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Abstract

This paper presents an e¢cient method for pricing discrete Asian options. Its contribution

to the existing literature consists in targeting at smile and non proportional dividend e¤ects.

Using an homogeneity property, we show how to reduce an n+ 1 dimensional problem to a 2

or 3 dimensional one. We derive a PDE for the Asian option and solve it with the standard

Crank Nicholson method. The dimension reduction impose us to interpolate and extrapolate

our conditional price at each …xing date. Within a determistic volatility structure consistent

with the smile, the homogeneity property is roughly conserved, thanks to a vega correction

term. This allows us to stay in a two dimensional framework as in the Black Scholes case.

We examine di¤erent numerical speci…cations of our …nite di¤erence (interpolation method,

grid boundaries, time and space steps) as well as the extension to the case of non proportional

discrete dividends, using a jump condition. We benchmark our results with Quasi Monte-Carlo

simulation and a multi-dimensional PDE.

1 Introduction

Asian options are securities with a payo¤ depending on the average value of an underlying stock,

index, interest rates over some time period. First introduced in Tokyo1, Asian Options are among
¤This is a preliminary version. All comments are welcome. We would like to thank Nicole El Karoui for interesting

remarks. All errors are indeed ours.
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1hence the name of Asian options as opposed to American, European or Bermudean ones.
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the most popular path-dependent options, since their characteristics capture, in a way, the whole

trajectory of the underlying, with a reduced exposure to volatility in most cases. The common

belief that these options should be cheaper than their corresponding string of vanilla options is

not strictly accurate. However, it happens to often be the case in various practical cases (see

Geman and Yor (1993)) for a discussion). In addition, Asian options are less sensitive to possible

spot manipulations or extreme movements at settlement and o¤er much ‡exibility in the way the

average is settled. From a trader’s point of view, the delta of an Asian option naturally decreases

since part of the average becomes known after an observation date. The hedging strategy is

therefore eased, compared with regular options. Consequently, Asian options have become very

attractive for investors since they provide a customized cheap way to hedge periodic cash-‡ows (see

Longsta¤ (1995) for a discussion of the e¢ciency of Asian interest-rate options for corporations

with reasonably predictable cash ‡ows). Nonetheless, such options have turned out to be much

more di¢cult to value than standard options.

Previous research was intensively focused on continuous time Asian options using Black-Scholes

(1973) assumptions. However, traded Asian options are based on a discrete time sampling and the

underlying security can exhibit a pronounced volatility smile as well as non-proportional dividends.

The existing very extensive literature has at least two major drawbacks. Previous works

attempting at approximate closed forms solutions fail to adapt to more complex volatility models,

like the Dupire (1993a), (1993b) and Deman and Kani (1994) ones, as well as to American type

features. These works include the ones of Vorst (1996), (1992), Geman and Yor (1993), Turnbull

andWakeman (1991), Levy (1992), Jacques (1996), Zhang (1996) and Milevsky and Posner (1997).

Vorst (1992) approximated the arithmetic Asian option with a modi…ed geometric one. Geman

and Yor (1993) found closed formula for the Laplace transform of the option, by means of Bessel

processes. Turnbull and Wakeman (1991) used a lognormal density to approximate the sum

of lognormal density. Levy (1992) and Jacques used an Edgeworth expansion to match higher

moments. Zhang (1995) (1998) developed a Taylor expansion to derive an approximation based on

the geometric Asian option. Recently, Milevsky and Posner (1997) suggested to use the asymptotic

limit of the sum of lognormal density known as the reciprocal gamma density.

Works on numerical methods do not account for volatility smile and discrete Asian options:

Kemma and Vorst (1990), Hull and White (1987), Carverhill and Clewlow (1992), Benhamou

(2000), Rogers and Shi (1995), He and Takahashi (1996), Alziary et al. (1997) and Forsyth et al.

(1998). Kemma and Vorst (1990) used Monte Carlo simulations, Hull and White (1987) binomial

trees, Carverhill and Clewlow (1992) and Benhamou (2000) Fast Fourier Transform techniques,

Roger and Shi (1995), He and Takahashi (1996), Alziary et al. (1997) …nite di¤erences and Forsyth

et al. (1998) …nite elements.

The motivation of this paper is to provide an e¢cient method for pricing discrete Asian options

with a deterministic volatility as speci…ed in Dupire (1993a), (1993b) and Deman and Kani (1994)
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as well as non-proportional discrete dividends. These two features are far more realistic than Black

Scholes assumptions for equity derivatives pricing. Using an homogeneity property, we show how

to reduce an n+1 dimensional problem to a 2 to 3 dimensional one. This is of considerable interest

for the e¢cient computation of discrete Asian options. This generalizes to discrete Asian options

the dimension reduction technique found for continuous Asian options by Rogers and Shi (1995).

We show that the homogeneity property is coarsely conserved within a deterministic volatility

structure, consistent with the smile as in the Dupire model. This is also true for the issue of non

proportional discrete dividends, solved with a jump condition. We can still infer call prices from

distinct ones, by means of the homogeneity property. We derive a PDE for the computation of the

Asian option and solve it with the standard Crank Nicholson method. Because of the dimension

reduction, we need to interpolate our conditional price at each …xing dates. The rest of the article

tackles the issue of numerical speci…cations for the …nite di¤erence method (grid boundaries, time

and space steps). We compare our result with a Quasi Monte Carlo simulation based on Sobol

sequences.

The remainder of this paper is organized as follows. In section 2, we explain how to reduce

the dimension of the problem using homogeneity property and a conditional expectation method.

We introduce a modi…ed strike variable. This leads to a 3 dimensional PDE which in the case

of the Black Scholes di¤usion is only 2 dimensional. In section 3, we explain how to account

for non homogeneous situation either implied by the smile e¤ect or by discrete non proportional

dividends. Section 4 compares our method with a benchmark price given by a Sobol Quasi Monte

Carlo simulation. We conclude brie‡y in section 6 giving some further developments.

2 How to reduce the Dimension?

2.1 Mathematical Framework

We consider a continuous time trading economy with an in…nite horizon. The uncertainty is

characterized by a complete probability space (;F ; Q) where  is the state space, F is the

¾-algebra representing the measurable events, and Q is the risk neutral probability measure,

assumed to be unique in a complete market with no arbitrage opportunity. The information

evolves according to the augmented right continuous complete …ltration fFt; t 2 R+g generated
by a standard one dimensional Brownian Motion fWt; t 2 R+g. We assume the evolution of the
underlying price process (St)t2R+ is described by a Stochastic Di¤erential Equation (2.1)

dSt = rtStdt+ St¾ (t; St)dWt (2.1)

with an initial condition S0 = x, rt is the deterministic risk free interest rate and ¾ (t; St) is either

constant (Black Scholes model) or deterministic (like in the Dupire and CEV models). We discuss

the extension of this framework to the stochastic volatility case in section 4.1.4. The solution for
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the underlying process is given by

St = xe
R t
0 (ru¡¾2(u;Su))du+

R t
0 ¾(u;Su)dWu

= Xve

R t
v(ru¡¾2(u;Su))du+

R t
v ¾(u;Su)dWu

for 0 · v · t. It is worth noticing that the underlying process is not perfectly homogeneous

(of degree 1) with respect to x, as soon as the volatility structure ¾ (t; St) depends on St. We

denote by ¹ a density measure over the interval [0; T ] with a continuous density ½t and some

atoms
Pn
i=1 ®i±ti at points (ti)i=1::n representing some …xing dates with tn = T; and (®i)i=1::n

some weights, either positive or negative. The averaging measure ¹ is not necessary absolutely

continuous with respect to the Lebesgue measure and is not necessary of total measure 1. This

enables us to be very general, allowing for discrete or continuous-time averaging, …xed or ‡oating

strike as explained in exhibit 1. We focus at the following option payo¤:

(AT ¡K)+

where K is a real number. The running average given by:

At =

Z t

0
Su¹ (du)

Asian option

type

Discrete

underlying

Continous

underlying

Fixed strike

³Pn
i=1 St
n ¡K

´+
¹ (dt) =

Pn
i=1 ±ti(t)

n

µR T
0 Stdt

T ¡K
¶+

¹ (dt) =
1[0;T ](t)dt

T

Floating strike

³Pn
i=1 St
n ¡ ST

´+
¹ (dt) =

Pn
i=1 ±ti(t)
n ¡ ±T (t)

µR T
0 Stdt

T ¡ ST
¶+

¹ (dt) =
1[0;T ](t)dt

T ¡ ±T (:)

Exhibit 1: Payo¤ and measure for di¤erent type of Asian option the sign ±u (:) denotes the Dirac

function at the point u 2 R)

2.2 Determination of a small dimension PDE

A brute force PDE for a discrete Asian option with n …xing dates would consist in a n + 1

dimensional PDE. The option depends on n variables St1 ; :::; Stn and the time t. This becomes soon

intractable because of the high dimension of the problem. The complexity of a …nite di¤erence

method increases exponentially with respect to the dimension. To reduce the dimension, we

suggest two strategies: …rst, we extend the method of Rogers and Shi (1995), derived for the

Black Scholes case, to non-constant volatility structures as imposed by the smile e¤ect. Indeed,
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we see that this method is only appropriate for homogeneous di¤usions. However, for a di¤usion

implied by the Dupire method, this is inappropriate. A second approach, which can o¤er a solution

to this particular case, exploits the homogeneity property of the option underlying and price.

2.2.1 Traditional PDEs

Before embarking into some dimension reduction consideration, we show how to adapt traditional

PDEs for the Asian option to non-constant volatility structures. The standard PDE derived

for continuous-time Asian options (as explained in Ingersoll (1987) or Forsyth, Vetzal and Zvan

(1998)) leads to the following expression in the case of non constant volatility structure:

Ct +
1

2
¾2 (t; St)S

2
tCss + rSCs + SCI ¡ rC = 0

where Ct respectively Cs; CI ; Css denotes the …rst order partial derivative function with respect

to the time, respectively the underlying, the running sum or the second order partial derivative

function with respect to the underlying. When deriving the PDE with respect to the running

average denoted by A, we …nd the following PDE (see for instance Barraquand and Pudet (1996))

Ct +
1

2
¾2 (t; St)S

2
tCss + rSCs +

1

T
(St ¡At)CA ¡ rC = 0

The di¤erence with the standard Black Scholes PDE comes from the dependence in the underlying

of the volatility structure. For discrete Asian options, these equations transform to the same one

dimensional PDE:

Ct +
1

2
¾2 (t; St)S

2
tCss + rSCs ¡ rC = 0

with the condition at the observation date

C
³
t¡i ; S;At¡i

´
= C

³
t+i ; S;At¡i

+ ®tiSti

´
where C (t; S;At) denotes the call value at time t with underlying S and average At. This repre-

sents an in…nite set of one-dimensional PDEs and is computationally time-consuming.

2.2.2 Change of variable

As suggested by Rogers and Shi (1995) in the case of the Black Scholes model, we can use a

change of variable to reduce the dimension. Extending their works, we show that the PDE to be

satis…ed by the option price is a three dimensional one. The price of a call option is expressed as

the expected value of the discounted pay-o¤ under the risk neutral probability measure

Ct = EQ

"
e¡

R T
t
rsds

µZ T

0
Ss¹ (ds)¡K

¶+
jFt
#

(2.2)

We de…ne

f (t; k; St) = EQ

"µZ T

t

Ss
St
¹ (ds)¡ k

¶+
jFt
#

(2.3)
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The option price is given by

Ct = e¡
R T
t
rsdsEQ

"µZ T

0
Ss¹ (ds)¡K

¶+
jFt
#

(2.4)

= e¡
R T
t
rsdsStEQ

"ÃZ T

t

Ss
St
¹ (ds)¡ K ¡ R t0 Ss¹ (ds)

St

!+
jFt
#

= e¡
R T
t
rsdsStf

Ã
t;
K ¡ R t0 Ss¹ (ds)

St

!
= e¡

R T
t rsdsStf (t; Yt; St) (2.5)

where

Yt =
K ¡ R t0 Ss¹ (ds)

St

By Itô’s formula,

dYt =
¡¡¹ (dt)¡ rtYt + ¾2 (t; St)Yt¢dt¡ Yt¾ (t; St) dWt

Since e
R T
t rsdsCt is a martingale, its deterministic part should be equal to zero. We notice that the

function f : t; k; s 7! f (t; k; s) is jointly continuous in t; k and s, decreasing in t and decreasing

convex in k. Assuming that the function f has enough smoothness to apply Itô’s formula to the

equation (2.5), we get

d
³
e
R T
t
rsdsCt

´
= St

0BB@
ft (t; Yt; St)dt+ fk (t; Yt; St)dYt +

1
2fkk (t; Yt; St) hdYti

+fs (t; Yt; St) dSt +
1
2fss (t; Yt; St) hdSti

+fks (t; Yt; St) hdYt; dSti

1CCA
+f (t; Yt) dSt + hdSt; df (t; Yt; St)i

the deterministic term should be equal to zero, leading to

0 = St

0@ ³
ft + rtf +

1
2 (Yt¾ (t; St))

2 fkk ¡ rtYtfk
´
dt¡ fk¹ (dt)

+
¡
rtfs +

1
2¾
2 (t; St)Stfss ¡ Yt¾2 (t; St) fks

¢
dt

1A (2.6)

If the measure ¹ has a continuous density ½t and some atoms
Pn
i=1 ®i±ti ; and if we denote by

g (t; y; s) = e¡
R T
t rsdsf (t; y; s) the equation (2.6) can be rewritten as the following PDE

@

@t
g +Ag = 0 (2.7)

with

A =
0@ 1

2y
2¾2 (t; s) @

2

@y2
¡ (½t +

Pn
i=1 ®i±ti + rty)

@
@y

+1
2¾
2 (t; s) s @

2

@s2 + rt
@
@s ¡ y¾2 (t; s) @

@s@y

1A
at a point of an atom ti, we get by an arbitrage argument (the value of g has to be continuous)

g
¡
t¡i ; y

¢
= g

¡
t+i ; y + ®i

¢
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The boundary condition is then equal to

g (T; y; s) = (®T ¡ y)+ (2.8)

The call price is obtained by:

Ct=0 = xg

µ
0;
K

x
; x

¶
The variable Yt can be interpreted as a conditional strike as shown in the next subsection.

2.2.3 Homogeneous case

For an homogeneous underlying (like the Black Scholes model), the function f (t; k; St) does not

depend on the underlying price St. It reduces to

f (t; k) = EQ

"µZ T

t
Ss¹ (ds)¡ k

¶+
jSt = 1

#
(2.9)

as shown in Rogers and Shi (1995) for instance. This property can also be applied to stochastic

volatility models (like in Hull and White (1987), Wiggings (1987), Melino and Turnbull (1990),

Stein and Stein (1991), Amin and Ng (1993) and Heston (1992)).

Furthermore, for the Black Scholes model, the volatility structure is a constant. The PDE

(2.7) simpli…es into a two dimensional one:

@

@t
g + eAg = 0 (2.10)

with the di¤usion operator given by:

eA = 1

2
y2¾2

@2

@y2
¡
Ã
½t +

nX
i=1

®i±ti + rty

!
@

@y

and still the same boundary conditions (2.8). The result is strong. For the two types of options,

…xed and ‡oating strike ones, the PDE is only two dimensional. However, this property is not

easily adaptable to more complex volatility structure.

One of the important but often disregarded property of a geometric Brownian motion is its

homogeneity property. This is an appropriate method for the Asian option when looked at as a

conditional expectation calculation. The price of the discrete Asian option can be rewritten as

the following conditional expectation:

C = EQ

"
EQ

"Ã
e¡

R T
0 rsds

Ã
nX
i=1

®iSt ¡K
!+!¯̄̄̄

¯St1 ; :::; Stn¡1
##

(2.11)

Such a conditional expectation can be interpreted as a call option with a strike equal to
³
K ¡Pn¡1

i=1 ®iSt
´
.

The homogeneity (of degree one) of the call option price leads to the following remark. Denoting

by C (x; k) the call price with an initial underlying level of x and a strike of k, we have

C (x; k) = C

µ
xk

k0
; k0

¶
k

k0
(2.12)
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The knowledge of call prices for one strike but di¤erent underlying levels is consequently equivalent

to the one for all pair of strikes and underlying levels. The …nite di¤erence method provides call

prices for di¤erent values of the underlying. Using an interpolation, we can infer a continuum

of prices of the call option for di¤erent underlying value. This implies the knowledge of any call

price.

The algorithm works as follows: it implies to calculate the call price between two …xing dates

for a given level of strike. This is done by a Crank Nicholson method with a backward propagation.

When the previous …xing date is reached, we infer call prices for di¤erent levels of strike by means

of the homogeneity property. We continue the backward propagation.

3 PDE solving for the Homogeneous case

We concentrate on discrete Asian options, often of more interest. The equation in the case of the

Black Scholes model is either the two dimensional one as explained on the preceding section or

the simple Black Scholes equation, with at each …xing dates, the use of the homogeneity property.

3.1 Discretisation of the PDE: Crank Nicholson Method

We use a Crank Nicholson …nite di¤erence. The straightforward discretisation of the PDE derived

for the Asian option provides a spurious solution. Indeed, it is more appropriate to use the

logarithmic change of variable, as argued by Brennan and Schwartz (1978), Hull and White (1990).

In the latter case, the di¤usion operator is uniformly elliptic. We denote by Ci;j the discretised

function where the …rst variable i stands for the time, whereas the second one j for the space

variable. We get the following discretised scheme:

Ci+1;j ¡Ci;j
¢T

+

µ
r ¡ ¾

2

2

¶µ
Ci+1;j+1 ¡Ci+1;j¡1

4¢S
+
Ci;j+1 ¡Ci;j¡1

4¢S

¶
+
¾2

2

µ
Ci+1;j+1 ¡ 2Ci+1;j +Ci+1;j¡1

¢S2
+
Ci;j+1 ¡ 2Ci;j +Ci;j¡1

¢S2

¶
= r

µ
Ci+1;j +Ci;j

2

¶
or after grouping the terms

ai;j+1Ci;j+1 + ai;jCi;j + ai;j¡1Ci;j¡1

= ai+1;j+1Ci+1;j+1 + ai+1;jCi+1;j + ai+1;j¡1Ci+1;j¡1

with

ai+1;j+1 =
³
r ¡ ¾2

2

´
1

4¢S +
¾2

2
1

2¢S2
ai+1;j =

1
¢T ¡ ¾2

2
2

2¢S2
¡ r 12

ai+1;j¡1 = ¡
³
r ¡ ¾2

2

´
1

4¢S +
¾2

2
1

2¢S2
ai;j+1 = ¡

³
r ¡ ¾2

2

´
1

4¢S ¡ ¾2

2
1

2¢S2

ai;j =
1
¢T +

¾2

2
2

2¢S2 +
r
2 ai;j¡1 =

³
r ¡ ¾2

2

´
1

4¢S +
¾2

2
2

2¢S2

This is solved by a standard LU method as explained in Press et al. (1992).
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3.2 Interpolation and Extrapolation at observation dates

In order to illustrate this methodology, let’s take the example of a very simple Asian option, that

is a …xed strike, two …xings average call. We want to evaluate

C0 = EQ

"
e¡rt2

µ
St1 + St2

2
¡K

¶+
jF0
#

We use the Crank-Nicholson algorithm with a …nal condition assuming that St2 = K for

instance. The grid will exhibit the values of

Ci;j (K) = Ci (Sj;K) = EQ

"
e¡r(t2¡ti)

µ
K + St2
2

¡K
¶+

jSti = Sj
#

i.e. half the price of a call of strike K, for ti 2 [t1; t2] and Sj 2 [Smin; Smax].
However, from date t1, we rather need the following values for Sj 2 [Smin; Smax]

Ci;j = EQ

"
e¡r(t2¡t1)

µ
Sj + St2

2
¡K

¶+
jSt1 = Sj

#

that is the price of a call of strike 2K ¡ Sj. We therefore use the homogeneity property of the
price of the call and we can easily replace the values we have on the grid by the values we need:

Ci;j =
2K ¡ Sj
K

Ci

µ
KSj

2K ¡ Sj ;K
¶

Depending on j, there will be di¤erent ways to compute these values.

² if Sj > 2K, the call option will be exercised for any value of St2 . Therefore, we have

Ci;j =
St2e

¡r(t2¡t1) + St2
2

¡Ke¡r(t2¡t1)

² if KSj
2K¡Sj 2 [Smin; Smax], we will interpolate using the values we already have on the grid.

We have implemented a simple linear interpolation.

² if KSj
2K¡Sj =2 [Smin; Smax], we have to extrapolate outside the range of values already computed.

For this kind of very in-the-money or very out-of-the-money option prices, we can assume

that

Ci;j =

8<: 0 for KSj
2K¡Sj < Smin

2K¡Sj
K

³
KSj
2K¡Sj ¡Ke¡r(t2¡t1)

´
for KSj

2K¡Sj > Smax

3.3 Numerical Results

This methodology gives very satisfactory results. Exhibits 2 and 3 compare the price of the Asian

call computed using Monte Carlo simulation with 106 paths and a PDE on a 100x100 grid with S

ranging +/-3 standard deviations.
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Strike 100% 110%

PDE 24.47 20.81

Monte Carlo 24.46 20.81

Exhibit 2: Price of the Asian call with r = 0:05, t1 = 1, t2 = 2 and ¾ = 0:5

Strike 100% 110%

PDE 12.40 7.87

Monte Carlo 12.40 7.87

Exhibit 3: Price of the Asian call with r = 0:05, t1 = 1, t2 = 2 and ¾ = 0:2

4 Extension to the non-homogeneous case

4.1 Taking account for the Smile

4.1.1 The di¤erent methods for the smile

The volatility smile is a key concept in option pricing. Research have concentrated over the last

ten years extensively on this subject leading to a huge literature. Traditionally, it is divided into

two di¤erent approaches: parametric and non parametric ones.

In the …rst type of methods, the equation of the evolution of the underlying process is speci…ed.

This description can consist either in a continuous di¤usion process with a so called deterministic

volatility (Rubinstein (1994), Dupire (1993b) and Derman and Kani (1994)) or a continuous

di¤usion with a stochastic volatility process (Hull and White (1987), Wiggings (1987), Melino

and Turnbull (1990), Stein and Stein (1991), Amin and Ng (1993) and Heston (1992)) or a model

with jumps (Aase (1993), Ahn and Thompson (1988), Amin (1993), Bates (1991), Jarrow (1984),

Merton (1976)).

Other works, close in the spirit, assume constant elasticity of volatility distribution often called

power-law (Rubinstein (1994), Cox Ross (1976)). This has also been reformulated by means of

a mapping principle between normal and lognormal distributions (Hagan (1998), Pradier and

Lewicki (1999)).

The second type of methods is the inference of the underlying distribution from market data,

with no assumption on the evolution of the underlying process. This has been called the expansion

method. One infers the di¤erent terms of the expansion and can rebuild the distribution (Jarrow

and Rud (1982), Bouchaud et al. (1998), Abken et al. (1996)).
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4.1.2 Case of deterministic volatility

The deterministic volatility model consistent with the smile has been introduced by Dupire

(1993a), (1993b), Rubinstein (1994), Derman and Kani (1994). It assumes the volatility struc-

ture be a function of the time and the underlying process. The interest of this method lies in

its little assumption about the underlying evolution. The ”local volatility” (as opposed to the

implied Black Scholes volatility) is proved to be only determined by market data as long as there

are enough distinct call options quoted. This implies a liquid market with various call options.

It is unfortunately not often the case; and an interpolation procedure is required. However, the

main drawback is the instability of the local volatility surface over time and especially for long

maturities, for which the inferred structure is frequently not very realistic.

With a known local volatility surface, we can derive the option price as being solution of the

modi…ed Black Scholes equation:

Ct + rtStCs +
1

2
¾2 (t; St)S

2
tCss = rC

or using the change of variable X = log (S), we get to

Ct +
¡
rt ¡ ¾2 (t; x)

¢
Cx +

1

2
¾2 (t; x)Cxx = rC

The Crank Nicholson method leads to the following discretisation scheme

ai;j+1Ci;j+1 + ai;jCi;j + ai;j¡1Ci;j¡1

= ai+1;j+1Ci+1;j+1 + ai+1;jCi+1;j + ai+1;j¡1Ci+1;j¡1

with

ai+1;j+1 =

µ
r ¡ ¾(ti+1 ;Sj)

2

2

¶
1

4¢S +
¾(ti+1 ;Sj)

2

2
1

2¢S2
ai+1;j =

1
¢T ¡ ¾(ti+1;Sj)

2

2
2

2¢S2
¡ r 12

ai+1;j¡1 = ¡
µ
r ¡ ¾(ti+1 ;Sj)

2

2

¶
1

4¢S +
¾(ti+1 ;Sj)

2

2
1

2¢S2
ai;j+1 = ¡

³
r ¡ ¾(ti;Sj)

2

2

´
1

4¢S ¡ ¾(ti;Sj)
2

2
1

2¢S2

ai;j =
1
¢T +

¾(ti;Sj)
2

2
2

2¢S2
+ r

2 ai;j¡1 =
³
r ¡ ¾(ti;Sj)

2

2

´
1

4¢S +
¾(ti;Sj)

2

2
2

2¢S2

4.1.3 Non-homogeneity with a parabolic parameterisation of volatility

A volatility parameterisation widely used on the market is a parabolic dependence with respect to

the strike. We have used the following model for the Black Scholes volatility in our computations

§BS (K;T ) = §BS0

Ã
1 + Sm

K ¡ F (T )
F (T )

+Cu

µ
K ¡ F (T )
F (T )

¶2!
(4.1)

where F (T ) is the forward of maturity T , Sm and Cu are some parameters. Usually Sm < 0 and

Cu > 0.
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We have to recall that not all values of Sm and Cu are admissible over a given range for K.

Indeed, with such a parameterisation, the price of the call may not be convex in K and this allows

butter‡y arbitrage opportunities (see Hull (1997) for a description of butter‡y strategies). We

suppose that Sm and Cu are such that the call prices are convex for the (K;T ) values we use in

the PDE algorithm.

Within this model, the volatility for a given absolute value of the strike depends on the value

of S0. The law of St depends not only on St
S0
, but also on S0, and the call prices are no longer

homogeneous of degree 1 with respect to (S0;K).
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Figure 1: Prices of a call with a strike equal to 110% of spot. The parameters are r = 0:05 , T = 1,

§BS0 = 0:5, Sm = ¡0:25, Cu = 0:015.

As shown on Figure 1, acting like in the homogeneous case would induce errors. We propose

to correct these errors using the vega of the call price, with the following formula

C
¡
¸x; ¸K;§BS(¸K)

¢ ' ¸ £C ¡x;K;§BS(K)¢+ V egaBS ¡x;K;§BS(K)¢ ¡§BS(¸K)¡§BS(K)¢¤
(4.2)

This correction proves to be satisfactory for in-the-money and not very out-of-the-money calls.

As shown on Figure 2, it is still acceptable for very out-of-the-money calls. We have to keep in

mind that the price of very out-of-the-money calls is small, the error should stay small in absolute

value.
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Figure 2: Prices of a call with a strike equal to 180% of spot. The parameters are r = 0:05, T = 1,

§BS0 = 0:5, Sm = ¡0:25, Cu = 0:015.

We can apply this technique to the interpolation described in Section 3.2. We have to be

careful, however, since the Black-Scholes volatility we use in Equation 4.2 is a forward start

volatility, starting on date t1, while Equation 4.1 gives a volatility valid for options starting at

t = 0. Computing the forward implied Black-Scholes volatility for all the strikes we need would

add a dimension to our PDE algorithm. Instead, we use the implied local volatility at time t1.

This induces another error, but two facts reduce the impact of this error. First, the smile of

market volatility tends to vanish with maturity. Second, if the …xings of the Asian option are

close in time, as it is often the case, the local volatility is a good approximation of the forward

Black-Scholes volatility between two …xings. Finally, this methodology seems to yield good results

(see Section 5.)

4.1.4 Case of stochastic volatility

We brie‡y explain how to extend the results of this paper to stochastic volatility models. This

type of models assumes the volatility structure to be stochastic (models of Hull and White (1987),

Wiggings (1987), Melino and Turnbull (1990), Stein and Stein (1991), Amin and Ng (1993) and

Heston (1992)). A stochastic volatility structure appears to be more realistic for long maturities.

However, it is still more an art than a science to calibrate this kind of models. These models lead

to add another dimension to the PDE so as to account for the stochastic volatility. In this paper,

we did not implement this type of models.

4.2 Modelling dividends

Dividend modelling is a complicated issue for equity derivatives pricing. Dividends can be dis-

crete or continuous, proportional or not. It is worthwhile examining for a given problem the

implication(s) of assumptions on dividends in terms of realism, simplicity, and e¢ciency.
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4.2.1 Advantage of continuous dividends

Continuous proportional dividends consists in a very tractable solution. Indeed, this assumption

changes nothing but the risk free rate, which is diminished by the continuous yield of dividend

stream. This hypothesis is often appropriate for an index. The di¤erent dividends have di¤erent

issue dates and smoothens the dividend component. It is not the case for a single stock.

4.2.2 Why using discrete dividends?

For a single stock, it is more appropriate to introduce a non proportional discrete dividend. A

more complicated assumption could be as well to have a stochastic dividend. However, we assume

that the amount of the dividend is known.

We use the jump condition in our PDE algorithm

C
¡
t¡i ; S

¢
= C

¡
t+i ; S ¡D

¢
where C (t; S) stands for the option price at time t with and underlying S. D is the discrete

non-proportional dividend.

4.2.3 E¤ect on homogeneity

Even with a constant volatility, a non proportional dividend prevents us from using the homo-

geneity property of the Black-Scholes model. The presence of a non proportional dividend shifts

the location of the distribution of StS0 by
D
S0
. As in Section 4.1.3, the law of St depends not only

on St
S0
, but also on S0.

As long as the dividend is small compared to the underlying price, we can assume that the

e¤ect of the non-proportional dividend on the call price doubles if the spot value of the underlying

is divided by two. We therefore propose the following approximation

C (¸x; ¸K;D) ' ¸C (x;K;D) + (1¡ ¸) (C (x;K;D)¡C (x;K; 0)) (4.3)

Figure 3 shows that this approximation works well. For important dividend values, however,

we have to be careful of negative option prices. A coarse way around this problem is to ‡oor prices

to zero. We recall that call prices at these low spot levels are already very small. The absolute

error should not be very important.
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Figure 3: Prices of an at-the-money call. The parameters are r = 0:05, T = 2, ¾ = 0:5, and a dividend

of 25 at t = 1.

In our implementation, we run twice the algorithm between two …xings: once with the divi-

dends and once without. We then have all the data we need to use Equation 4.3.

5 Numerical Results

This section presents numerical results of our methodology in a simple framework. We price and

Asian call with two …xings on dates t1 and t2. The continously compounding risk-free interest

rate is supposed to be constant. The ex-dividend date is t1+t2
2 . Finally, we have modelled the

local volatility directly

¾ (t; S) = ¾0

Ã
1 + sm

S ¡ Sref
Sref

+ cu

µ
S ¡ Sref
Sref

¶2!
(5.1)

with boundaries at 0 and 10. More realistic applications would use an implied local volatility

instead, as described in Section 4.1.2.

Our results will be benchmarked with a 3-dimension PDE solver.

5.1 The choice of the …nite-di¤erences mesh

Exhibit 4 presents results for di¤erent numbers of time steps and space steps, as well as di¤erent

ranges for the underlying level.

time and space steps 20 50 100 200

1 standard deviation 24.18 24.15 24.13 24.11

3 standard deviations 24.32 24.44 24.46 24.47

6 standard deviations 23.67 24.37 24.44 24.46

Exhibit 4: Prices of an at-the-money Asian call with t1 = 1, t2 = 2, ¾ = 0:5 and no smile or

dividend.
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In the remaining calculations, we take a 100x100 mesh and a range of 3 standard deviations

for the underlying, which seems to be a good compromise between precision and computing time.

5.2 The ”vega correction” in the case of a volatility smile

Figure 4 compares the value pro…les we get on our grid at a date just before the …xing, i.e. just

after we have used our interpolation procedure. Thanks to the vega correction of Section 4.1.3,

the interpolation pro…le matches quite well the ”real” pro…le obtained through a 3-dimensional

PDE.
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Figure 4: Price of a 110% call just before the …xing. The parameters are ¾ = 0:5, sm = ¡1, cu = 0 and
no dividend.

Consequently, the accuracy of upfront prices is satisfactory, as shown on Exhibit 5

sm parameter 0 -0.2 -0.5 -1

3D benchmark 20.81 20.47 19.92 18.93

with vega correction 20.81 20.51 19.95 18.91

without vega correction 20.81 20.50 20.00 19.08

Exhibit 5: Prices of a 110% Asian call with ¾0 = 0:5, cu = 0 and no dividend.

5.3 The ”dividend correction” in the case of non-proportional dividends

The dividend correction of Section 4.2.3 gives good results on the …xing date pro…le (see Figure

5.)
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Figure 5: Price of an at-the-money call just before the …xing. The parameters are ¾ = 0:5, no smile and

a dividend of 30.

And this transposes into very good results for the upfront price, as shown on Exhibit 6.

dividend value 0 5 10 30

3D benchmark 24.46 23.38 22.25 18.22

with dividend correction 24.46 23.36 22.26 18.25

without dividend correction 24.46 23.55 21.77 19.45

Exhibit 6: Prices of an at-the-money Asian call with, ¾ = 0:5 and no smile

6 Conclusion

In this paper, we have seen that we can price an Asian option e¢ciently with a 2-dimension

PDE method. The contribution of this paper lies in two ways. We have examined the particular

case of the discrete Asian option which is often ignored in the previous literature. We have used

the homogeneity of the Black Scholes underlying to reduce the dimension. We have extended the

results of Rogers and Shi (1995) to non-constant volatility structure. We have seen the importance

of the homogeneity property. It is only in the case of the Black Scholes di¤usion that the problem

reduces to a two dimensional one. Indeed, with a deterministic volatility like in the Dupire (1993a),

(1993b) and Derman and Kani (1994) models, an other variable needs to be added. This is because

we have lost the homogeneity property. However, this homogeneity is coarsely satis…ed and can

be corrected. This enables us to keep on using the backward propagation in two dimensions as

in Black Scholes. We have examined the impact of certain numerical speci…cation for the …nite

di¤erence method as well as the impact of discrete dividends.

There are many possible extensions to this paper. The …rst one would consist in …nding addi-

tional features on the relationship between the di¤erent calls for non-constant volatility structure.
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The homogeneity seems to handle this quite well. However, we have no boundary on the error

term. A second enlargement of this work concerns other path dependent options, like ratchet

options. The approach adopted here should be adaptable to this kind of options.
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