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Abstract 

We study a simple overlapping generations economy as an adaptive learning system. The 

learning is via a so-called genetic algorithm process. We first investigate performances of Holland’s 

standard GA (SGA), Arifovic’s augmented GA (AGA), and Birchenhall’s selective transfer GA (STGA), 

Bullard and Duffy (BDGA) as a model of population learning. In addition, we also investigate these 

learning algorithms variant. Second, compared to population learning, we also implement the GAs as a 

model of individual learning. An “ecological” approach showing “inter-generation” aspect of the GA to 

learning problems is therefore modelled. Finally, We visit a further approach called “open learning” 

model, about endogenising learning in which agents learn how to learn. The results we obtain confirm 

previous statement that the stability of the Pareto superior equilibrium of the model, i.e. the low inflation 

equilibrium, is robust independent of precise learning variant. Furthermore, we show that individual 

agents with heterogeneous learning schemes eventually coordinate on the equilibrium. We offer the 

interpretation of convergence to the equilibrium.  
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I. Introduction 

 

The last years have been seen an extraordinary flourishing of works studying 

learning and adaptive behaviour in diverse fields. Following the fashion of computer 

innovation, there has been a growing interest in application to economic models of 

learning procedure developed in evolutionary computation tools such as genetic 

algorithms. Accordingly then, the use of computer simulation based on the related 

genetic algorithms (GAs) has largely taken by many researchers, for example, Axelord 

(1987), Marimon, McGrattan and Sargent (1990), Arifovic (1994, 1995a, 1995b), 

Arifovic and Eaton (1995), Dawid (1994, 1996a, 1996b), Birchenhall (1994, 1995), 

Birchenhall et al (1996), Bullard and Duffy (1999), Riechmann (1998, 1999), and 

Vriend (2000). 

Such works may illustrate an uneasy acceptance of the assumption of perfect 

foresight or rational expectation. Under the assumption, the analysis of the single 

representative agent in economic modelling may produce an inconsistency with 

interpretations of results of general equilibrium analysis. The perfect foresight 

hypothesis means not only that the market as a whole is able to establish an equilibrium 

for period t commodity, but also that simultaneously all agents in the market are able to 

predict all prices (or interest rates) that will obtain on the market in the future. Hence, 

agents must have precise models on aggregates of a kind in mind, which permits them 

to do the required computation. However, while the perfect foresight and rational 

expectation assumptions have became a standard feature of general equilibrium 

economic theory, the equilibria that are optimal and determinate will fail in an 

overlapping generation economy.  

In contrast to the study of perfect foresight or rational expectation, the 

evolutionary economic model takes a viewpoint that heterogeneous agents will learn 

adaptively from the population experience or individual experience possibly learn to 

predict correctly. The line of research is to theorise as to how such a learning process 

might work and whether systems with expectations so defined would actually converge 

to rational expectation equilibrium. Sacco (1994) argued that an “ecological approach” 

to modelling of learning problems suggested that the notion of rational expectations is 

not a useful benchmark for the characterization of rational behaviour. However, many 

researchers have argued that perfect foresight and rational expectation seem to be 

reasonable first approximations and can be justified as the eventual outcome of learning 

process which is usually unspecified.  

We study a simple overlapping generation economy as an adaptive learning 

system. There are two populations co-existing in each period of time. A significant 

departure to representative agent in economic modelling is a relaxation of hypothesis of 

perfect foresight or rational expectations. As a result, individual agents in the economy 
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have heterogeneous beliefs concerning realisation of possible outcomes. With the 

existence of heterogeneity in the economy, the actual outcome may or may not be 

identical to any particular individual agent’s expectation. When the actual outcome 

feeds back to individual agents’ beliefs, individual agents learn to adaptively adjust 

their own beliefs. The learning is via a so-called genetic algorithm process.  

The framework proposed here is identical to the one considered in Bullard and 

Duffy (1999)’s work. Two prime questions raised are, firstly the explanation of 

appearance of convergence to the Pareto superior equilibrium, and secondly the 

robustness of convergence to the equilibrium. In addition, we will look at a so-called 

“spiteful behaviour” in which one player might hurt himself in order to hurt the other 

player more. The spiteful behaviour may influence the reproduction process in a 

genetic algorithm learning through its effect on the relative fitness of strategies belief 

(Vriend, 2000).    

We first investigate performances of Holland’s standard GA (SGA), 

Arifovic’s augmented GA (AGA), and Birchenhall’s selective transfer GA (STGA) as a 

model of population learning. We also revisit the version of Bullard and Duffy (1999) 

GA. In addition, we also modify these learning algorithms. The results are compared to 

the results of their originals. Second, compared to population learning, we also 

implement the GAs as a model of individual learning. An “ecological” approach 

showing “inter-generation” aspect of the GA to learning problems is therefore 

modelled. Our work suggests that the stability of the Pareto superior equilibrium of the 

model is robust i.e. independent of the precise algorithm used. 

The first part of the study focus on GA-like learning algorithms. Following 

the context, we visit a further approach called “open learning” model, about 

endogenising learning in which agents learn how to learn. The results we obtain 

re-confirm previous statement that the stability of the Pareto superior equilibrium of the 

model is robust. Furthermore, agents with heterogeneous learning schemes eventually 

learn the rational expectation. However, the approach is tentative, carrying no 

guarantee of satisfaction at current stage.  

II. The overlapping generation economy 

We will begin by studying a special case of the overlapping generation 

economy in which there is a single perishable commodity and a fixed supply of fiat 

money in each period introduced by a government. There are two co-existing 

populations in the economy. Each agent in the population only lives for two periods. 

Time is discrete with integer t ∈ (-∞, ∞). There is no growth of population in which the 

population in each generation is fixed. Therefore, the whole population of agents at any 

date is 2 × N  where N  is the number of agents in each generation. To keep thing simple, 

we will assume that all agents born in generation t are endowed with an amount 1w  of 

the consumption good in the first period of life, and an amount 2w of the consumption 
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good in the second period of life, where 021 >> ww . In the first period of life, agents 

may choose to simply consume their endowments, or they may choose to save a 

fraction of their first period endowment in order to increase consumption in the second 

period of life. Since the commodity is non-storable, agents in this economy can save 

only by trading a portion of their consumption good for fiat money. This is the only 

possibility to transfer wealth from young to old. Fiat money is used for the purpose of 

transfer. Therefore, individual agent born at time t solves the following problem:1 
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where )(tiβ  denotes agent i’s time t forecast of the gross inflation factor between dates 

t and t+1.  

A difference of the overlapping generation economy different from a 

representative agent economy is that at any point in time there are agents of different 

ages. When they are in the first period of life, they have to decide how many they are 

going to consume and savings, according to the endowment 1w  and the forecast of 

gross inflation factor, )(tiβ . When they are old, they only can consume an endowment 

2w , plus the savings that was made when they were young. In addition, a heterogeneity 

is captured by the fact that individual agent has a different belief regarding the 

appropriate value of the unknown parameter )(tiβ . The heterogeneity relaxes the 

assumption of perfect foresight or rational expectation.    

Hence, agents in the economy have heterogeneous beliefs concerning 

realization of possible outcomes, which is an inflation factor. Accordingly then, 

individual agent form expectation with his own belief and forecasts future prices using 

the simple specification: 

),()()]1([ tPtbtPF ii =+       (3) 

where )(tbi  denotes the parameter that agent i  of generation t uses to forecast next 

period’s price. At the first glance, all agents use the same specification for their 

forecasts. However, forecast models are actually made differently across agents 

because individual agents form different expectations. In this study, individual agents’ 

beliefs are encoded and represented by binary strings.2  It is thought of that the 

formations of agents’ expectations are through a building-block structure.3 As it will 

                                                 
1 The model used here is identical to the version of Bullard and Duffy model (1998). See section XII for 

more details or see Bullard and Duffy (1998).  
2 To see how we encode an individual agent’s belief, please see appendix A.  
3  In terms of Goldberg (1989), highly fit, short-defining-length schemata, building blocks, are 

propagated generation to generation by giving exponentially increasing samples to the observed best; 
all this goes in parallel. In our context, the building blocks or schemata just mean agent’s forecast 
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become clear as the genetic algorithm learning proceeds. However, at the moment, we 

may think the building block of that the beliefs are constantly organized and 

reorganized themselves to adapt into the changing environment through the contacts of 

mutual accommodation and mutual rivalry.4 These local interactions enable the agents 

to exploit information and, simultaneously, to explore new information. Once the 

building blocks had been processed, adjusted and refined and thoroughly debugged 

through experience and competition, the agents generally can adapt and build better 

expectations and forecasts. In short, each agent updated not a particular variable but an 

expectation formation they are employing to forecast the inflation factor.  

After individual agents form their own expectations, individual agents can 

make decisions on amounts of consumption and savings, according to their budget 

constraints. In this model, the possibility of borrowing by agents is ruled out. Thus 

when forecasts of the inflation factor are equal to or exceed an upper bound, a highest 

inflation factor that agents would need to forecast in order to achieve a feasible 

equilibrium in the model, agents simply consume their endowments and save nothing.5 

In the model, individual agents’ realised lifetime utilities depend on two 

components: the consumption of first period and the consumption of second period 

which, in turn, in part depends on the realised inflation in the time.6 Therefore, the more 

accurate the agent’s forecast, the higher is the agent’s realised lifetime utility. It will be 

the agent’s interest to approximate the realised value of the unknown parameter b as 

closely as possible.7 The realised inflation depends on all agents’ beliefs. Agent is also 

aware that actual outcome may or may not identical to his own expectation. When the 

actual outcome feeds back to individual agents’ beliefs, individual agents could 

gradually learn to update their own beliefs. Therefore, in the economy, each agent is 

learning how to make a good forecast. When agent is learning to make a forecast, he 

also has to consider as well as be affected by other agents’ learning behaviour in the 

economy. This means that when beliefs are updated as a result of local interactions 

between agents, changes are made to all agents. There is the problem of co-ordination 

between agents. In addition, agent’s belief is time varying, agent may or may not 

change belief over time because a good forecast today does not mean that the forecast 

will be good tomorrow. Therefore agents’ beliefs are environment dependable. 

Certainly, in the evolutionary modelling, agent is adaptive in which he is learning how 

to form expectation and then correctly make forecasts in the time and co-ordinate with 

                                                                                                                                            
models. 

4 In fact, we have to keep in mind that the beliefs not agents are the evolutionary entities. As it will 
become clear below, it could be thought as that individual agents are choosing beliefs in each period of 
time.  

5 Following Bullard and Duffy (1998), the highest inflation factor, λ, equals to 21 / ww . 
6 See section XII.  
7 See section XII. 
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other agents. The particular adaptive learning process we will use in the study is a 

so-called genetic algorithm’s learning scheme. We discuss the genetic algorithm in the 

next section.  

III. Genetic Algorithm learning 

The Genetic Algorithm (GA) is a computational model of evolution, currently 

the most prominent and widely used model of evolution in artificial-life systems. The 

GA uses Darwin's basic principles of natural selection and mutation, and a cross 

breeding to create solutions for problems, in general. Excellent introductions to GAs 

are available elsewhere including Holland’s original (Holland, 1992), Goldberg’s class 

tutorial (Goldberg, 1989) and Michalewicz’s contemporary development. Birchenhall’s 

summary (1995) is a good brief of overview of the GA. Here we consider the GA as an 

economically and socially meaningful model of adaptive learning. We address 

interpretation of the GA.  

III.1 Genetic algorithm as a model of adaptive learning 

Technically speaking, the GA is a search algorithm and complementary tool 

for optimising problems.8  The GA functioned as a highly parallel mathematical 

algorithm that transformed a population of individual mathematical entities, each with 

an associated fitness value, into a new population. The GA operates after the Darwinian 

principles of natural selection and “survival of fittest”, and after naturally occurring 

genetic operations.9 However, because GA attempts to mimic the way species become 

adapted to their respective environmental niches, the research based on the related GAs 

has its implicitly metaphor. Although the role of metaphor in science is ambiguous and 

ubiquitous, its use not only is important but also provides a solution to reconcile 

demarcation and gap inherently caused between sciences. Peirce (1958, p.46) wrote: 

“The higher places in science in the coming years are for those who succeed 

in adapting the methods of one science to the investigation of another. That is 

what the greatest progress of passing generation has consisted in. Darwin 

adapted biology to the methods of Malthus and the economics; Maxwell 

adapted to the theory of gases the methods of the doctrines of chances, and to 

electricity the methods of hydrodynamics. Wundt adapts to psychology the 

method of physiology; Galton adapts to the same study the method of the 

theory of errors; Morgan adapted to history a method from biology; Cournot 

adapted to political economy the calculus of variations.” 

Importantly, metaphor can help generate response leading to novelty and creativity 

                                                 
8 In nature, evolution does not necessary lead to optimum. However, it could be a target.  
9 Spence not Darwin invented the term of “survival of fittest”. Spence also popularised the term of 

“evolution”. In fact, there is a difference between fitness and survival. See Hamilton (1991) for more 
details. Following the basis, Metcalf’s (1998) definition of the fitness of economic institution can be 
adopted. The fitness is defined as the “propensity” to accumulate i.e. better-adapted entity leaves 
increased numbers of offspring. 
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(Davidson, 1980). Laudan (1977) argued that the source of creativity in science is 

through the amalgamation of different underlying references, so that already existing 

but previously separate ideas may fertilize mutually and therefore produce a sum 

greater than their constitute parts and cumulative process. Certainly, we do not have 

enough knowledge in either human behaviour or natural phenomenon. When much 

certain knowledge about real world is lacking, a sort of integrated idea is critical. The 

field of Artificial Intelligence (AI) provided a sort of glue in integrating the ideas from 

underlying disciplines, such as biology, engineering, psychology, computer science, 

economics, etc., by comparing them in terms of their power for solving various types of 

problems. Some modelling techniques have emerged over the last few decades, for 

example, the symbolic approach (rules, case-based reasoning and fuzzy logic), the 

connectionist approach (neural nets), the inductive approach (machine learning) and 

the evolutionary approach (genetic algorithms and genetic programming).  

The evolutionary process of the GA has been adequately used to model the 

adaptive behaviour of a population of bounded rational agents interacting within an 

economic system. The role of metaphor in the interpretation is that the learning process 

of human incorporates imitation, communication and innovation effects analogy to 

reproduction, combination, and mutation in biological evolution. However, there is an 

argument of the interaction between the natural processes of evolution and learning 

(Belew, 1990). Although some biologists discredited the suggestion that behaviours 

acquired through individual experience can be transmitted to future generations, 

learning alters the shape of the search space in which evolution operates and thereby 

provides good evolutionary paths towards sets of co-adapted alleles (Hinton and 

Nowlan, 1987). Particularly, in social and economic sphere a variety of institutional and 

cultural device permit the codification and transmission of acquired experience through 

time (Hodgson, 1993). Therefore, not only will agents seek to alter their behaviour in 

order to improve their chances of success, they actively seek to affect selection 

environments in their favour. Given beliefs are distributed across the economic 

population, evolution of agents’ beliefs in the study can be viewed as a “process of 

distributed learning” (Birchenhall, 1995).10 

The evolutionary thinking and evolutionary tools, like the GA, undoubtedly 

affected many scientific theories, including economic theories. In this respect, such a 

use of metaphor helps understand our behaviour and the world, on the one hand. On the 

other hand, we have to carefully accommodate them in the hope of that we can 

manipulate underlying forces.  

III.2 Learning with genetic operators 

As its name suggests, the GA draws inspiration from the process of natural 

                                                 
10 Birchenhall (1995) suggested that, given technical knowledge is distributed across the economic 

population, technological change can be viewed as a process of distributed learning.  
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selection found in nature. However, the algorithm is not necessarily limited to the study 

of biological phenomena. While the GA is an evolutionary algorithm, it can be applied 

to a wide range of phenomena where learning takes place over time. Nowadays, the 

important role of imitation or rote learning in economic behaviour can be widely 

accepted. On closer look there is a difference between rote learning and imitation 

learning. The former requires a trust in the stability of the environment and a phase of 

"What is good today will be good tomorrow". Maynard Smith’s replicator model (1982) 

presented this kind of learning (Selten, 1991 and Mailath, 1992). The latter is based on 

a discussion of Charles Darwin's notion of natural selection, which Spencer 

encapsulated in the phase "survival of the fittest". Given a factor of randomness 

underlying the process of natural selection, imitation is noise, i.e. biased imitation. 

When imitation is regarded as a process of learning analogy to the evolutionary process 

in nature, a mapping, from the more successful ideas or beliefs being replicated faster to 

the higher fitness being propended to accumulate, is built up. An evolutionary model is 

basically the formalization of such an idea.  

As the same observation that was made in relation to the selection operator of 

the GA where proportionate selection operates on a population is found, the selection 

operator has been seen as the modelling of an imitation effect within a population. 

Recent literatures about learning, especially in the evolutionary game theory, have 

addressed the importance of imitation effect. The selection operator has been a sound 

interpretation within the mainstream of economic learning theory (Dawid, 1996b).11  

There comes to a connection the theory of genetic algorithm leaning to 

evolutionary game theory. The basic argument is in the discussion of property of 

stability of genetic algorithms.12  Riechmann (1998) argues that a concept of 

evolutionary stability will be: “A population is evolutionarily stable if it is resistant 

against changes in its composition.”  13  Standard versions of Goldberg GA (1989) will 

displays an Ljapunov stability of genetic algorithm learning in which in the long run 

social behaviour will remain within a certain corridor of social behavioural patterns 

(Riechmann, 1999). However, a modified version of GA with election operator might 

not show such a property. As it will become clear as we discuss simulation results. 

   Selection alone cannot make exchanging of concepts in the process of 

                                                 
11 There are three important differences between GA and the replicator dynamics. See Dawid (1996b) for 
more details.  
12 Metcafle (1998) argued that in the sense of socio-economic evolution, the dynamic analysis from the 

need to identify the uniform states should be discarded. In particular, it does not strong depend on the 
related notion of equilibrium. When Sargent made a move toward learning agents with the help of 
artificial intelligence and focused on convergence to equilibrium with his resistance against 
relinquishing the neoclassical notion of an equilibrium, it is not strictly compatible with the 
evolutionary principles (Sent, 1998). 

13 While the concept of ESS is based on symmetric games only, games in GA represent a one against the 
rest where a large collection of possibly heterogeneous agents subject to nonpairwise field effects or the 
term “playing the field” used by Friedman (1991).  
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learning. What is appealing intuitively in the GA is that crossover and mutation 

combine to search potentially pregnant new concepts. Dawid (1996b) gave an excellent 

interpretation on these. The whole process in the genetic algorithm makes up the 

building-block structure in which all agents’ beliefs are updated. Having those in mind, 

we actually interpret the evolution of beliefs not agents in the adaptive learning system. 

In that respect, we could think that a belief, like a meme in terms of Dawkins (1989), is 

a replicator that need host in whose brain it is imprinted.14 Being memes, they must be 

something that can carry information, for example a belief, a norm or a theory, which 

can be transmitted to others, and copied. When agents have an idea about realised belief 

in the future, individual agents have not, graven in his brain, an exactly identical copy 

or correct belief, but heterogeneous beliefs. However, there is an essence of belief, 

which is present in the head of every individual who is trying to figure out what the 

realised belief will be.15 The belief like meme can be divided into components, such 

that some believe component X but not component Y and then separate beliefs (memes) 

are caused. For example, in a binary string, a good component could be 1 in the first 

position and the third position. Therefore, when the binary string has the length 4, there 

are four combinations for such a kind of component. With respect to the concept of 

Holland’s schemata (1992), we can imagine that there is a population of N individuals 

with the binary genetic length of L. As a result, there are LM 2=  possible strings 

(beliefs) and LB 3=  possible schema (belief components). Each string is a member of 

LB 3=  defining schema. Each observation on the fitness of a string provides 

information on LM 2= . Sargent (1993, p76) also pointed out that the concept of 

schemata is “equivalence classes of strings”. Members of the equivalence classes are 

instances of the corresponding schemata. 

III.3 Learning level 

Holland’s GA is a model of population learning in that it simultaneously 

involved a parallel search within a set of population composed of many entities in a 

                                                 
14 Dawkins (1989) introduced a term, meme (plural memes), a replicator or a unit of imitation in culture 

and social level. The forces of selection result in memes being propagated by copying and transmission 
processes analogous to biological processes, which move memes in the meme pool, between people, 
and conserve them in time. The memes transmission is subject to continuous mutation and blending. 
The differential "survival value" of memes that results from such selection and transmission processes 
leads to changes in memes frequencies in the cultural pool in time (Plotkin, 1997). The survival value, 
according to Dawkins, results from its great psychological appeal. The existence of survival is, if only 
in the form of a meme with high survival value, or infective power, in the environment provided by 
human culture. It does not mean value for a gene in a gene pool but value for a meme in a meme pool. 

 
15 The essence corresponds to a specific principle of inclusion to be a population. 
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solution landscape. The notion of population or social learning is that there is 

interaction between entities to produce the effect of differential rates of growth and 

survival (Darden and Cain, 1989). In the cognitive science, it is clearly understood that 

the mind obtains much of its power by working in parallel i.e. various parts of the brain 

simultaneously respond to information and it is the combined results of these parallel 

processes that govern the final response. A population is a collection to have members 

assigned to the population on a basis of specific principles of inclusion. What matters 

here is the entities within the population compete in a common environment, subject to 

a same selective pressure (Metcalf, 1998). Clearly in the adaptive learning system, 

agents’ beliefs share some attributes in common but they are also different enough for 

selection to be possible: they are not exactly identical entities. To survive, beliefs, like 

replicators, need hosts in whose brains they are imprinted and accordingly then the 

hosts are identified within the population. It is the replicator’s best interest to maximize 

the fitness of its hosts when the relevant set of selection pressures is specified: all agents 

want to make forecast as close the true value as possible and therefore in return get as 

high the realized utilities as possible.  

When there is learning in an interactive setting, there are two underlying 

processes, a change in the perception of the underlying environments and a change in 

these environments themselves. It could generally be the case that the dynamics of 

learning and the dynamics of the underlying forces as such will interact with each other 

(Vriend, 2000). This implies that learning is on individual level rather than population 

level. The basic concept is that the individual learning is on the basis of reflective 

self-consciousness but population learning bases the experiences of the population. In 

the study, such a concept of individual learning can be modelled under the ecological 

approach in which individual agent has in mind a population of competing beliefs, and 

agent’s experience of forecasting inflation acts as a selection mechanism for these 

beliefs, by assigning an fitness to those beliefs that enhance the forecast performance of 

the agent.  

IV. Learning algorithm variant 

Nowadays, there are many variations of the genetic algorithms. However, 

most of these variations still keep the original principles of Holland’s GA. Three main 

genetic operators, selection, recombination and mutation, constitute such a framework 

of the genetic algorithm learning as the standard genetic algorithm (SGA), augmented 

genetic algorithm (AGA), Bullard and Duffy GA (BDGA), and selective transfer 

genetic algorithm (STGA). Hence, we will discuss the variations of genetic operators 

used in the study, in turn.  

IV.1 Selection operator  

First, in a common form of selection the new population ’P  from the old 

population P is built up element by element, in the manner of a biased roulette wheel. 



 11 

Each new bit-string is selected at random from among the elements of the old 

population P, where the probability selecting a bit-string is proportional to its fitness. 

This selection operator is the same as the process underlying the replicator dynamics.  

Second is the probability selection. This form of selection the new population 
’P is in the manner of a random number generator. Each new bit-string is selected at 

random from among the members of the old population, where the probability selecting 

a bit-string is by the random number generator built in a programming language. It can 

be seen that this selection is quite randomly.     

Third is the Top 50 selection. Each time the top 50% of the old population P 

are selected. The rest of the new population ’P  will be produced by a method called 

randomize() which randomly produces a binary string of length N.  

Fourth is the section selection. The first step is to select the top 50% of the old 

population. The second step is to select members from the third one-fourth part of the 

old population and it will produce 17.5% of the new population. The third step is to 

select members from fourth one-fourth part of the old population and will produce 7.5% 

of the new population. Then, the rest 25% of the new population will be produced by 

the method called randomize(). It is the hope to harmonize members of the new 

population.   

Fifth is the tournament selection. Each time two bit-strings of the old 

population are selected at random and their fitness values are compared. Then the new 

bit-string is selected from the one with the highest fitness. 

The SGA, AGA, and STGA use roulette wheel selection. Bullard and Duffy 

(1999)’s GA used tournament selection.  These selection operator variants are used to 

replace selection operators of SGA, AGA, BDGA, and STGA when we modify these 

learning algorithms.  

IV.2 Crossover operator 

Now, we can make a step to crossover. The simplest way how to do this is to 

choose randomly one crossover point and everything before this point copy from a first 

parent and then everything after a crossover point copy from the second parent. 

Crossover probability says how often will be crossover performed. If there is no 

crossover, offspring is exact copy of parents. If there is a crossover, offspring is made 

from parts of parents' chromosome. If crossover probability is 100%, then all offspring 

is made by crossover. If it is 0%, whole new generation is made from exact copies of 

chromosomes from old population. The current experiments allowed 16 different 

crossover rates, varying from 0.25 to 1.00 increments of 0.05 (Grefenstette, 1986). 

There are other ways to make a crossover; for example, we can choose more 

crossover points. Birchenhall (1996)’s STGA used two-point crossover, plus a selective 
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transfer factor.16 This factor is an internal selection mechanism i.e. operates within the 

population, which filter the potential string parings before mating occurs. As a result, 

the progeny is offered up for testing by an external selection environment. The will 

shifts the population learning from a first-order systems analysis to a second-order 

systems analysis that contains both internal and external selection mechanisms 

(Windrum, 1998). In particular, the selective transfer is based on “one-way transfer” of 

strings, not an exchange. Windrum (1998) suggested that such filtering mechanisms in 

the one hand, take into account the time, resources and capabilities required to develop 

an concept and, on the other hand, select between alternative ideas, throwing out 

impracticable or nonsense novel solutions.  

Crossover can be rather complicated and very depends on encoding of 

chromosome. Specific crossover made for a specific problem can improve performance 

of the genetic algorithm. However, it is essential requirement of any proposed 

algorithm that it behaves sensibly in situations we understand.  

IV.3 Mutation operator 

After the crossover is performed, the mutation takes place. This is to prevent 

falling all solutions in the population into a local optimum of solved problem. Mutation 

changes randomly the new offspring. For binary encoding we can switch a few 

randomly chosen bits from 1 to 0 or from 0 to 1. Mutation probability says how often 

will be parts of chromosome mutated. If there is no mutation, offspring is taken after 

crossover (or copy) without any change. If mutation is performed, part of chromosome 

is changed. If mutation probability is 100%, whole chromosome is changed, if it is 0%, 

nothing is changed. Mutation is made to prevent falling GA into local extreme, but it 

should not occur very often, because then GA will in fact change to random search. The 

current experiments allowed eight values for the mutation rate, increasing 

exponentially from 0.0 to 1.0 (Grefenstette, 1986). 

IV.4 Election operator 

The election operator discards the products of crossover and/or mutation if 

their potential fitness is less than the original or parent strings. With the “one-to-one” 

election, a child string replaces a parent string only if the potential fitness of that child is 

greater than the fitness of that parent. Another version is the “best two” election. Once 

crossover and/or mutation are completed, the election operator then chooses the best 

two strings out of the four strings (two newborns and two originals). The election 

operator is important in identifying the convergence to state or equilibrium. Without 

election, there are no constraints on the GA process. Arifovic (1994) indicated that GA 

                                                 
16 The concept of the selective transfer is based on Bandura (1986)’s a social learning theory that includes 

both internal and external aspects of human behaviour and learning. More details about STGA see 
Birchenhall (1996). 
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is never convergence to any equilibrium without election operator.17 Also, Birchenhall 

(1995) suggested that the presence of election operator is important if population 

convergence is to be a feature of models. The augment GA and STGA use the 

“one-to-one” election operator. The “best two” election operator is applied in Bullard 

and Duffy’s GA.  

X. The Simulation results18 

Our study focuses on an exhaustive simulation and investigates the 

performances of these learning algorithms. The entire data set of simulations in this 

study is available from the author upon request. When our study may fit into a research 

program of agent-based modelling, the investigation of simulation results is in many 

ways. First, it can aid intuition and explanation of rationality, for example, rationality 

and bounded rationality issue in the current study. Second, it shows a stylised 

"emergent properties" of the system, for example, the Pareto superior state in the 

current study. Third, we did not prove any theorems here and use simple and explicit 

natural rules to investigate the emergent properties resulting from interactions between 

individuals.  

In population learning, for each original learning algorithm, we performed 

each experiment both with and without scaling operator. In addition, when we modified 

selection operator of these learning algorithms, we only performed each experiment 

with scaling operator. Therefore, each learning algorithm has 36 experiment designs. In 

each experiment design, 100 simulations are performed. In total, we have 14,400 

simulations. In individual learning, two learning algorithms are performed, STGA and 

BDGA.  Each algorithm has 48 experiment designs. The scaling operator is applied to 

all simulations. In total, we have 9,600 simulations.19 

 Table X.1 provides a summary of experiment designs. There are three main 

catalogs of experiment designs. Each represents a particular interest under current 

studying. The fist one is a base experiment, “S”  for short. The purpose of experiments 

is to investigate the effect of change in population size and length of string. The second 

one is to investigate whether it will be more difficult for a particular algorithm to 

converge when the two stationary equilibria closer together. In the current model, the 

increase in government finance moves the two stationary equilibria closer together. We 

                                                 
17Rudolph (1994) used a mean of homogeneous finite Markov chain analysis to prove that a canonical 

genetic algorithm (CGA) will never converge to an optimum regardless of the initialisation, crossover, 
operator and objective function. However, the CGA’s variants always maintain the best solution in the 
population. 

18 For structure of population learning, individual learning and open learning,  see appendix B C, and D, 
respectively.  

19 In fact, in population learning, there are 72 experiment designs for each learning algorithms. In total, 
we have 28,800 simulations. Some of them were not reported here. These simulations were executed 
on a Laptop computer with Pentium I-150 MHz processor. In total, it took approximately three months 
to finish the simulations of population learning and one month to finish the simulations of individual 
learning. 
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denoted the “IG”  for such experiments. The final one is to investigate whether increase 

probability of a particular belief adopted can fool agent’s learning to the rational 

expectation equilibrium. Following the study of Bullard and Duffy (1999), this is by an 

increase in the maximum inflation forecast from λ to MAX. By doing this, there is Ψ of 

all possible forecasts having a zero savings decision.  
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endowment

endowment=λ  and L is the length of string. We denoted the “IMF”  for such 

experiments. 
   In population learning, the rule to name an experiment design is following. 

The first position is the name of particular experiment design as described above. The 

second position is the size of population. The third position is the length of string. In 

individual learning, the first position is the name of particular experiment design as 

described above. The second position is the number of agents. The third position is the 

number of strings for each individual agent. The fourth position is the length of string. 

These naming rules are applied to open learning as well.  

Table X.2 and Table X.3 provide the summary of results for population and 

individual learning, respectively. The summary is based on 14,400 simulations and 9,00 

simulations for population and individual learning, respectively. In order to investigate 

performances between learning algorithms, some statistics are also calculated. The 

“Mean”  is the average iteration of convergence and the “STDEV”  is the standard 

deviation of iteration of convergence. In addition, there comes an issue of consistency 

between how fast is the convergence, and how big is the variance of iteration of 

convergence. We used a statistic called relative dispersion to measure the consistency. 

The value is obtained by the equation below. 

Mean

STDEV
V = 20 

The name of any statistic with “_L”  means that the statistic measures 

convergence to the low rational expectation belief (LREB) and with “_C”  measures 

convergence to any state (CS), including the LREB. Moreover, in order to measure a 

probability of convergence to the LREB, a successful rate of convergence (SOL) to the 

LREB is calculated by the frequency of convergence to LREB divided by the total 

number of simulations. A successful rate of convergence to any state (SOC) is also 

calculated by a similar procedure. 21 In addition, to measure how accuracy one learning 

                                                 
20 The smallest value of V is zero when STDEV equals to zero. In this case, we have always a same 

iteration of convergence in each simulation.  
21 The GA is an evolution-based approach, an approach so called “evolutionary computation”; it is a 

probabilistic algorithm in which there is a factor of randomness to affect the movement of an 
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algorithm converges to LREB, a ratio of SOL/SOC is calculated. The value measures 

how precisely one learning algorithm converges to the LREB. When the value equal to 

one, it means that once one learning algorithm converges, it converges to the LREB.  

X.1 Main finding 

The main result shows that, in most of the experiments, the low inflation 

rational expectation equilibrium (LRE) of the model emerged. In some experiments, 

other convergence results are emerged. There are some experiments that convergence 

fail to obtain within our simulation criterion.22 

From these experiments, the low inflation equilibrium is sustained and the 

high inflation equilibrium is refuted. This is in contrast to the property of the model 

under rational expectation assumption, that is, the high inflation rational expectation 

equilibrium (HRE) is the stable attractor. Our result supports the result of Bullard and 

Duffy (1999) and is accord with many studies in which the same kind of learning 

scheme is applied. Arifovic (1995), for example, obtained the low-inflation stationary 

equilibrium for overlapping generation economies in which agents learn through 

genetic algorithm. The result is also consistent with the result of other adaptive 

expectations scheme, for example, Lucas’s (1986) past average of prices and Marcet 

and Sargent (1989)’s least square learning.  

X 2.1 Performance of population learning 

Consider the probability of convergence. Compared to BDGA, STGA and 

AGA, the SGA always has the lowest probability of convergence (see SOL column in 

Table X.2). Even though sometimes it converged, the iteration of convergence is longer 

than the others (see the Mean_L and Mean_C columns in Table X.2). One explanation 

is the effect of election operator. In SGA, there is no election operator, which is not true 

in BDGA, STGA, and AGA. As a result, the election operator has responsibility for the 

probability of convergence.23  

With respect to the speed of convergence, the BDGA has the best performance. 

The mean iteration of convergence to any state and convergence to the low inflation 

equilibrium are 36.44 and 33.95 both with scaling factor, respectively, compared to 

68.13 and 66.81 in STGA, 60.37 and 53.44 in AGA and 519.96 and 559.02 in SGA.24 

                                                                                                                                            
evolutionary system. With the same parameterisation for a GA, there is no guarantee for our 
simulations to have the same iteration of convergence to LREB and have always convergence to 
LREB.  

22 Two main criterions are applied. First, if the system does not converge within 1000 generations, it fails. 
Second, once convergence, all agents in the economy, including the old and the young population, have 
the same belief.    

23 One criterion we put is that any simulation has to end within 1000 iterations. Therefore, we did not 
know whether the probability increases if allowing longer iterations. However, a property can be 
referred from our current results is that with the same criterion, SGA has always the lowest probability 
of convergence and longer iteration of convergence than AGA, BDGA, and STGA.     

24 The similar results can also be found in simulations without scaling factor.  
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From the results, we see the effects of different election operators on convergence speed. 

The BDGA has the strictest election rule (best-two election) in which the two newborns 

with the highest fitness are chosen out of the four strings (two newborns and their 

parent). However, in STGA and AGA, the newborn is chosen if its fitness is more than 

its original (one-to-one election). The difference between the two election operators is 

that in the case of the best-two election operator, the two newborns always have the 

highest fitness; however, in the case of the one-to-one election, the two newborns are 

not always have the highest fitness. As a result, the election operator has the 

responsibility for the speed of convergence and different election operators cause 

different speeds. The explanation is that the “best-two” election in BDGA is more likely 

to destroy variety resulting from crossover and mutation operators and therefore 

shorten the time of convergence, than the “one-to-one” election in STGA and AGA. 

However, election operator carries out no guarantee of global optimum, i.e. 

effectiveness of search. 

 With the election operator so programmed, the fate that the GA has no room 

for dynamic stability under the property of economic equilibrium might be refuted.25 

As long as the mutation operator is preceded before the election operator, there is 

always chance for making a GA converge and stay forever, if convergence to an 

optimum. In other words, if the mutation operator is applied in a normal way, the only 

chance for making a GA converge is to modify the GA.26 In addition, the beneficiary 

exploration in GA will be confined to the election operator. It takes a risk to reduce the 

"robust" of GA and to induce a possibility of inefficient search.27 

This effect of election operator also can be shown on the procedure of 

selection. Take a comparison between STGA and BDGA. While the election operator is 

applied to the procedure of tournament selection in BDGA, it does not apply to the 

natural selection i.e. roulette wheel in STGA.28  With the tournament selection, 

chromosomes being selected and put into reproduction pool are those chromosomes in 

top 50 of parents. It is not true in roulette wheel selection. Consider chromosomes’ 

fitness taking values between 0 and 1. The values of chromosomes’ fitness are 

randomly located between 0 and 1. The tournament selection has high probability to 

                                                 
25 Dawid (1996b) argued that the GA has room for dynamic stability. When there is an enough proportion 

of population being mutated, the system may shift to another state in which the incumbent belief is no 
longer dominant. As a result, the landscape of search space is also changed. However, when mutation is 
always terribly small, the opportunity of that case is almost impossible. In addition, the property of 
dynamic stability of genetic algorithms is critical. As discussed before, in the long run, genetic 
algorithms have dynamic stability with the enough small probability of mutation; however, in the very 
long run, so stability could not be sustained forever.   

26 Even we introduce a time-varying mutation probabilities alone, it would not help at all times. This may 
confirm the insight that the selection operator is the key problem of the GA. See below discussion. 

27 In fact, according to our investigation from these simulation results, once the adaptive system 
converged to LREB, with election operator so programmed in BDGA, AGA, and STGA, there is no 
chance to get out of LREB. Also see discussion below. 

28 The roulette wheel is also applied to AGA. 
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choose any chromosome with fitness greater than 0.5. After tournament reproduction, 

the values of chromosomes’ fitness are more like to locate between 0.5 and 1 in the 

mating pool. If the procedure is repeated infinitely, the tournament selection will result 

in all chromosomes having the value of fitness equal to 1. When environment is static, 

tournament selection may do a good job in searching good solution. When environment 

is time varying such a selection procedure may have cost in searching good solution. 

The selection procedure is a main force to destroy the variety. As the force is much 

more intensive in tournament selection where the searching put too much attention in 

exploitation, than in other selections, the benefit of variety in GA will be lost, where 

searching keeps in exploration.       

Another interesting phenomenon we can find is that having the same election 

operator in AGA and STGA, the speed of convergence in STGA is longer than in AGA 

(see Mean_L and Mean_C columns in Table X.2).29 This may be due the procedure of 

two-point crossover in selective transfer operator. Clearly, the crossover cannot 

combine certain combinations of features encoded on chromosomes. It is not possible 

for the one-point crossover to get a string to be matched by a schema with two or more 

high performance schemata (Michalewicz, 1996). Consider there are two high 

performance schemata 1S  and 2S , and two strings 1s  and 2s  matched by 1S  and 2S , 

respectively. 
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With the two-point crossover in selective transfer, we may get an offspring, 
’
1s matched by a schema, ’

1S  having combinations of features encoded on its parent.30  

)10*11*00(S’
1 =    )00011010(s’

1 = 31 

However, there is a disadvantage of destroying building blocks i.e. structure 

of scheme, for two-point crossover. In the case of one-point crossover, we select a 

structure to be exchanged among l - 1 (where l is the length of string) structures at 

random. With a two-point crossover, there are l
2C  different ways of picking the two 

cross points and l
2C  structures caused. As a result, each structure is less likely to be 

picked during a particular cross and therefore more mixing and less (original) structure 

to be preserved i.e. fewer (original) schemata can be preserved. However, the cost may 

                                                 
29 The procedure of crossover in AGA is the same as in the SGA. Here we focus on a difference between 

standard crossover and selective transfer.  
30 There are schemata that two-point crossover cannot combine as well. In addition, the ability to have the 

combination of features does not mean that the resulting feature will be better. This is quite reasonable 
inference from a viewpoint of evolution. In particular, in an adaptive system in the current study, the 
fitness of a particular feature, single or combinations, is environment dependence. However, what is 
good for the combination is that important messages can be carried out forward to the next generation. 
Having the chance of combinations of features encoded on chromosomes, it may improve the 
efficiency of search.  

31 Here, under selective transfer, we assume that there is an insider transfer with two cutting point, 
position third and 6th. See Birchenhall (1996) for more details. 
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be compensated by inherent properties of one-way transfer and second-order systems 

analysis in selective transfer that contains both external and internal selection 

mechanism where mutation and selective transfer are made subject to an internal 

evaluation of their merit prior to inclusion in an agent’s belief formation. Only those 

transfers or mutation that are likely to improve the agent’s forecast are undertaken 

(Windrum, 1998).   

In other words, the processes introduce a factor of variety in agents’ beliefs 

and simultaneously reject many new beliefs long before they are given a chance to 

show their worth in the real world.32 Hence, the factor of variety in selective transfer 

has responsibility for the low speed of convergence in STGA. However, one would 

expect the cost to be compensated by sensible behaviour of STGA in the current 

program. This can be investigated by the values of SOL and SOL/SOC. Without scaling, 

the STGA have the highest probability of successfully convergence to the low inflation 

equilibrium, which is 93%, compared to 88% in BDGA, 62% in AGA, and 5% in SGA. 

The property holds with respect to their modified versions. The modified STGA with 

roulette wheel replaced by tournament has the highest accuracy of convergence to 

LREB, which is 97%. In addition, in the issue of consistency concerning the stability of 

iteration of convergence, the values of V_L and V_C in STGA are lower than in BDGA. 

STGA has a more stable iteration of convergence than BDGA.  

As the selection operator is a main force to destroy the variety, one would 

expect the selection operator in a genetic algorithm to be responsible for the 

convergence. When the modified SGA replaces selection operator with the tournament 

selection, the mean iteration of convergence is dramatically reduced by 80%.33 On 

average, the mean iteration of convergence is reduced by 75%. This is an average over 

experiment designs in S_60_8, IG_60_8, and IMF_60_8 for AGA and STGA. The 

results suggested that selection operator significantly affects the mean iteration of 

convergence.  

From these experiments, only three of five selection mechanisms are effective. 

They are tournament selection, probability selection, and roulette wheel selection. The 

Top50 selection and Section selection fail to convergence in all experiments. One 

explanation is that when the variety factor is emphasized, the system is in a very 

unstable state and becomes very noisy. This is a dilemma between exploitation of and 

exploration of information in GAs. A different story is investigated for the BDGA. The 

mean iteration and probability of convergence in original BDGA with scaling are 33.94 

                                                 
32 Remember that in the system, agents’ beliefs are dynamic i.e. time varying. A new belief rejected today 

does not mean that the belief will be bad in later periods. In that case, convergence to the particular 
belief will be prolonged. 

33 In a particular experiment design of S_30_4, the mean iteration of convergence is reduced down to 
96%. The mean iteration of convergence to the LRE in original SGA is 633 and that in the modified 
SGA with a replacement of tournament selection operator is 24.47. The result is not reported here. 
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and 91%, respectively. However, when selection operator is replaced with the roulette 

wheel selection in the modified BDGA, the mean iteration and probability of 

convergence to the LRE are 167.88 and 94%, respectively.34 Obviously, there is a 

trade-off between the speed and the probability of convergence. This trade-off can also 

be found in a comparison between BDGA and STGA. The mean iteration of 

convergence in STGA is approximately as twice as in BDGA (65 to 36 both without 

scaling). However, the value of SOL in STGA is higher than in BDGA (93% to 88% 

both without scaling). Moreover, there is also a trade-off between the speed of 

convergence and accuracy of convergence to LREB. The accuracy of convergence 

(SOL/SOC) in STGA without scaling is 96% that is higher than 90% in BDGA. 

Particularly, when the selection operator of BDGA is replaced by roulette wheel, the 

accuracy of convergence in the modified BDGA is 94.3% that is very similar to the 

accuracy of convergence in STGA, which is 94.5%. Among these algorithms, the 

STGA always has the highest accuracy of convergence to LREB (see column of 

SOL/SOC in Table X.2).  

Both the selection and election forces control the speed of convergence where 

searching emphasizes in exploitation. What the searching needs is to balance 

exploitation and exploration. From these experiment results, the modified STGA with 

roulette wheel replaced by  tournament may do a good job in balancing exploitation and 

exploration. The mean iteration of convergence to LREB is 34 and the probability of 

and accuracy of convergence to LREB are 91% and 92%, respectively, in the BDGA. 

However, the mean iteration of convergence to LREB is 25 and the probability of and 

accuracy of convergence to LREB are 96% and 97%, respectively, in the modified 

STGA with selection operator replaced by tournament. The speed of convergence and 

probability and accuracy of convergence improve. This is due to the combined result of 

the two forces. First, the property of internal selective transfer makes STGA more 

explorative and second, tournament selection and one-to-one election operators exploit 

the exploration effectively.   

There are other findings and we summarize as followings.35 

(1) The longer the length of bit-string, the longer the timing of convergence. 

(2) Generally speaking, the population size does not affect the speed and the 

property of convergence too much. From these experiment designs, the 

population size of 60 is enough, regardless of the length of bit-string. In 

some experiments, the increase of population size improves the speed and 

probability of convergence.  

                                                 
34 For modified BDGA, the similar result can be found with the replacement of probability selection. 

However, the value of SOL is reduced from 91% to 87%.  
35 These findings are based on results of individual experiment designs. We do not report these results 

here. However, these results can be requested from authors. 
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(3) There is no difference in algorithms between with and without the 

inclusion of scaling factor.36     

(4) From experiments of IG_30_4 to IG_60_8, we can find that there is no 

difficult for genetic algorithms to sustain the low inflation equilibrium 

when the two equilibria are very close to each other.37 However, the 

increase in government finance leads to an increase in the iteration of 

convergence.  

(5) From experiments of IMF_30_4 to IMF_60_8, the increase in the 

maximum forecast does not affect the results of genetic algorithms and its 

properties. Agents did not be fooled by initial environment. By learning 

from population experience, agents eventually can learn the rational 

expectation and coordinate with others in a varying environment. 

Enlarging the domain of forecasts leads to an increase in the iteration of 

convergence. Interesting enough, the IMF experiment does not lead to an 

increase in the mean number of iteration of convergence in AGA but a 

reduction. In AGA, the values of Mean_L both for experiment IMF_30_8 

and IMF_60_4 are smaller than experiments S_30_8 and IMF_60_4. 

X 2.2 Individual learning 

The model of individual learning can be modelled under the ecological 

approach in which the learning mechanism is based on the genetic algorithm. Now 

rather than each agent only with a belief in population level, it is assumed that each 

agent has in mind a set of different beliefs that compete to be used by the agent as a 

basis for his forecast. These beliefs are again modelled as the binary string with 

attached to each belief a fitness measure of its strength or success, i.e. the expected 

lifetime utility generated by that belief if it was activated.38 These expected lifetime 

utilities are evaluated using the most recent actual inflation rate )t( 1−β . The beliefs 

that had been more successful recently are more likely to be chosen. Hence each period 

an individual only chooses one of beliefs to make the inflation forecast and put it onto 

the contest. In return, his actual lifetime utility is evaluated when he is old. Then the 

genetic algorithm learning is used and to modify the set of beliefs in exactly the same 

way as it was applied to the set of beliefs presented in the population level above. What 

a difference here is that individual agents have different sets of beliefs in their minds 

and therefore the genetic algorithm is applied to these individual sets of beliefs. Instead 

of learning by looking how well the other agents with different beliefs were doing, an 

                                                 
36 In the study, the linear scaling is applied. However, there are other scaling methods. We do not intend 

to claim that scaling is useless. 
37 In these experiments, the government finance is 0.45. The two equilibrium points move from between 

1.333 and 3 to between 1.6 and 2.5.  
38 The learning mechanism has an analogy to the learning mechanism for N-armed bandit problems 

(Arthur, 1993). There is a set of arms available to the agent. Agent is figuring out (learning) the “right” 



 21

individual agent now evaluates how well he had been doing in the past when he used 

the set of beliefs himself. In this respect, the adaptive learning system can be described 

as ecology of sets of competing beliefs or forecasts. 39  When individual agent’s 

information about inflation factor is represented by his set of beliefs, i.e. a population of 

beliefs, the information is within individual only and differs from individual to 

individual. In social-economic system, a family can be considered as a unit carrying out 

such information. In this context, every population of beliefs represents every family’s 

information bundle about forecasting the inflation factor.  With an overlapping 

generations structure, it shows an the inter-generation aspect of the GA where 

information is transmitted from generation to generation.  

X 2.3 Performance of individual learning 

In order to illustrate the individual learning and economise on executing time, 

we only performed the individual learning for STGA and BDGA.40 Table X.3 shows the 

summary of the individual learning results. The simulation results based on individual 

learning model are similar to those based on population learning. The Pareto superior 

equilibrium is again sustained and the Pareto inferior equilibrium is refuted. An 

important phenomenon is investigated. Compared to population learning, the emergent 

property in individual learning is quite homogeneous. All of simulations show that once 

the adaptive system has converged, the Pareto superior equilibrium emerges. In other 

words, convergence with the individual learning GA is very neat.  

The increase in government finance, experiments IG_60_30_4 to IG_120_60_8, 

not only leads to an very significant increase in mean number of iterations of 

convergence as well as standard deviation but also indicates that coordination is made 

much more difficult when equilibria are closer together. In particular, for STGA, some 

experiment designs fail to converge or the probability of convergence is very low. Such 

a phenomenon is more seriously when increasing the maximum forecast above λ i.e. 

experiment IMF, where more agents will initially choose to save zero. Now, not only 

STGA but also BDGA, many experiments fail to converge and the probability of 

convergence is also very low. The result suggests that agents learning through 

individual experience are more difficult to coordinate with the others than learning 

through population experience. Without reference to population experience, individual 

agent may monotonously choose a strategy belief that is good in the past according to 

his own experience.  

There are other findings. We summarized these results below. 

(1) The increase in number of agents increases the mean iteration of 

convergence. It indicated a common sense that there is a difficulty in 

                                                                                                                                            
arm by trials and errors.  

39 The setting is similar to Arifovic’s multiple-population GA used to study a cobweb model.  
40 The executing time for individual learning is approximately five times than population learning. 
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coordination between agents when the number of agents in the economy is 

large. 

(2) The increase in number of strings, i.e. the actual set of beliefs available to 

individual agent, reduces the iteration of convergence. However, this has 

to be harmonized with an increase in number of agents.  

(3) The increase in length of string increases iteration of convergence. This 

fits into an intuition. Increase in the length of string enlarges the whole 

search space. Therefore, when agents have too many potential information 

in mind, agents take longer to learn the rational expectation and 

coordinate with others when the realised belief is time varying.          

The probability of convergence for STGA and BDGA in individual learning is 

smaller than in population learning. The intuition is following. The way we model the 

individual learning is under the ecological approach in which there are multiple 

populations in the system. Global coordination is achieved between populations. 

Therefore, technically, when increasing the number of agents (number of populations) 

or space of beliefs (number of strings), the landscape for the GA to search is also 

enlarged at the same time. One would expect an increase in the search time and 

difficulty of coordination. However, from these simulations, the cost is compensated by 

the accuracy of convergence to Pareto superior equilibrium. In all of experiment 

designs, the value of SOL/SOC is always equal to 1, independent of any experiment. 

When the individual learning is modelled under the ecological approach in 

which all agents have the same learning scheme, naturally it is reasonable to think of 

individual agents has its own learning scheme different from the other agents.41 In other 

words, we want to investigate a situation where there a collection of agents with 

multiple learning schemes instead of only one learning scheme used in population and 

individual learning. The learning environment is described below.      

XI Open learning 

As there is no standard learning mode, a common characteristic of most 

learning models are often ad hoc and very specific in which they might not be derived 

from an explicit behavioural model or are tailored for a specific context. When we have 

been applied the genetic algorithm and its variants to belief learning, a speculative 

simulation is to provide an environment in which there is no any specific genetic 

algorithm process to be established in advance. In the case of individual learning, 

individual agent learns according to his own past experience only without 

communicating with the others. In the absence of reference to population experience, 

there are difficulties for agents to coordinate with each other and eventually learn the 

rational expectation. Therefore, here we open a tunnel for these artificial agents to 

                                                 
41 Remember here a genetic population not a string represents an individual agent. 
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communicate with each other with respect to their learning experiences. We called it 

“open learning”.  

Similar to the individual learning, each individual agent also has a set of 

beliefs in mind and each period only one of these beliefs is activated. Then, from every 

now each agent must decide what is the whole procedure of his learning, i.e., what is a 

conjunction of selection, crossover, and mutation. In other words, agent has to choose 

one selection approach, one crossover approach, and one mutation approaches to 

construct his own genetic algorithm learning.42 A binary string represents individual 

agent’s learning scheme. Therefore, there is a population of binary strings representing 

a collection of individual agents’ learning schemes. Once a genetic algorithm learning 

was constructed, it is applied to update the set of beliefs an individual agent has in mind 

in exactly the same way as a genetic algorithm was applied to the individual learning. 

Hence, there are different schemes of genetic algorithm learning operating on different 

sets of beliefs. Then, each individual agent chooses a binary string representing his 

belief resulting from his own learning process. The belief that has been more successful 

recently is more like to be chosen. The procedure is the same as that in individual 

learning. What difference in the open learning is that individual agents’ learning 

schemes are updated through population experience. Each bit string representing 

agent’s learning scheme is assigned with an average fitness measure of its strength or 

success. The average fitness is a mean value over the set of beliefs an individual agent 

has in mind, with attached to each belief a lifetime utility value if it is activated.43 Each 

period agent look around how to construct a learning process from the population 

experience, and choose a belief from the set of beliefs to make the forecast. Hence, 

agent not only learns how to forecast individually but also learns how to learn from 

population experience.  

XI. 1 Performance of open learning 

When the open learning is intended to illustrate a possibility of learning how to 

learn and investigate the emergent property of the system, the result should be regarded 

as suggestive. We performed three experiments that are S_60_30_4, IG_60_30_4, and 

IMF_60_30_4.44 In the current study, four main types of genetic algorithm learning 

                                                 
42 In our program, each individual has four selection approaches that are Section Selection, Probability 

Selection, Roulette Wheel Selection, and Tournament, and three crossover approaches, which are 
Standard Crossover, Elitism Crossover, and Elitism Best Crossover, and two mutation approaches, 
which are Standard Mutation and Elitism Mutation. In total, there are 24 combinations of learning 
schemes.  

43 As individual learning schemes operate on individual sets of beliefs, it is not adequately to evaluate 
success of a learning scheme by a fitness generated by a belief, chosen and put onto the contest, from 
the set of beliefs. It should be an average fitness of the set of beliefs used to evaluate the success of 
learning scheme.   

44 To perform these experiments, they are more time consumable than population and individual learning. 
For example, we used five days to perform the experiment S_60_30_4 based on a laptop computer with 
Intel P-I 150MHz processor. In addition, as in population and individual learning, the open learning 
uses the same convergence criteria.  
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schemes investigated, that are Birchenhall’s selective transfer GA (stga), Bullard and 

Duffy’s GA (bdga), Arifovic’s augumented GA (aga), and standard GA (sga). For each 

type, three modified versions are also investigated, where the selection operation of its 

own original version is replaced. Therefore, in total, we catalog sixteen types of genetic 

algorithm learning. Prefix “S”, “PRO”, “RW” and “T”  to a name of learning scheme 

correspond to that learning scheme using Section selection, Probability selection, 

Roulette Wheel selection, and Tournament selection. In addition, we used STGA to 

represent an assemblage of stga, s_stga, pro_stga, and t_stga, BDGA to represent an 

assemblage of bdga, s_bdga, pro_bdga, and rw_bdga, AGA to represent an assemblage 

of aga, s_aga, pro_aga, and t_aga, and SGA to represent an assemblage of sga, s_sga, 

pro_sga, and t_sga. The results are summarized in Table XI.1, XI.2 and XI.3. 

First, with respect to the accuracy of convergence, the performance of open 

learning is the same as the performance of individual learning, where once convergence, 

the system converges to the LREB (See Table XI.3, SOL/SOC column). In addition, in 

all simulations, the probability of convergence to low inflation equilibrium is always 

one that is higher than in individual learning. Second, agents do not have greater 

difficulty coordinating on the LREB when the LREB is closer to the HREB 

(experiment IG_60_30_4). In addition, increase the probability that more agents 

initially choose to save zero, i.e. the changes in the set of possible forecast rules, does 

not affect our convergence results (experiment IMF_60_30_4).  

Third, the mean iteration of convergence to the LREB in the three experiments is 

quite similar to each other. This suggests that agents with more learning rules will have 

no greater difficulty coordinating on the LREB independent of any experiment design. 

In fact, the result of open learning suggests that even though agents have different 

learning schemes, they can still coordinate their belief on the low rational expectation 

equilibrium. We call the situation “coordination of multiple types”. This phenomenon is 

quite common in nature. Image a tank of aquarium. In the tank, there are several 

different species to compete with each other. From time to time, some new species may 

appear, like laver and aquatic. Of course, some species may die out and some still alive. 

The most important thing in the aquarium tank system is that these species can co-exist 

with each other and maintain an ecological balance in the tank where each species has 

its own survival rule. Therefore, in the open learning, individual agents will not stick on 

a particular learning rule forever instead they change rules from time to time in order to 

compete with the others. Once coordinated, individual agents have a same strategy 

belief, but individual agents chose the same strategy belief referring to their own 

learning schemes. These learning schemes are different from each other. 

Forth, from the result of Table XI.1, eight learning schemes are significantly 

investigated and the mean frequency in each period of each type is also shown. Table 

XI.2 shows the result of convergence to the LREB. The most two common types are 
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s_stga and s_bdga in the case of all simulations (Table XI.1) and s_bdga and bdga in the 

case of convergence to the LREB (table XI.2). When the four assemblage types are 

considered, the most two common types are STGA and BDGA in any case. The results 

correspond to our previous results of population and individual learning where the 

majority of simulations converged when STGA or BDGA is applied. In addition, we 

found that majority of agents choose the Section selection in organizing their own 

learning schemes. This may suggest that the best thing for individual agents is to keep a 

variety of strategy beliefs in a more complicated environment. Furthermore, our results 

also suggested that learning without any filter i.e. the election operation is meaningless 

and unfavorable. None of frequency of SGA type learning is greater than 1.        

XII. Discussion 

In applying the computational algorithm to the adaptive learning system, 

interpretation is both more and less limited. As the methodological role of computer 

simulations in studying economic models is not well developed, some researchers give 

little weight to and question the reliability of such work. The major advantage is that we 

can study models that do not involve the restrictive assumptions that would be required 

to produce analytical results.  

In the model, the dynamic environment comes from the interactions between 

agents of the economy. Therefore, the landscape that the GA is searching is state 

dependence i.e. changing from time to time. In a sense, none of strategy beliefs can 

guarantee to bring agent a highest lifetime utility at all times. 45 However, a question 

remains as to why agents coordinate on the strategy low rational expectation belief 

(LREB) and therefore the economy converges to the low rational expectation 

equilibrium i.e. Pareto superior equilibrium. We discuss this issue below. 

In this specification of the model, the life cycle choice of individual agent 

],1[ Ni ∈  solves the maximisation problem: 
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where 021 >> ww . )( jtc i
t +  denotes consumption in period t + j by the agent i born at 

time t and )(tiβ  denotes agent i’s time t forecast of the gross inflation factor between 

dates t and t + 1 according to a simple forecast rule, equation (3) below: 

),()()]1([ tPttPF ii β=+       (3) 

P(t) denotes the time t price of the consumption good in terms of fiat money, and 

                                                 
45 Agent with a low or high belief has forecast model that forecast a low or high inflation factor. Here, we 

use a strategy low or high belief to represent such a concept.  
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)]1([ +tPF i  is agent i’s time t forecast of the price of the consumption good at time 

t+1. 

Combining the first order conditions with the budget constraint (2), we can 

find the first period consumption decision for all N agents in any generation is given by: 
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where 21 / ww=λ . Therefore, individual agent i’s saving decision at time t is the same 

and is given by: 
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The expected consumption decision in second period of lifetime for all N agents in any 

generation is given by: 
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The government prints fiat money at each date t in the amount M(t) per capita. 

The government uses this money to purchase a fixed, per capita amount g of the 

consumption good in every period according to equation (6) below: 
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Now money supply is no longer constant. As a result we have aggregate 

money supply in period t: 

                    )()1()( tgPtMtM +−=       (7) 

It is assumed that these government purchases do not yield agents any 

additional utility. Since agents can save only by holding fiat money, the money market 

clearing condition is that aggregate savings equals the aggregate stock of real money 

balance at every date t: 
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From equation (1), we have: 
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Then, substituting equation (5) into (6), we have realised second consumption; 
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Substituting equation (6’) and (4) into (1’), we have: 
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*β  is the realised inflation in period t+1 and )(tiβ  is agent i’s forecast value made in 

period t. Therefore, when the smaller the value of *))(( ββ −ti
t  i.e. the smaller the 

forecast error, the larger the agent's utility, other thing being equal. It will be agent’s 

best interest to make his forest as precise (close to *β ) as possible. Selection force will 

favour those beliefs that produce inflation forecast close to the realised inflation *β .  

In addition, suppose that there are two strategy ’β  and ’’β . From equation 

(9), we have: 
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A strategy belief (A) closer to *β  than the other strategy belief (B), higher or lower the 

strategy beliefs (B), has potential gains subject to (10) and (11). 

Take the first derivative of equation (9), we have: 
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Therefore, agent with strategy low belief (LB) producing low inflation 

forecast has higher lifetime utility. This also suggested the disadvantage of strategy 

high belief (HB). In terms of GA, the fitness assigned to strategy LB that forecast a low 

inflation factor is higher than the fitness assigned to strategy HB that forecast a high 

inflation factor. The strategy LB has selective advantage.  

In the question, our computer program provides two dynamic frame 

windows.46  One shows the evolution of relationship between lifetime utility and belief 

(U-B window). The other shows the evolution of agents’ beliefs over time (B-T 

window). From investigating the U-B window, strategies belief a little below a median 

degree have higher lifetime utilities than others.47  From the B-T window, we also 

                                                 
46 Unfortunately, due to personal technical problem, we cannot report the dynamic frame window on a 

sheet. The windows are shown only during the executing time. Further refinement will be done in the 
future. When the maximum feasible belief is 4, the median belief will be 2. The Java program is 
available from the author upon request. 

47 In fact, we found that the lifetime utility produced by strategy low rational expectation belief always 
higher than the lifetime utility produced by strategy high rational expectation belief. In addition, the 
lifetime utility produced by strategy average belief (an mean of population beliefs) is also higher than 
the lifetime utility produced by strategy high rational expectation belief. The lifetime utility produced 
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found that strategies being selected out in the first place are those strategies HB not 

strategies LB. Therefore, convergence to the high rational expectation equilibrium 

seems to be very unlikely.48 This finishes the first explanation. However, it is naturally 

to ask why agents do not simply choose the strategy lowest belief (LTB) that forecast a 

zero inflation factor.49 This leads to the second explanation. 

Again from equations (7) and (8), we have  
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Substitute (8’) into (7’), we have: 
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From equation (8), we have: 
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Combine equations (15) and (16), we have: 
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When selection force favours those beliefs that produce inflation forecast close to the 

realised inflation *β , it is also truth for 
−
β . Therefore, we have properties below: 
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Combining equations (17) and (18), we have: 

                                                                                                                                            
by strategy low rational expectation belief is very close to that produced by strategy average belief. An 
exception is that when initially all members have high beliefs, the relation between belief and utility is 
positive i.e. the higher the belief, the higher the utility. However, such a case is very rarely.  

48 Therefore, *β is away from the basin of attractor.  
49 In the current study, the minimum inflation factor is zero. 
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Solve equation (17’), we have 
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It may be difficult to draw a static graph of f due to the nature of time varying, i.e. both 

−
β  and *β  is changing from period to period.  However, it is possible to have a 

qualitative analysis of f and a possible graph of f can be shown in Figure XII.1. First, the 

nature of f also corresponds to (18). When 
−
β  is less than *β , there is “pull-up” force, 

to pull 
−
β  up to *β . On the other hand, when 

−
β  is higher than *β , there is “pull-down” 

force to pull 
−
β  down to *β . In addition, the movement (up or down) of f is also 

affected by 
−
− )1(tβ . When f=0 and 

−−
−== )t()t()t(* 1βββ , we have two 

convergence states i.e. the high inflation equilibrium, Hβ , and low inflation 

equilibrium, Lβ . From Figure XII.1, we see that Lβ  is a stable state. Therefore, we 
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Figure XII.1 
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have an inverse dynamics different from the dynamics under the assumption of rational 

expectation. The Pareto superior equilibrium, i.e. the low inflation steady state, is a 

stable attractor in the learning dynamics.  

In fact, we also found these properties from our simulation results. In particular 

we have examined three convergence cases below. The three cases are low rational 

expectation belief (LREB), low belief (LB), and high belief (HB). In each case, we 

suppose that there is one member of young generation retreats from his previous belief 

to a much higher belief (MHB), much lower belief (MLB), bid for current realised 

belief  (RB), and bid for the low rational expectation belief (LREB).  

From the Table XII.1, we see that in the case of convergence to HB higher than 

LREB, it would be wise for any player to retreat to a belief lower than the HB but higher 

than LREB at least. However, in the case of convergence to LB, there is potential gain 

to retreat to a belief close to LREB where j➢i. By doing this, the mutant hurts himself, 

but he hurts the other player, i in our case, even more.50 The potential gain results from 

the so-called spiteful behaviour. In particular, selfish and spiteful behaviour can be 

expected in an evolutionary model and it can have a selective advantage (Hamilton, 

1970). 

Table XII.1 

Welfare comparison based on lifetime utility after strategy retreated 
 Case 1 

1*LREB (=1.333) 
Case 2 
2*LB (=1.235) 

Case 3 
3*HB (=2.509)  

Retreat 
Strategy 

MHB MLB MHB MLB RB LREB MHB MLB RB LREB 

Incumbent 
i 

worse 
off 

better 
off 

worse 
off 

worse 
off 

worse 
off 

worse 
off 

worse 
off 

better 
off 

better 
off 

better 
off 

Mutant 
j 

worse 
off 

worse 
off 

worse 
off 

worse 
off 

worse 
off 

worse 
off 

worse 
off 

better 
off 

better 
off 

better 
off 

Welfare 
Comparison 

i➢j i➢j i➢j i➢j j➢i j➢i i➢j j➢i j➢i j➢i 

MHB: much higher belief. MLB: much lower belief. LREB: low rational expectation belief. 
Incumbent: player stick to his previous belief. Mutant: player switch his belief to another. 
i➢j: player i’s welfare improves more than player j’s. j➢i: player j’s welfare improves more than player i’s.  
*1: In the case we investigated, MLB<LREB<MHB. In addition, when convergence to LREB, LREB equals to RB and every individual agent has lifetime utility 

value of 1.674. 
*2: In the case we investigated, MLB<LB<RB<LREB<MHB and every individual agent has a lifetime utility value of 1.68. 
*3: In the case we investigated, LREB<RB<MLB<HB<MHB and every individual agent has a lifetime utility value of 1.525. 

To make thing more easily to understand, we concluded the three cases below. 

Case 1: 

Case 2: 

                                                 
50 In this case, when the mutant switches to the LREB strategy, his lifetime utility is 1.679 and his loss of 

welfare is –0.0006731. However, the incumbent’s lifetime utility is 1.678 and his loss of welfare 
is –0.0008031.   

MHBLREBMLB ←→

MHBLREBRBLBMLB ←→→→
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Case 3: 

MHBHBMLBRBLREB ←←←←  

Therefore, both spite effect and advantage of strategy LB are investigated. The 

heterogeneity in the current adaptive learning system, initially agents may not behave 

in the manner of strategy low belief and the economy is not in a matured state. After 

agents come into this economy and communicate with each other, they gradually 

recognize dominance of strategy LB facing the nature of time varying. Therefore, 
−
β  

and *β  will be located in the neighborhood of Lβ . Again, from investigating the B-T 

windows, we also see 
−
β  wanders about *β  and close to Lβ  after the first iterations. 

Eventually, individual agents coordinate on the low rational expectation equilibrium, 

where 
−
β = *β = Lβ . In other words, the genetic algorithm learning evolved the strategy 

LREB as successful as the best strategy belief in the economy.   

In addition, a nature that lifetime utility of one player increases as the action 

chosen by the other decreases (any strategy belief below HB in case 3), is captured. In 

particular, the action chosen by the other player creates an incentive, due to a selective 

force, for the remaining players to choose the same action. This is a property of positive 

feedback or spillovers. (Cooper, 1999).51 It is produced by effects of interactions 

between agents in the economy, due to contributions from these agents involved. 

Individual agents may not internalize the spillovers. Therefore, equilibria may be 

dominated by some other feasible outcomes. As we can see from the examples above, 

the high inflation equilibrium belief is dominated by some other relative strategies low 

belief, including the LREB. 

For full validity, a further remark is necessary, even if it is a bit of beyond the 

scope of the study. There comes a special flair of genetic algorithm about stability. 

Riechmann (1999) argued that the genetic algorithm ends up in a kind of Ljapunov 

stability, where a constant subset of the set of all genetic populations is reached.52 In the 

long run there is a constant distribution of all genetic populations (states).  Therefore, 

every state can be reached from every other state with a positive measure. However, in 

the current study, while genetic algorithms having the election operator in the last step, 

there is a force to stop agents to experiment furthermore. The election operator will 

reject any experiment that is inferior to the current best strategy but probably superior 

in later periods. Hence, it is impossibility to leave one uniform population (state) that is 

                                                 
51 Cooper (1999) indicated the implication of spillovers or positive feedback, often termed strategic 
complementarity. It is central to a characterisation of coordination games. 
52 The difference between genetic populations is in their different compositions. Remember that when the 
length of string is L, the number of uniform population i.e. population consisting of only one type of 
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an evolutionarily stable population (state). In other words, once it reaches the state, it 

will stay forever. This is quite different from the property of stability in genetic 

algorithms without the election operation in the last step. Therefore, genetic algorithms 

with the election operator in the last step show an asymptotic stability in which 

decisions of the artificial agents cease to change. 

XIII. Conclusion  

When we apply genetic algorithms to the economic learning problems, our 

conclusions are in many ways. The first one concerns the interpretation of emergence of 

convergence to the low inflation equilibrium. In the first place, it is agents’ best interest 

to make an inflation forecast as close to the realised inflation as possible, i.e. the 

concept of “survival of fitness”. There is selective pressure on individual agents’ 

utilities resulting from the outcomes of agents’ strategies belief having forecast models 

that forecast inflation factors. As far as the selective pressure concerns, there are two 

underlying processes. On the one hand, due to the presence of dominance of strategy 

low belief and spillover effect, there is selective pressure in favour of strategies low 

belief. Strategies high belief will be selected out and therefore the economy might not 

have chance to end up in the high inflation equilibrium. The only equilibrium in the 

model left is the low inflation equilibrium.53 On the other hand, there is an adverse 

force against the dominance of the strategy low belief, due to the presence of spiteful 

behaviour. Hence, these two processes drive agents coordinating on the low rational 

expectation belief (LREB) and therefore the economy converges to the low inflation 

equilibrium, i.e. Pareto superior equilibrium. This result is robust independent of 

precise algorithms used. 

The second one concerns the performance of genetic algorithms learning. The 

performance heavily depends on features of genetic operators. Comparison of our 

simulations suggests that there is a trade off between speed of convergence and 

accuracy and probability of convergence resulting from combined processes of 

selection, election and crossover variants to balance the exploration and exploitation. 

We show that selective transfer genetic algorithm (STGA) with tournament selection 

operator has a very reasonable performance.  

The third one concerns the learning variant. In the study, our artificial 

adaptive agents eventually can learn rational expectations and coordinate on the low 

inflation equilibrium under population learning, individual learning, and open learning. 

It will be more difficult for these agents to learn the rational expectations and 

coordinate on the low inflation equilibrium under individual learning. However, in 

                                                                                                                                            

individual is L2 . In total, we have NL2 genetic populations, where N  is population size. 
53 Remember that in the model, there are two steady states. One is the high inflation equilibrium in which 

all agents have a low rational expectations belief; the other one is the low inflation equilibrium in 
which all agents have a high rational expectation belief.   
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open learning in which there is a tunnel allowing these individual agents to learn their 

own learning schemes with reference to population experience, the result is as neat and 

successful as best one. On the one hand, this suggested that people with different 

learning schemes more efficiently learn the rational expectations and coordinate on the 

low inflation equilibrium. On the other hand, this suggested that people tend to learn 

how to learn from social experience and then learn from the basis of reflective 

self-consciousness. 

Finally, we also showed that in the study, agents tend to use the BDGA and 

STGA learning when there are many learning schemes available. This suggests that the 

two learning algorithms behave sensibly. However, we have to keep in mind that it 

might be a problem to interpret the result when these artificial inductive procedures 

may be arbitrary. It is still an empirical issue concerning what learning schemes people 

tend to use.    
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Table X.1 Parameterisation of Simulation  
Population Learning Individual Learning 

S_60_30_4 
S_60_30_8 

S_30_4 

S_60_60_4 
S_60_60_8 S_30_8 

S_120_30_4 
S_60_4 S_120_30_8 

S_120_60_4 

 
 

1. Standard 
Government Finance = 0.333 
Maximum Inflation Belief = 4 

S_60_8 

 
 

1. Standard 
Government Finance = 0.333 
Maximum Inflation Belief = 4 

S_120_60_8 
IG_60_30_4 
IG_60_30_8 
IG_60_60_4 
IG_60_60_8 

IG_30_4 

IG_120_30_4 
IG_30_4 IG_120_30_8 
IG_60_4 IG_120_60_4 

 
 

2 Increase Government finance 
Government Finance = 0.45 

Maximum Inflation Belief = 4 

IG_60_8 

 
 

2 Increase Government finance 
Government Finance = 0.45 

Maximum Inflation Belief = 4 

IG_120_60_8 
IMF_60_30_4 
IMF_60_30_8 
IMF_60_60_4 

IMF_30_4 

IMF_60_60_8 
IMF_30_8 IMF_120_30_4 
IMF_60_4 IMF_120_30_8 

IMF_120_60_4 

 
 

3 Increase maximum inflation forecast 
Government Finance = 0.333 
Maximum Inflation Belief = 5 

IMF_60_8 

 
 

3 Increase maximum inflation forecast 
Government Finance = 0.333 
Maximum Inflation Belief = 5 

IMF_120_60_8 
1. S: Standard parameterization; IG: Increase government finance; IMF: Increase maximum inflation belief 
2. In population learning, the rule to name an experiment design is following. 

(1) The name of experiment design as described above. 
(2) Population size 
(3) Length of string 

3. In individual learning, the rule to name an experiment design is following: 
(1) The name of experiment design as described above. 
(2) Number of agents 
(3) Size of strings for each agents 
(4) Length of string 

4.  The rate of crossover is 100% and the rate of mutation is 3.3%. However, SGA cannot converge for all 
experiments using these parameterizations. After several trials, the rates of crossover and mutation used are 
90% and 0.33% in SGA. 
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Table X.2 Summary of Population Learning

M ean_L STD EV_L M ean_C STD EV_C SO C SO L SOL/SO C V _C V_L
SG A
no_scaling 617.462 238.0635 566.927 239.6544 0.1033 0.05417 0.524366 0.42273 0.38555
scaling 559.017 246.1257 519.962 241.0484 0.06583 0.04833 0.734176 0.46359 0.44028

M _SG A
TO P50 fail fail fail fail fail fail fail fail fail
SECTIO N fail fail fail fail fail fail fail fail fail
PR O fail fail fail fail fail fail fail fail fail
TO UR N A M EN T(S) 109.562 142.889 107.084 134.7031 0.2975 0.25833 0.868336 1.25792 1.30419

A G A
no_scaling 51.9569 25.91185 56.9332 44.60146 0.69833 0.61917 0.886636 0.7834 0.49872
scaling 53.44 29.0991 60.3688 56.64016 0.68917 0.6175 0.896009 0.93824 0.54452

M _AG A
TO P50 fail fail fail fail fail fail fail fail fail
SECTIO N fail fail fail fail fail fail fail fail fail
PR O fail fail fail fail fail fail fail fail fail
TO UR N A M EN T(S) 21.5337 4.368802 25.6165 20.75886 0.6867 0.5933 0.863987 0.81037 0.20288

STGA
no_scaling 65.8657 77.14256 66.5993 77.11294 0.9733 0.93083 0.956368 1.15786 1.17121
scaling 66.8069 73.84029 68.1252 77.77912 0.97167 0.91917 0.945969 1.14171 1.10528

M _STG A
TO P50 fail fail fail fail fail fail fail fail fail
SECTIO N fail fail fail fail fail fail fail fail fail
PR O(S) 115.45 83.5063 114.167 82.14307 0.98 0.93 0.94898 0.7195 0.72331
TO UR N A M EN T(S) 24.9135 18.10529 24.9799 18.26721 0.9967 0.963 0.966188 0.73128 0.72673

B D GA
no_scaling 36.6789 79.35905 38.6457 81.55487 0.97833 0.8825 0.902047 2.11032 2.16361
scaling 33.9494 65.87079 36.4437 71.65454 0.98417 0.90583 0.920406 1.96617 1.94026

M _BD G A
TO P50 fail fail fail fail fail fail fail fail fail
SECTIO N fail fail fail fail fail fail fail fail fail
PR O(S) 208.244 135.3196 201.924 132.2973 0.96 0.87 0.90625 0.65518 0.64981
R oulette(S) 167.879 112.6841 166.47 111.3596 0.9933 0.9367 0.943018 0.66895 0.67122
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Table X.3 Summary of Individual Learning 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M ean_L STD EV _LM ean_C STD EV _CSO C SO L SO L/SO C V _C V _L
STG A
no_scaling 142.083 179.741 142.083 179.741 0.67583 0.67583 1 1.26505 1.26505
scaling 149.033 181.767 149.033 181.767 0.64 0.64 1 1.21964 1.21964

B D G A
no_scaling 120.164 180.528 120.164 180.528 0.70833 0.70833 1 1.50234 1.50234
scaling 114.391 174.015 114.391 174.015 0.69667 0.69667 1 1.52123 1.52123
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Table XI.1 Open learning by all simulation 

F r e q u e n c y  s t g a b d g a a g a s g a s _ s t g a s _ b d g a s _ a g a s _ s g a p r o _ s t g a p r o _ b d g p r o _ a g a p r o _ s g a t _ s t g a r w _ b d g a t _ a g a t _ s g a o t h e r s
S _ 6 0 _ 3 0 _ 4 4.2422 4.22545 0.95389 0.45842 4.39899 4.31828 0.99127 0.49172 4.05527 4.0016 0.90251 0.46083 4.2744 4.27122 0.97066 0.49242 20.4909
I G F _ 6 0 _ 3 0 _ 4 4.24023 4.36096 0.93035 0.46599 4.2614 4.31822 0.97311 0.46902 4.13031 4.14735 0.9491 0.46599 4.22654 4.18528 0.96357 0.47748 20.4351
I M F _ 6 0 _ 3 0 _ 4 4.18024 4.19762 0.93615 0.4683 4.39266 4.35672 0.97074 0.48444 4.05301 4.04717 0.90905 0.44708 4.26602 4.18219 0.94607 0.4639 20.6986

M e a n  F r e q u e n c y 4.22089 4.26134 0.94013 0.46424 4.35102 4.33107 0.97837 0.48173 4.07953 4.06537 0.92022 0.45797 4.25565 4.2129 0.9601 0.47793 20.5415

F r e q u e n c y  S T G A B D G A A G A S G A
S _ 6 0 _ 3 0 _ 4 4.24272 4.20414 0.95458 0.47585
I G F _ 6 0 _ 3 0 _ 4 4.21462 4.25295 0.95403 0.46962
I M F _ 6 0 _ 3 0 _ 4 4.22298 4.19593 0.9405 0.46593

M e a n  F r e q u e n c y 4.22677 4.21767 0.94971 0.47047

 
 

Table XI.2 Open learning by convergence 
F r e q u e n c y s t g a b d g a a g a s g a s _ s t g a s _ b d g a s _ a g a s _ s g a p r o _ s t g a p r o _ b d g p r o _ a g a p r o _ s g a t _ s t g a r w _ b d g a t _ a g a t _ s g a o t h e r s
S _ 6 0 _ 3 0 _ 4 3.48841 5.9702 0.70902 0.32947 5.91846 6.42964 1.28353 0.62086 1.46854 1.52194 0.35017 0.32947 5.78932 3.72641 1.30505 0.56954 20.3502
I G F _ 6 0 _ 3 0 _ 4 3.05888 6.45671 0.74255 0.3311 5.61256 6.11037 1.35211 0.56754 1.54468 1.62688 0.38929 0.3311 5.97276 3.32117 1.38629 0.74302 20.1372
I M F _ 6 0 _ 3 0 _ 4 3.64235 5.80095 0.78271 0.33228 6.11142 6.20143 1.26963 0.6483 1.52577 1.49841 0.33466 0.15623 5.82435 3.64909 1.33029 0.66178 20.2304

M e a n  F r e q u e n c y 3.39655 6.07595 0.74476 0.33095 5.88081 6.24714 1.30176 0.61223 1.513 1.54908 0.35804 0.27227 5.86214 3.56556 1.34054 0.65811 20.2392

F r e q u e n c y S T G A B D G A A G A S G A
S _ 6 0 _ 3 0 _ 4 4.16618 4.41205 0.91194 0.46233
I G F _ 6 0 _ 3 0 _ 4 4.15897 4.37878 0.96756 0.49319
I M F _ 6 0 _ 3 0 _ 4 4.27597 4.28747 0.92932 0.44964

M e a n  F r e q u e n c y 4.20038 4.35943 0.93627 0.46839

 
 

Table XI.3 Open learning by first time convergence in each run 
F r e q u e n c y S O L / S O C M e a n S T D E V

S _ 6 0 _ 3 0 _ 4 1 0 0 1 1 0 3 . 5 8 9 0 . 5

I G F _ 6 0 _ 3 0 _ 4 1 0 0 1 1 1 1 . 7 8 9 2 . 5

I M F _ 6 0 _ 3 0 _ 4 1 0 0 1 1 2 0 . 3 7 6 . 5 4 2 6 5

A v e r a g e 1 0 0 1 1 1 1 . 8 8 6 7 8 6 . 5 1 4 2 2  
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Appendix A The Overlapping Generation Model Under Learning 

Consequence of individual agents’ beliefs 
Instead of maintaining the perfect foresight knowledge of future prices, all N 

agents who are in the first period of lifespan at time t forecast future prices using the 

simple linear model: 

                    ),()()]1([ tPtbtPF ii =+      (1) 

)(tbi  denotes the parameter that agent Ni ,...,2,1=  of generation t uses to forecast next 

period’s price. While all N agents use the same specification (1) for their forecast 

model, each agent may have a different belief regarding the appropriate value of the 

unknown parameter b. We restrict agent’s belief regarding the parameter b to fall in the 

interval: 

                           ,)(0 λ≤≤ tbi    ∀  ti, . 

The lower bound ensures that price forecasts are always nonnegative. The upper bound 

of λ represents the highest inflation factor that agents would need to forecast in order to 

achieve a feasible equilibrium. 

Agents’ forecast take place in a sequence of periods, indexed by ∞= ,...2,1t  

for each agent. A matrix represents these forecasts below: 
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Encoding Agent’s Belief 
We use binary string to represent agent’s belief. Let the bit string for agent i at 

time t be given by the vector, i.e., a chromosome: 

                    )(),...,(),( 21 tatata ilii  

where }1,0{)( ∈taij . 

The mapping from a binary string ilii aaa ,...,, 21  into a real number, the 

parameter estimate )(tbi  in our case is straightforward and completed in two steps: 

(1) converting the binary string ilii aaa ,...,, 21  from the base 2 to base 10: 
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                    ∑
=

−•=
l

j

jl
iji tatd

1

2)()(  

(2) finding a corresponding real number )(tbi  

                    λ•=
max

)(
)(

d

td
tb ii  

where ∑
=

−=
l

s

sld
1

max 2 , the maximum possible decoded value, 

and 21 / ww=λ , the maximum gross inflation factor that the agent would need 

to forecast in order to achieve a feasible equilibrium. Therefore, a string, (1010) 

represents a real number 2.667, since 

0123
2 202120211010 ×+×+×+×== )(di = 10 

0123
max 21212121)1111( ×+×+×+×==d = 15 

and     667.24
15

10 ≈•=ib , λ = 4. 

Updating beliefs 

Aggregate savings of the economy is given by: 

∑
=

=
N

i

i
t )t(s)t(S

1

      (2) 

Let this equation equals to equation (8) in appendix A and use equation (7) in appendix 

A to substitute out for real money balances. Therefore, the realized inflation factor 

)t( 1−β  is given by: 

Ng)t(S

)t(S

)t(P

)t(P
)t(

−
−=

−
=− 1

1
1β       (3) 

Once )t( 1−β  is known, agents’ forecasts made by generation t-1 can be evaluated. 
Also, the realized lifetime utilities of agents, born at period t-1, is evaluated. We use the 

lifetime utility as fitness of entity in the genetic algorithm. 
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Appendix B. Population Learning 
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Appendix C Individual Learning 
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Appendix D Open Learning 
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