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Abstract 
 

Genetic programming (GP) is a random search computer algorithm that parallels 

Darwin’s theory of evolution and survival of the fittest. It finds application in 

pattern recognition and optimization problems in the natural sciences, 

engineering, business, and social sciences. This paper introduces GP and uses a 

GP computer program to evolve time-series models especially relevant for 

applied statisticians. Prediction models are evolved for simulated noise-free and 

noisy data as well as for real world Canadian lynx and sunspot numbers. 

Forecasts produced by the fittest of the genetically evolved models are evaluated 

and compared with available forecasts in prior studies.  

 

KEY WORDS:  Time-series prediction; Computational methods; Nonlinear 

regression; Canadian lynx data; Sunspot numbers.  

 
 

Genetic programming (or GP) is a random search technique that emerged in the late 

1980s and early 1990s. Koza (1992) was the first to introduce a formal description of the 

method. GP applies to many optimization areas. One of them is modeling time series and 
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using those models in forecasting. Unlike other modeling techniques, GP is a computer 

program that ‘searches’ for a specification that replicates the dynamic behavior of 

observed series. To use GP, one provides mathematical operators and values of variables 

as input files. Upon its execution, the program randomly assembles equations with 

different specifications then identifies and reports that specification with the least sum of 

squared errors (or SSE) as output file. This process is an iterative evolution of successive 

generations consisting of thousands of assembled equations where the fittest within a 

generation survive and breed better equations also using random combinations until the 

best one is found. Clearly from this simple description, the method is based on heuristics 

and has no theoretical foundation. However, resulting final equations seem to produce 

reasonably accurate forecasts that compare favorably to forecasts from humanly 

conceived specifications. With encouraging results difficult to overlook or ignore, it is 

important to investigate GP as a forecasting methodology. This paper attempts to 

evaluate forecasts genetically evolved models produce for experimental data as well as 

real world time series. It is organized as follows: Section 1 contains an overview of 

genetically evolved models (GEMs). The reader will find an explanation of how models 

are evolved using genetic methodology as well as features that characterize GEMs as a 

modeling technique. Section 2 contains descriptions of simulated and real world data and 

their respective fittest identified GEMs. Simulated data were chosen to represent 

processes with different behavioral complexities, including linear, linear-stochastic, 

nonlinear, and nonlinear-stochastic. Real world data consist of two time series popular in 

analytical statistics: Canadian lynx data and sunspot numbers. This Section also contains 

evaluation of predictions of values used to evolve models. Section 3 presents single- and 
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multi-step-ahead forecasts produced using the fittest evolved models representing the 

different series, evaluation of the forecasts as well as comparisons with prior ones in 

studies of the Canadian lynx data and sunspot numbers. A brief discussion is in Section 4. 

 
 

1. GENETICALLY EVOLVED MODELS 
 

1.1 Basic Foundation 
 

Only a brief background of GP and how it is used to evolve time series models is 

provided here. More complete theory can be found in Koza (1992) and Banzhaf et al. 

(1998). Its applications include fitting time series models in Sathyanarayan et al. (1999), 

predicting financial markets see Chen et al. (1998) and Iba and Sasaki (1999), and on 

electric power demand see Lee et al. (1997). A GP computer program or code is designed 

to optimize an objective function or specific task in a way that parallels Darwin’s theory 

of natural selection and survival of the fittest. To find that fittest equation, a program 

randomly assembling a user defined initial number of equations first to use in breeding 

fitter equations. While breeding new ones, existing equations with lower sum of squared 

error (or SSE) have a better chance of surviving. Because the search process is totally 

random, the method involves no evaluation of the causal relationships between 

explanatory variables and the dependent variable, appropriateness of signs of coefficients, 

or equation stability conditions. The final fittest equation the program produces is often 

exceptionally long, difficult to interpret, and almost meaningless as a result. But it 

predicts well. Perhaps the gains are in the method’s obvious ability to replicate a 

variable’s dynamical behavior in the form of specifications beyond our human ability to 

construct. Given that time series models are designed to fit the serial correlation 
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properties of data and not to “explain” it, GP satisfies the goal time series should 

accomplish: finding a model which fits the data reasonably well. 

 

The code that produces GEMs in this study is written in C++ and replicates an 

original one written by Koza (1992) in LISP. The modified computer code produces files 

that contain standard estimation statistics and forecast computations. It gets its 

instructions from an executable configuration file containing parameters the user 

furnishes for the program to follow while performing a desired specified optimization 

task. Upon execution, the program randomly combines variables and/or constants (also 

known as terminals) with functions (also known as operators) to evolve an initial 

population of “individuals” or equations. In this study, the operators used are: +, -, *, %, 

exp, sqrt, ln, sin, and cos, where %, exp, sqrt, and ln are protected operators. These 

protections follow standards commonly used in all GP software. They provide solutions 

to computational-problems that may halt execution during a search. The following 

protections prevent computational problems: 

1. If in (x÷y), y = 0, then (x/y) = 1. 

2. If in y1/2, y < 0, then y1/2 = | y|1/2. 

3. If in ln(y), y < 0, then ln(y) = 1, where ln is the natural logarithm. 

4. If in exp(y), y > 10, then exp(y) = exp(10). 

Before executing the program, its user determines and furnishes within the 

configuration file the list of operators, names of terminals, population size, and number of 

generations. Values of the dependent and independent variables are included in separate 

input files. Population size is the number of individual equations the program should 
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randomly produce and evaluate simultaneously. Typically the user would select a 

population size = 1000, 2000, or even 5000 individuals. (There is no agreement on an 

optimal population size or number of generations among GP researchers.)  

The initial population is then used to breed a new generation or population 

containing the same number of equations. The new population breeds a succeeding one, 

and so on. To breed, the program ranks individuals in a population according to some 

fitness function. SSE is the one most commonly used. Naturally, the equation with the 

lowest SSE is ranked fittest. Fitter individuals are given a better chance to survive and 

breed. A new population contains fittest equations from the existing population and 

offspring created by a combination of self-reproduction, crossover, and mutation. The 

user decides on and provides rate or proportion of the next population to breed by self-

reproduction, crossover, and mutation in the configuration file. A new population may 

contain say 10% produced by self-reproduction, 80% bred by crossover, and mutation 

produces the remaining 10%. The user also chooses one of several methods to use when 

selecting individuals to breed members of the next generation while favoring survival of 

the fittest individuals as well as their genes into the next generation. Tournament 

selection is the method most used to select members for breeding. In its simplest version, 

the user selects a small number (< 10) of individuals to participate in breeding. Assume 

the number chosen = 6. With larger weights assigned to the fittest individual, the program 

randomly and repeatedly draws six individuals at a time. In self-reproduction the fittest 

individual in each six is selected and passed on to the new generation. The six (or 

sometimes weakest three or four among the six) are replaced and can be reselected. This 

process is repeated until the proportion in the next population bred by self-reproduction is 
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satisfied. Once done, the program starts to breed using crossover. Crossover is sexual 

reproduction where the offspring inherit genes from their parents. Again six are randomly 

selected and the fittest two breed two offspring. The program randomly swaps part of one 

equations with a part of another to breed two offspring. The offspring are passed on to the 

next generation, the six are replaced, and the process is repeated. This also continues until 

the proportion bred by crossover is satisfied. Breeding by mutation then starts where only 

the fittest of each set of six is mutated to breed one individual for the next generation 

until that proportion is satisfied. Mutation is asexual where a part of an equation is 

randomly replaced or discarded. Finally, the program terminates and writes the best 

equation and associated results and statistics to an output file. A GP program terminates 

either by producing an equation with a minimum threshold error or by reaching a 

maximum number of generations specified in the configuration file.  

 
1.2 GEMs in Perspective 
 

Given that such models are produced by artificial means, a computer program, they 

possess their own stylized characteristics. The following characteristics are formulated 

after extensive experimentation with GP in modeling time series:  

a. A user has little control in dictating the final model specification. The final model 

specification is the result of random selection. One may influence evolved equations 

only by adding or deleting operators or terminals. But the fittest final equation 

specification is always unknown before executing a GP program. 

b. GEMs are usually difficult to explain or justify even if they produce fairly good fits. 

The difficulty is because equations are randomly assembled, usually exceptionally 
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long, and efforts to reduce the fittest one are hampered if it includes protected 

operators.  

c. Reproduction of the fittest models may be possible for data generated by simple 

processes but impossible for data generated by highly complex ones. The probability 

of replicating the fittest equation is very small mainly because GEMs are random 

combinations of variables and operators only to replicate dynamics. Given nine 

operators and assuming only twelve explanatory variables, the number of possible 

combinations of individual expressions within a single equation is huge (= 9! * 12!). 

The odds of reproducing the same fittest individual are marginally better if one is 

evolving noise-free processes.  

d. GEMs produce residuals that may violate standard normality assumptions. The 

assumption that a statistical or econometric model (linear or nonlinear) is judged 

adequate only if its residuals approximate Gaussian white noise may not hold when 

using GP to evolve models that replicate the dynamics of noise-free processes. If the 

process contains no noise, residuals must be neglected linearity or nonlinearity.  

e. To evolve a reliable model, it is necessary to produce a large number of equations. 

During its search, GP produces equations with different quality. This occurs because 

it occasionally gets ‘trapped’ in local minima within the solution space while 

searching for the global minimum SSE. In a large number of runs (say 50 or 100), a 

GP program may produce a high percentage (50% or more) of final (fittest) equations 

with less than optimal SSE especially when modeling highly complex processes. As a 

result, the probability that GP finds a ‘good’ model increases when set to evolve a 

large number of equations. 
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2. TIME SERIES PREDICTION USING GEMS 
 

This section presents descriptions of simulated and real-world series and reports 

their respective fittest GEMs. Selection of real-world series was simple. The Canadian 

lynx data and sunspot numbers make ideal candidates because of their popularity. 

Selection of models to simulate was more intricate given the availability of infinite 

processes to select from. To keep the number of series to evolve models for manageable, 

systems were grouped according to their complexity levels first. Linear and random 

processes were characterized as least and most complex systems, respectively. Nonlinear 

processes are relatively more complex than linear but lest than random systems. Linear-

stochastic and nonlinear-stochastic possess complexities that vary according to their 

signal-to-noise ratios. (Signal-to-noise ratio = Signal variance / noise variance.) Generally 

however, they should be more complex than their noise-free component. Series are then 

selected to provide information that helps formulate generalization statements about GP’s 

forecasting abilities of the different groups. Accordingly, seven representative processes 

were selected. They include one linear, two linear-stochastic with different signal-to-

noise ratios, two nonlinear, and two nonlinear-stochastic also with different signal-to-

noise ratios. One would expect GP to forecast linear more accurately than it would linear-

stochastic with low noise and the latter more accurately than series with high noise. The 

linear process introduced is rather unique. It produces a series that remains stable long 

enough to have its variance measured. This helps simulate linear-stochastic series with 

controlled, measurable and different signal-to-noise ratios. Nonlinear and nonlinear-

stochastic processes are four rather than three because popular nonlinear chaotic 
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functions (such as the Henon (1976) and logistic (May, 1976) maps) produce unstable 

solutions when dynamically dithered with noise. It is possible to dither those series with 

static noise, however. In dynamic dithering, Yt = f(Yt-k, εt) where εt are independent 

identically distributed normal deviates with variance σ2
ε. In static dithering noise affects 

only current period outcome, or Yt = Xt + εt where Xt = f(Xt-k). Processes dynamically 

affected by noise are more commonly investigated and are the focus here. (Analysis of 

static dithering of chaotic processes are in Kaboudan, 1999.) To simulate nonlinear-

stochastic processes with measurable signal-to-noise ratios, a new nonlinear process that 

remains stable after dynamically adding noise is introduced below and investigated in 

addition to the Henon map - a known chaotic process.  

 

To evolve models, each process was assumed as Yt = f(Yt-1,…, Yt-12) and the best of 

fifty equations from fifty different program executions per series is reported as the fittest 

model specification below. Executing the program 50 times per series increases the 

chance of obtaining that global minimum SSE as explained earlier. For each execution, 

the number of generations = 100 and population size = 1,000 which translate into 

100,000 equations assembled to produce the fittest equation per execution and half a 

million assembled equations to produce one, the fittest of the fittest fifty. Simulated 

samples are 132 observations per series. The first twelve are lost degrees of freedom for 

lags. Observations t = 13, …, 112 are used to evolve models. Twenty observations tf = 

113, …, 132 are used to evaluate forecasts. For the Canadian lynx where only 114 

observations are available, t = 13, …, 100 are used to evolve models and forecasts are 

over tf = 101, …, 114 which is consistent with what prior studies of this series used. To 
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be consistent with statistical literature as well, 221 sunspot numbers starting in the year 

1700 are used to evolve that series’ fittest model which is then used to forecast the next 

35 observations.  

 

Evolved models are evaluated according to sample mean square error ( 2
es ), the 

normalized mean square error (NMSE), an α-statistic, mean absolute percent error 

(MAPE), and (1-β)-statistic. NMSE = 2
es /

2^

Yσ = T-1 2
^

)( tt YY∑ − / (T-1)-1 2)Y(Y
_

t∑ − , where 

2^

Yσ is the variance of the dependent variable Y. The α-statistic = 2
es / 2

_ RWes  = 

2
^

)( tt YY∑ − / 2
1)(∑ − −tt YY , where the summation is over the same training period t = 

13,…,T, and where 2
_ RWes  = MSE of the naïve random walk model. In a naïve random 

walk model predicted Yt = tY
^

=Yt-1. By design α ≥ 0. An α = 0, 1, or >1 suggests perfect 

prediction by the evolved model, the model is no better than a naïve random walk model, 

or it is worse than the naïve random walk model, respectively. Benchmarking model 

prediction (or forecast as presented in Section 3) to random walk prediction (or forecast) 

provides a more meaningful and stringent measure of model performance and forecast 

accuracy. MSE is sensitive to the variable’s unit of measurement and cannot be compared 

for two variables. NMSE uses Y as the benchmark. It measures the model’s performance 

relative to the historic series mean as predicted value for all periods. The α-statistic is 

more stringent because it measures performance of prediction exceeding that of a unit 

root first order autocorrelation model. Alternatively, if asymptotically Y = 0, then NMSE 

< α. MAPE is a reasonable measure but can be easily affected by outliers. To 
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demonstrate, assume that a model predicts a value = 2.01 when the actual value for this 

particular period is 0.01 but predicts all other actual values accurately. For a prediction 

sample = 100, MAPE > 200% and eliminating this outlier reduces MAPE (by 200%). If a 

different model specification of the same data succeeds in predicting that outlier, then 

eliminating the outlier cannot be an acceptable solution. Computing (1-β)-statistic seems 

to dilute the effect of this problem. It is a measure of the models’ predictive power over 

random walk prediction. It is a simple calculation where (1– β) = 1 – (MAPEM / 

MAPERW). The numerator is MAPE the current model produces while the denominator is 

MAPE the random walk model produces. Given that random walk model prediction may 

outperform prediction produced by a different model, (1– β) ≤ 1. If (1– β) = 0, the 

evaluated model has no power over random walk prediction. If (1– β) = 1, the evaluated 

model produces perfect prediction. If (1– β) < 0, the evaluated model is worthless. The 

measure is useful in evaluating forecast performance as well. 

 

2.1 Artificially Simulated Series 

For each system, the model used to simulate actual data, the equation evolved, 

and plots of predicted versus actual values are presented. Table 1 has a summary of the 

statistics of all evolved equations.  

Table 1.    Values of MSE, NMSE,α, MAPE, and 1−β  (Historic Simulated Data) 
 
 LDM LDM_LN LDM_HN Henon JSM JSM_LN JSM_HN 
        

2
es  0.000 0.0423 0.169 0.001 0.007 0.050 0.478 

NMSE 0.000 0.012 0.133 0.001 0.002 0.015 0.118 
α 0.000 0.009 0.105 0.000 0.001 0.006 0.052 
MAPE 0.012 0.432 4.749 0.397 0.016 0.041 0.132 
1-β 0.996 0.912 0.702 0.973 0.973 0.935 0.802 
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 Here are the models and evolved equations: 

a.  Linear Diffusion Map (or LDM):This is a system described by the following linear 

relationship: 

.019356.167957.0359141.1 21 −− −+= ttt YYY  

It produces sufficiently lengthy oscillatory growth series using starting values of 0.3638 

and 0.5630, respectively. Figure 1a depicts successive pairs of the series’ values (a phase 

diagram) to show its non-random behavior and why this is a diffusion map. The best 

genetically evolved model (GEM) found is: 

).)(94(008264.0

01984.002064.004674.0

1196211
1

6

3495

−−−−−
−

−

−−−−

+++−−

−−−=

tttttt

ttttt

YYYYYY

YYYYY  

The statistics in Table 1 show that GP performed well. An easy to detect and specify 

linear regression model with Yt = f(Yt-1,Yt-2) produces MAPE = 0.0 and  (1– β) = 1 with 

exact specification, however. Figure 1b shows complete overlap between the actual and 

predicted values. However, since this model is perfectly approximated using standard 

statistical techniques, and because GP evolved a nonlinear system to represent a linear 

one, GP cannot be considered superior if the process to model is linear. 

 

b. Linear Diffusion Map with Low-Noise (or LDM_LN): This linear-stochastic system is a 

second-order autoregressive process of LDM with noise added such that the resulting 

signal-to-noise ratio is 40. LDM has a variance σ2
Y = 1.071719. Therefore, adding low 

noise (εtL) generated such that εtL ~ N(0, σ2
εL = σ2

Y /40) to LDM produces a linear-

stochastic process with the desired signal-to-noise ratio. Alternatively, 
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The resulting GEM is: 
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   Figure 1: (a) LDM’s Phase Diagram 

        (b) Its Actual & Predicted   

MAPE is 91% lower than that of a random walk model (or 1– β = 0.91) as indicated in 

Table 1 along with other statistics. Figure 1c portrays the series’ actual and predicted 

plots. Fitting the data to a multiple regression model produced the correct specification 

with lower 2
es  = 0.02, NMSE = 0.006, α = 0.004 and (1– β) = 0.978, however. This 

makes GP prediction less efficient than standard statistical methods when fitting low-

noise linear-stochastic processes. 

  

c.  Linear Diffusion Map with High-Noise (or LDM_HN): This is also a LDM but with 

louder noise added. The signal-to-noise ratio is 10 or ετΗ ~N(0, 0.37242). The fittest GEM 

is: 



 14

.0137.00092.00137.025.008333.075.05726.0 1
119

1
5325

−
−−

−
−−−− −−−−−+= ttttttt YYYYYYY

 
As shown in Table 1, predicting this equation was more difficult. MAPE explodes to 

4.749 (an example of the outlier effect explained earlier) and (1– β) = 0.702. Fitting this 

data to a multiple regression model also begets correct specification with MAPE = 0.239, 

and (1– β) = 0.985 that are superior to GP’s statistics. Figure 1d shows actual versus GP-

predicted values. As one may expect, increased noise affected GP’s predictive ability 

negatively. More importantly, while the graph documents GP’s success in capturing most 

turning points, its prediction remains less efficient than prediction of the regression 

model.  
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 Figure 1: (c) Actual & Predicted LDM_LN   (d) Actual & Predicted LDM_HN 

d. The Henon Map: This is a nonlinear chaotic system introduced by Henon (1976). It is 

described by the following nonlinear relationship: 

.3.04.11 2
2
1 −− +−= ttt YYY  

Figure 2a portrays its dynamics in a phase map. The fittest GEM found is:  
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Yt = cos(Yt-1) ÷ {cos(ln(cos(cos(ln(cos(Yt-3))))))} – X1t, 
where  

X1t = (105-1 Yt-1 +[118-1 {cos(cos(ln(ln(Yt-3))))}]+{116-1 (cos (Yt-8))}+ 64-1 Yt-5 +X2t, 

X2t = (Yt-1)
2 + 24-1 Yt-5 + 9-1 [{(cos(cos(Yt-5)))  ÷ (cos(Yt-3))} –  

{(Yt-1)
2 + (cos(ln(cos(Yt-3))))} + cos(Yt-5)] + X3t, 

and 

X3t = 35-1 [{cos(Yt-1) / cos(Yt-3)} – {ln(ln(cos(cos(ln(cos(Yt-3)))))) + ln(ln(Yt-3)}]  
 

GP evolved an acceptable model with 97.3% lower MAPE than residuals of a random 

walk model and according to the other statistics in Table 1.  Figure 2b shows actual 

versus predicted values of the process. Although GP predicts this nonlinear chaotic map 

rather well, Stern (1996) reports RMSE = 0.0047 (GP’s RMSE = 0.019) using an 

artificial neural network (or ANN) algorithm to predict the same data.  
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Figure 2. (a) Henon Map Phase Diagram. (b) Its Actual and Predicted Values. 

e.  The Jet Ski Map (or JSM): This is a nonlinear function (introduced here for the first 

time) that produces the phase diagram in Figure 3a with a shape similar to that of a jet 

ski. It is described by this nonlinear relationship: 

).expln(8.0cossin5.25.0 2121 −−−− −+−= ttttt YYYYY  
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Unlike the Henon map, it is possible to dither this one dynamically as mentioned earlier. 

The fittest GEM found is: 

Yt = ln (3*Yt-2 + 124+ Yt-9) – sin(sin(sin(sin(Yt-1)))) - sin(Yt-1) – sin(sin(sin(Yt-1))) 
+ cos(Yt-2) 

 
GP’s ability to fit this model is rather impressive according to the statistics in Table 1. 

MAPE is 97.3% lower than that of a random walk model. Figure 3b shows actual versus 

predicted values. No attempt was made to fit this map using a different method since a 

linear fit is inappropriate and one would only be fishing for a nonlinear fit otherwise. It 

would be interesting to evaluate prediction of this series using an artificial neural network 

algorithm (ANN).  
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     Figure 3. (a) JSM’s Phase Diagram.               (b) Its Actual and Predicted Values. 

 

f.  Jet Ski Map with Low-Noise (or JSM_LN): This is the same nonlinear jet ski map with 

low noise added. The process has signal-to-noise ratio §����ZLWK�ετL ~N(0, 0.23252). The 

fittest GEM is: 

Yt = cos [sin{(ln(Yt-7))
1/2} + cos {sin(ln(Yt-1)) + Yt-1 }]  

+ cos [{sin (ln(Yt-6))
1/2}+ {cos(sin{(sin(Yt-1))

1/2}1/2) + Yt-1] 
+ cos (Yt-2) + [cos{sin(Yt-1)

1/2} + sin{cos(sin(Yt-11))+Yt-1}
1/2]1/2 + ln(86) 
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The statistics in Table 1 show low α-statistic and high (1– β)-statistic. Figure 3c shows 

actual versus predicted.  

 

g. Jet Ski Map with High-Noise (or JSM_HN): This is the same process but with signal-

to-noise ratio §�����RU�ετH ~N(0, 0.73522). The fittest GEM found is: 

Yt = 5 + (ln (Yt-1) / Yt-9) + (cos (Yt-5) / Yt-8) – 2 sin (Yt-1)  – (sin (Yt-1) / (Yt-8)
1/2) 

+ (sin (Yt-6) / Yt-7) + ln [cos{sin(cos(exp(Yt-6)))}] + cos (Yt-2) 

This model’s MAPE is 80.2% less than that produced by a random walk model as shown 

in Table 1.  Figure 3d shows actual versus predicted. No other forecasting method was 

attempted here either.  
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    Figure 3. (c) JSM_LN, Actual and Predicted. 

          (d) JSM_HN, Actual and Predicted. 

2.2 Real-World Series 

For each series, a review of its history and prior studies precedes presenting plots of 

its dynamics and predicted versus actual values.  
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a. Canadian Lynx Data 

This classic time series contains annual records of the numbers of Canadian lynx 

trapped in the MacKenzie river district of North-West Canada for the period 1821-1934. 

Elton and Nicholson (1942) were first to report it, and Moran (1953) was first to analyze 

the data statistically. Studies that analyzed modeling of this data include Tong (1977), 

Campbell and Walker (1977), Gabr and Rao (1981), Haggan and Ozaki (1981), Tsay 

(1989), Tong (1990), and Terasvirta (1994) among others. Following Moran (1953) as 

well as succeeding studies and to make the series more symmetric, the original series is 

transformed by log10 first.  Figure 4a shows the phase diagram of the transformed series. 
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    Figure 4. (a) Lynx Data Phase Diagram. (b) Its Actual and Predicted. 

 The fittest GEM found is: 

Yt =  [Yt-1 * {Yt-9 * (X1t / X2t)
1/2}1/2]1/2 

 
where 

 

X1t = Yt-1 + cos[Yt-4 * { Yt-9 * (Yt-12
 * Yt-9)

1/2 }1/2] 
 

and  
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X2t = [Yt-1 + {cos (Yt-3 * (Yt-11 - Yt-9))
1/2}] - [ cos{Yt-9  + cos (Yt-4 * (Yt-4 - Yt-9)

1/2) -

cos(Yt-2 - Yt-1 )}].   
 
 

Table 2.    Values of MSE, NMSE, and α   (Historic Canadian Lynx Data) 
 

 PADD SETAR1 FAR SAR SETAR2 SBL GP 
        

2
es  0.046 0.042 0.036 0.038 0.042 0.022 0.028 

NMSE 0.137 0.125 0.107 0.113 0.125 0.067 0.084 
α 0.329 0.300 0.294 0.310 0.341 0.183 0.231 

 
 

 
Table 2 compares GP’s performance with prior studies. Figure 4b shows the actual versus 

predicted. Predicted values from the fittest GEM compares well with values from prior 

studies. Although Lin and Pourahmadi (1998) were able to obtain a PADD model with 

2
es  = 0.0194 using the same sample, adjusted for data mining effects 2

es  = 0.038. Data 

mining which involves data snooping and exploratory analysis may improve prediction 

but with known practical problems. Breiman (1995) and Chatfield (1995) discuss such 

problems and suggest solutions. Gabr and Rao (1981) (SBL) were able to obtain the 

lowest 2
es  = 0.022 using a bilinear fit of the series. The GP model’s 2

es  = 0.028 < 0.0358, 

0.0378, or 0.0415 produced by AR subset (or SAR), full AR (or FAR), and SETAR(2; 6, 

3) models. SETAR(2; 6, 3) is referred to as SETAR2 in the Table and was reproduced 

from Tong and Lim (1980) in Gabr and Rao (1981, p. 166). SETAR1 is a SETAR(2; 5, 2) 

model reproduced by Lin and Pourahmadi (1998) from Tong (1990) because of its 

successful forecasting. The statistics reported in Table 2 make GP a promising prediction 

algorithm. It was not possible to compute (1- β) for all compared models, but GP’s 

MAPE was only 56% that of the random walk model. 
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b. Sunspot Numbers 

Sunspots are dark blotches on the sun that sometimes exceed the earth in size. 

Sunspot numbers are representations of sunspot activity since 1700 in the form of an 

index. Waldmeier (1961) reported monthly means of sunspot numbers from 1700 to 

1960. Tong (1990) provided a review of statistical models applied to this data. Weigend 

et al. (1990) explain that sunspot appearances are usually in pairs affected by the sun’s 

magnetic field and therefore follow a magnetic cycle. Most statistical analysis and 

modeling of sunspot numbers fit models to the first 221 observations starting 1700 and 

forecast 35 observations for the period 1921-1956. Therefore, it is essential for 

comparison to evolve GEMs using the same 221 observations then forecast the same 35 

periods using the resulting GEM.  Figure 5a shows the phase diagram of the series.   
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 Figure 5. (a) Sunspot Numbers Phase Diagram. (b) Their Actual & Predicted Values. 

 

The fittest GEM found is: 

Yt = – X1t + X2t  + X3t + X4t 
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where 
X1t = Yt-1 – {(Yt-2 – (Yt-11)

1/2)/ (17/Yt-3)  – Yt-11}
1/2, 

X2t = [Yt-2 – {* [Yt-2 – (Yt-1 – {(Yt-2 – (Yt-1 – ((Yt-2 – ln(Yt-3)) – (Yt-3)
1/2) / (16/Yt-3))) / 

((Yt-11)
 1/2 / Yt-3)} / (2 / Yt-4)} ]1/2, 

X3t = [Yt-1 – {(Yt-1 – (Yt-8)
1/2 – (Yt-12)

1/2 ) / (12/Yt-3)}]1/2, 
and 

X4t = [Yt-1 – {(Yt-2 – (Yt-12)
1/2 / (11/Yt-3)}]1/2. 

 
 

Table 3.    Values of MSE, NMSE, and α (Historic Sunspot Numbers) 
 

 ANN FAR SAR SETAR SBL GP 
 

2
es  97.47 199.27 203.21 153.71 124.33 111.75 

NMSE 0.082 0.171 0.175 0.132 0.107 0.106 
α 0.217 0.444 0.453 0.343 0.277 0.249 

 
 

The results and comparison with other models are summarized in Table 3. Figure 5b 

shows the actual versus predicted. The fittest GEM produced prediction statistics ranking 

second among existing studies. As shown in Table 3, GP’s 2
es  = 111.75 is above training 

2
es  = 97.47 in Weigend et al. (1990) obtained using ANN algorithm. However, the 

produced GEM compares favorably to 2
es  = 124.33 reported by Gabr and Rao (1981) 

using a subset bilinear model (SBL), 2
es  = 153.71 produced by a SETAR(2, 4, 12) model 

by Tong and Lim (1980),  the Full AR(9) (or FAR) model with 2
es  = 198.33, and the 

Subset AR (or SAR) model with 2
es = 202.27 reported in Gabr and Rao (1981, p. 162). 

The α-statistics were much higher than expected for all models. The best model (ANN) 

produced mean squared error that is 21.7% that of a random walk model. The (1- β)-

statistic for the GP model = 0.282 suggesting poor improvement over random walk 

prediction. It was not possible to compute (1- β) for the other studies. 
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3. EVALUATION OF FORECASTS  

 
This section contains the main result of this paper: testing GP’s integrity in 

forecasting time series. It is important to analyze single-step-ahead as well as multi-step-

ahead forecasts and when available compare those to existing forecasts. As the name 

suggests, in single-step-ahead the model forecasts only one period ahead using actual 

lagged values of the data and not model predicted values.  In multi-step-ahead forecasts 

the model is used to forecast a number of future values using predicted values for lags in 

periods beyond data used to evolve the model. Clearly, multi-step-ahead forecasts are 

more useful but, as one may suspect, forecast-errors increase as one forecasts periods 

further out into the future. With a few modifications, the same statistics used to evaluate 

historic prediction apply when evaluating single- and multi-step-ahead forecasts. NMSE 

is redefined such that NMSE = F-1 2
^

)(
f

f tt YY∑ − /T-1 2
_

)(∑ −YYt , where tf = 1,…,F forecast 

periods and Y is the mean of historic values. The modified α-statistic is only for the 

specified period, or α = 2
es / 2

_ RWes  = F-1 2
^

)(
f

f tt YY∑ − /F-1 2
1)(∑ − −ff tt YY . Computations of 

forecast statistics are in Table 4 for the simulated data, Table 5 for the Canadian lynx 

data, and Table 6 for sunspot number. The number of multi-step-ahead to forecast is 

denoted by h. For example, a one-step-ahead forecast is identified by h = 1, two-step-

ahead forecast by h = 2, and so on.  

 

3.1 Artificially Simulated Series 

Since there are no prior forecasts for these series except for the Henon map (Stern, 

1996) and alternative forecasts only for linear and linear-stochastic series, GEMs’ single- 



 23

and multi-step-ahead forecasts are presented with comparison made only where available. 

Brief comments on forecasts of simulated data follow. 

 
Table 4.    Values of MSE(h), α(h), MAPE(h), and 1-β(h) (Forecasts of Simulated Data) 
 
 LDM LDM_LN LDM_HN Henon JSM JSM_LN JSM_HN 
        

)1(2
es  0.000 0.104 0.425 0.001 0.007 0.236 0.655 

)2(2
es  0.000 0.133 0.425 0.002 0.025 1.370 2.126 

)3(2
es  0.000 0.130 0.461 0.006 0.084 2.441 2.835 

)4(2
es  0.000 0.133 0.588 0.021 0.197 3.145 4.789 

)5(2
es  0.000 0.135 0.589 0.050 0.696 8.145 5.874 

)6(2
es  0.000 0.173 0.991 0.075 2.411 7.357 6.181 

        
α(1) 0.000 0.009 0.034 0.000 0.001 0.031 0.086 
α(2) 0.000 0.004 0.012 0.003 0.004 0.210 0.352 
α(3) 0.000 0.004 0.013 0.003 0.007 0.304 0.291 
α(4) 0.000 0.009 0.038 0.026 0.019 0.327 0.925 
α(5) 0.002 0.423 0.612 0.036 0.055 1.486 0.806 
α(6) 0.000 0.019 0.105 0.064 0.254 0.990 1.091 
        
MAPE(1) 0.019 0.288 0.371 0.055 0.017 0.097 0.139 
MAPE(2) 0.019 0.260 0.371 0.078 0.028 0.230 0.291 
MAPE(3) 0.019 0.253 0.361 0.108 0.044 0.315 0.315 
MAPE(4) 0.019 0.260 0.390 0.269 0.061 0.348 0.423 
MAPE(5) 0.019 0.268 0.389 0.399 0.095 0.521 0.422 
MAPE(6) 0.032 0.346 0.373 0.409 0.186 0.458 0.440 
        
1−β(1) 0.992 0.916 0.885 0.980 0.972 0.816 0.707 
1−β(2) 0.992 0.904 0.885 0.928 0.950 0.557 0.426 
1−β(3) 0.995 0.940 0.888 0.951 0.939 0.488 0.459 
1−β(4) 0.994 0.943 0.880 0.757 0.904 0.439 -0.258 
1−β(5) 0.953 0.564 0.880 0.788 0.839 -0.335 -0.041 
1−β(6) 0.984 0.909 0.885 0.756 0.615 -0.025 -0.274 

        
 

a. Linear Diffusion Map (LDM): LDM statistics in Table 4 indicate GP’s ability to 

produce reasonably acceptable single- and multi-step-ahead forecasts for up to six 
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periods. However, forecasts generated by the linear regression model produce perfect 

multi-step-ahead forecasts even when h = 20 with α(20) = 0.0 and 1 – β(20) = 1.0. GP’s 

forecast are less impressive with α(20) = 0.0002 and 1 – β(20) = 0.984.  

Table 5.  Values of MSE(h), α(h), MAPE(h), and 1-β(h)-(Lynx Forecasts) 
 PADD SETAR1 FAR SAR SETAR2 SBL GP 

)1(2
es  0.008 0.014 0.025 0.022 0.014 0.013 0.020 

)2(2
es  - - 0.074 0.072 0.026 0.044 0.043 

)3(2
es  - - 0.116 0.120 0.033 0.063 0.058 

)4(2
es  - - 0.161 0.169 0.037 0.077 0.067 

)5(2
es  - - 0.185 0.202 0.048 0.086 0.061 

)6(2
es  - - 0.186 0.207 0.123 0.076 0.057 

)14(2
es  0.010 0.018 - - - - 0.051 

α(1) 0.123 0.199 0.371 0.325 0.211 0.194 0.294 
α(2) - - 0.304 0.298 0.107 0.183 0.191 
α(3) - - 0.247 0.255 0.070 0.134 0.128 
α(4) - - 0.255 0.267 0.059 0.121 0.107 
α(5) - - 0.287 0.314 0.075 0.133 0.094 
α(6) - - 0.389 0.433 0.257 0.158 0.117 
α(14) 0.151 0.269 - - - - 0.746 
MAPE(1) 0.024 0.039 0.041 0.038 - 0.032 0.037 
MAPE(14) 0.024 0.039 - - -    - 0.067 

1−β(1) 0.681 0.600 0.475 0.505 - 0.592 0.529 
1−β(14) 0.688 0.500 - - -    - 0.135 
Ranking:        

)1(2
es  1 3 7 6 4 2 5 

)2(2
es  - - 5 4 1 2 3 

)3(2
es  - - 4 5 1 3 2 

)4(2
es  - - 4 5 1 3 2 

)5(2
es  - - 4 5 1 3 2 

)6(2
es  - - 4 5 3 2 1 

α(1) 1 3 7 6 4 2 5 
α(2) - - 5 4 1 3 2 
α(3) - - 4 5 1 3 2 
α(4) - - 4 5 1 3 2 
α(5) - - 4 5 1 3 2 
α(6) - - 4 5 3 2 1 
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Table 6.  Values of MSE(h), α(h), MAPE(h), and 1-β(h) 
                 (Forecasts of Sunspot Numbers) 
 

 ANN FAR SAR SETAR2 SBL GP 

)1(2
es  102.23 190.89 214.10 148.21 123.77 126.06 

)2(2
es  - 414.83 421.40 383.90 337.54 353.27 

)3(2
es  - 652.21 660.38 675.59 569.79 789.54 

)4(2
es  - 725.85 716.08 773.51 659.05 1037.5 

)5(2
es  - 771.04 756.39 784.27 718.87 1257.6 

       
α(1) 0.160 0.299 0.335 0.232 0.194 0.197 
α(2) - 0.209 0.212 0.193 0.170 0.178 
α(3) - 0.178 0.180 0.184 0.155 0.215 
α(4) - 0.144 0.143 0.154 0.131 0.206 
α(5) - 0.132 0.130 0.135 0.123 0.216 
       
MAPE(1) - 0.271 0.337 - 0.328 0.264 
1−β(1) - 0.556 0.448 - 0.462 0.568 
Ranking:       

)1(2
es  1 5 4 6 2 3 

)2(2
es  - 4 5 3 1 2 

)3(2
es  - 3 4 2 1 5 

)4(2
es  - 3 2 4 1 5 

)5(2
es  - 3 2 4 1 5 

       
α(1) 1 5 4 6 2 3 
α(2) - 4 5 3 1 2 
α(3) - 2 3 4 1 5 
α(4) - 3 2 4 1 5 
α(5) - 3 2 4 1 5 
 

b. Linear Diffusion Map with Low-Noise (LDM_LN): GP produced one- and multi-step-

ahead forecasts almost statistically equivalent to those a linear fit. In one-step-ahead 

forecasting, both methods yielded α(1) = 0.009 but the linear model yielded 1 – β(1) = 

0.954 > 0.916 for GP. GP’s multi-step-ahead forecast was acceptable up to four periods 

ahead where the linear regression model produced better forecasts at h = 5. However, 
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α(20) = 0.20 and 1 – β(20) = 0.896 for the linear regression while α(20) = 0.28 and 1 – 

β(20) =0.905 for GP’s forecasts.  

 

c. Linear Diffusion Map with High-Noise (LDM_HN): GP’s forecasts of this series were 

rather acceptable. One-step-ahead of linear model α(1) = 0.01 and 1 – β(1) =0.977 and 

multi-step-ahead  α(20) = 0.147 and 1 – β(20) =0.959. GP’s one-step-ahead α(1) = 0.034 

and 1 – β(1) =0.885 and multi-step-ahead α(20) = 0.112 and 1 – β(20) =0.965. These 

results suggest that GP performs worse in one-step-ahead forecast but produces statistics 

that are competitive in multi-step-ahead forecasting. 

 

d. The Henon Map: GP forecasting of this data was rather successful as the data in 

Table 4 reveal. However, when compared with ANN one-step-ahead forecast (Stern, 

1996), it appears that neural network architecture is more suited for noise free nonlinear 

time series. Using provided statistics, Stern’s MSE = 0.0 and α(1) = 0.00002. Multi-step-

ahead GP forecasts were lower at lower h steps-ahead. (Stern (1996) did not report multi-

step-ahead forecasts and thus there is no comparison to make here.) 

 

e. Jet Ski and Noisy Jet Ski Maps (JSM, JSM_LN, and JSM_HN): These three are 

grouped together since there are no available forecasts to compare. The last three 

columns of Table 4 show that GP was successful in forecasting the noise-free data, and 

that its performance worsened as louder noise was added. It also shows that multi-step-

ahead forecasts were worse at higher h periods ahead. 
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3.2 Real-World Series 

Availability of many prior forecasts of Canadian lynx data and sunspot numbers 

provides a foundation for a better comparison of GP’s relative forecasting ability of those 

series. Since prior forecasts are from different sources and for different multi-step periods 

ahead, a separate discussion of each is presented. 

 
a. Canadian Lynx Data: Table 5 contains this series’ forecast statistics for single- and 

multi-step-ahead periods. Gabr and Rao (1981, p. 166) present three one-step-ahead 

forecasts the 14 periods as well as the mean square errors for h = 1, …, 6. This explains 

why the selection of h = 1, …, 6. One of their models, SBL, produced the second best 

one-step-ahead forecast statistics found in this survey. Lin and Pourahmadi (1998, p. 189) 

reported the best one-step-ahead forecast statistics for the lynx data. Table 5 has all 

available statistics in its upper half. The lower half contains ranking of those statistics. A 

ranking of 1 indicates that it is the best of the forecasts reported for that specific number 

of h-steps-ahead. SETAR2’s forecast ranks first and GP second when forecasting for 1 < 

h < 6. At h = 6, GP’s forecast ranks first and SBL second. Table 5 also shows that Lin 

and Pourahmadi’s (1998) PADD model forecast was much better than GP’s forecast at h 

= 14-step-ahead. Figure 8a displays forecasts for h = 1-6 produced by GEMs. A zero 

identifies actual values, and > 0 identifies the forecast plot representing those for h = 1-6.  

 

b. Sunspot Numbers: Table 6 has the comparison of forecast statistics of sunspot 

numbers and their ranking according to h = 1-5 periods ahead following Gar and Rao 

(1981, p. 162). It is easy to understand why h < 6 given the fast deterioration in forecast 

quality as h increased. The best single-step-ahead forecast was that produced by Weigend 
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et al. (1990) using ANN, followed by SBL, then GP. For multi-step-ahead forecasting, 

SBL ranked first and GP second at h = 2, SBL first and SETAR2 second at h = 3, and 

SBL first and SAR second at h > 3. GP came in last at h > 2. Figure 8b displays plots of 

actual (0) versus forecasts at h = 1-6. 

 

4. DISCUSSION 

This study used genetic programming to evolve models for and forecast future 

values of (a) seven simulated data sets with different structures and (b) two popular time 

series: Canadian lynx and sunspot numbers. The results show that for linear and linear-

stochastic systems GP may not be of much value and current standard statistical methods 

are superior. Statistical theory furnish established techniques to detect linearity that when 

used produce better specifications and at least equally reliable to GEMs’ single- and 

multi-step-ahead forecasts. For nonlinear processes (with or without noise) little 

comparison was possible and perhaps ANN produces better forecasts than GP. GP 

provides an obvious advantage over conventional statistical methods that furnish no 

technique for detecting the type of nonlinearity needed for modeling such processes. In 

forecasting Canadian lynx data, GP performed relatively well, coming in second among 

the seven studies reporting single-step-ahead forecasts, and second among five studies 

reporting multi-step-ahead forecasts. GP’s forecast of sunspot numbers ranked third 

among six studies reporting single-step-ahead forecasts, second among five reporting 

two-step-ahead forecasts, but last among five reporting forecasts for more than two 

periods ahead. 
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Genetic programming modeling and forecasting is a new and promising 

methodology, which has only been peripherally investigated. Whether GP can reach 

levels beyond any method known is difficult to predict at this time. ANN seems to 

produce better forecasts, albeit from a black box. GP modeling and forecasting does have 

some merit. It produces model specifications without any human input. Once a user 

identifies an appropriate set of explanatory variables, GP will search for the best 

specification. While comforting, these equations are rarely ever the correct specification 

but predict and forecast well. Using this method to predict time-series is logical since 

one’s main interest is limited to forecasting and not understanding a functional 

relationship. Using GP to evolve behavioral models may be a bit more intricate but 

remains promising and will surely soon capture the attention of many researchers. 

Analyses presented in this study invite much needed further investigation of the potential 

GP may have. Applied statisticians in disciplines such as physics, chemistry, biology, and 

economics may find the new method logical, easy to use, and useful.  
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