand the entire surplus in the last round (which the other agent then accepts). If

the maximum number of rounds n is odd, agent 1 will therefore receive the entire surplus, whereas

agent 2 receives all in case n is even.

Model with time preferences (Sections 4.3 through 6) This game has a unique SPE which can be

calculated as follows. If the maximum number of rounds n is even, agent 2 will be the proposer in the

last round (i.e., at t = n� 1). Agent 2 will then demand the whole surplus (of size 1 at the beginning

of play, but only of size �
n�1
2 in the last round) and agent 1 will receive nothing. This division of

the surplus would yield agent 2 a payo� which is equal to �
n�1
2 . In equilibrium, at t = n� 2 agent 1

should propose agent 2 a payo�-equivalent deal. This implies that agent 1 requests a fraction 1� �2

at t = n � 2. This division of the surplus would yield agent 1 a payo� equal to �
n�2
1 (1 � �2). This

procedure is then repeated until the beginning of the game is reached (at t = 0). The same line of

reasoning holds if the number of rounds is odd (simply switch the roles of agent 1 and agent 2). In

equilibrium, agent 1 then demands a share of x�1(n) in the �rst round and agent 2 immediately accepts

this proposal [receiving x
�

2(n) = 1� x
�

1(n)].

The SPE partitioning (x�1; x
�

2) as a function of the game length is listed in Table 2. To be expected,

this partitioning of the surplus converges to the partitioning derived by Rubinstein for the in�nite-

horizon game [17]. In Rubinstein's model agent 1 receives 1��2
1��1�2

and agent 2 receives the remaining

part of the surplus.

n SPE share of agent 1 (x�1) SPE share of agent 2 (x�2)

1 1 0

2 1� �2 �2

3 1� �2(1� �1) �2(1� �1)

4 1� �2(1� �1(1� �2)) �2(1� �1(1� �2))

5 1� �2(1� �1(1� �2(1� �1))) �2(1� �1(1� �2(1� �1)))

6 1� �2(1� �1(1� �2(1� �1(1� �2)))) �2(1� �1(1� �2(1� �1(1� �2))))

... ... ...

1 (1� �2)=(1� �1�2) �2(1� �1)=(1� �1�2)

Table 2: Subgame-perfect partitioning of the surplus as a function of the maximum number of stages n

of the alternating-o�ers game. When the game becomes very long, i.e., when n!1, the partitioning

of the surplus converges to the partitioning derived by Rubinstein for the in�nite-horizon game [17].



22

Model with a risk of breakdown (Section 7) For risk neutral agents the expected utility of agent i

at time t is equal to xip
t in this model. If we compare this with the payo� agent i receives in the

model with time preferences (xi�
t
i , see above), it becomes straightforward to identify the unique SPE

strategies for both agents. In particular, the SPE partitioning is given by Table 2 if we replace �1

and �2 by the continuation probability p. According to Table 2, agent 1 receives 1
1+p

(and agent 2

the remainder) if n becomes very large. This partitioning is in agreement with predictions for the

in�nite-horizon game with breakdown [11, pp. 74{77]. Finally, note that the agents agree on an equal

split if p! 1 in the in�nite-horizon model.

Model with risk averse agents (Section 8) In this case, agent i's payo� at time t is equal to ui(xi)p
t,

where ui is a concave utility function modeling agent i's attitudes towards risk. In order to calculate

the agents' SPE strategies, we repeat the earlier analysis based upon backward induction. The �nal

result is that the SPE partitioning (x�1; x
�

2) is given by Table 2 if we replace �1 with u
�1
1 (p) and �2

with u
�1
2 (p).15 Agent 1 therefore receives a fraction of

1�u
�1

2
(p)

1�u
�1

1
(p)u

�1

2
(p)

of the surplus (and agent 2

the remainder) if n becomes very large (in agreement with [11, pp. 77{80]). The corresponding

partitioning in terms of utility is given by the pair (u1(x
�

1); u2(x
�

2)).

2. The Evolutionary Algorithm

The pseudo-code of the evolutionary algorithm is given in Table 3. The computer program is written

in the Java software language (version 1.2.2). Parameter settings for this algorithm are taken from

Table 1. Variants of this algorithm [e.g., (�; �) selection instead of (�+�) selection] can be implemented

easily.

15The inverse function of ui is denoted as u
�1

i
.
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1 begin program MAIN

2 generation = 0

3 Generate two populations (pops.) of � = 100 agents

parents
i
� list of agents in pop. i 2 f1; 2g

Initialize the chromosome of each agent in parents
i for i = 1,2

4 Calculate �tness parents

for i = 1,2 do calculateFitness(parentsi)

5 Report results

6 Start main iteration loop

7 generation := generation + 1

8 Generate o�spring

offspring
i
� list of o�spring for pop. i 2 f1; 2g

for i = 1,2 do generateO�spring(parentsi)

9 Calculate �tness o�spring

for i = 1,2 do calculateFitness(offspringi)

10 Collect survivors (parents for the next generation)

for i = 1,2 do parents
i := selSurvivors(parentsi,offspringi)

11 Recalculate �tness parents (context has changed)

for i = 1,2 do calculateFitness(parentsi)

12 Report results

13 Repeat 7 through 12 until the maximum number of generations is reached

14 end program MAIN

procedure calculateFitness(agents)

1 Select an agent from agents

2 Select opponents (from the other pop.)

if agent 2 fparents1,offspring1g context := parents
2,

else context := parents
1

Select subset of 25 opponents from context

3 Play bargaining game against these opponents

4 Fitness agent is mean utility obtained in these 25 games

5 Repeat 1-4 for all agents in agents

procedure generateO�spring(parentsi)

1 Select parent from parents
i

2 Form o�spring by mutating this parent

3 Repeat 1 and 2 until � = 100 o�spring have been formed

4 Gather all o�spring in list offspringi

procedure selSurvivors(parents,offspring)

1 Return � �ttest agents from union of parents and offspring

Table 3: Pseudo-code for the evolutionary algorithm. Model settings are the same as in Table 1.

Names for populations of agents are indicated in italics.
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