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ABSTRACT 
 

FGP (Financial Genetic Programming) is a genetic programming based system that specialises in financial 

forecasting. In the past, we have reported that FGP-1 (the first version of FGP) is capable of producing 

accurate predictions in a variety of data sets. It can accurately predict whether a required rate of return can 

be achieved within a user-specified period. This paper reports further development of FGP, which is 

motivated by realistic needs as described below: a recommendation “not to invest” is often less interesting 

than a recommendation “to invest”. The former leads to no action. If it is wrong, the user loses an 

investment opportunity, which may not be serious if other investment opportunities are available. On the 

other hand, a recommendation to invest leads to commitment of funds. If it is wrong, the user fails to 

achieve the target rate of return. Our objective is to reduce the rate of failure when FGP recommends to 

invest. In this paper, we present a method of tuning the rate of failure by FGP to reflect the user’s 

preference. This is achieved by introducing a constraint-directed fitness function to FGP. The new system, 

FGP-2, was tested on historical Dow Jones Industrial Average (DJIA) Index. Trained with data from a 

seven-and-a-half-years period, decision trees generated by FGP-2 were tested on data from a three-and-a-

half-years out-of-sample period. Results confirmed that one can, to a certain extent, tune the rate of failure 

by adjusting a constraint parameter in FGP-2. Lower failure rate can be achieved at the cost of higher 

missing opportunities, without affecting the overall accuracy of the system. Similar results were achieved in 

forecasting individual shares. Results were compared with those produced by neural networks. 
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1. INTRODUCTION 
   
Genetic Programming (GP) (Koza 1992, 1994; Koza et al 1996) is a promising variant of genetic 

algorithms (Holland 1975, Goldberg 1989, Mitchell 1996) that uses tree representations instead of 

chromosomes. Genetic algorithms have been studied in financial markets for quite a few years. Bauer 

(1994) reported his GAs intelligent systems which aimed at finding tactic market timing strategies; Allen & 

Karjalainen (1995) applied Genetic Programming technique and intended to find profitable technical 

trading rules by trading over S&P 500 index; Chen & Yeh (1996) attempted to formalize the notion of 

unpredictability in the efficient market hypothesis in terms of search intensity and chance of success in the 

search conducted by genetic programming; Mahfoud & Mani (1996) presented a new genetic-algorithm-

based system and applied it to the task of predicting the future performances of individual stocks; Neely et 

al. (1997) and Oussaidene et al. (1997) applied genetic programming to foreign exchange forecasting and 

reported some success.  

 

Our earlier work (Tsang et al. 1998, Li & Tsang 1999a and Li & Tsang 1999b) reported some of 

preliminary but promising results by using a tool called FGP (which stands for Financial Genetic 

Programming). FGP was used specifically to predict whether a price series will increase by r% or more 

within the next n periods. FGP was found to compare favourably with random rules, commonly used 

individual technical rules and C4.5 rulesets with respect to prediction accuracy and average annualised rate 

of return.  

 

However, for financial prediction problems, prediction accuracy is not a sole issue that one may concern. In 

practice, one may be more concerned with the false alarm rate (or Rate of Failure (RF)). A false alarm is a 

predicted opportunity that turns out to be a failure. If the system is employed for investment decisions, a 

high false alarm rate means severe losses. In this paper, study a method to reduce false alarms. 
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2. BACKGROUND OF FGP 

Like other standard GAs, FGP maintains a population (set) of candidate solutions, each of which is a 

decision tree for financial forecasting. Candidate solutions are selected randomly, biased by their fitness, for 

involvement in generating members of the next generation. General mechanisms (referred to as genetic 

operators, e.g. reproduction, crossover, mutation) are used to combine or change the selected candidate 

solutions to generate offspring, which will form the population in the next generation. For details of GA and 

GP, readers are referred to Holland (1975), Goldberg (1989) and Koza (1992).  

 

In FGP, a candidate solution is represented by a genetic decision tree (GDT). The basic elements of GDTs 

are rules and forecast values.  A single rule is consisted of one useful indicator for prediction, one relational 

operator such as  "greater than", or "less than", etc, and a threshold (real value). Such a single rule interacts 

with other rules in one GTD through logic operators such as "Or", "And", "Not", and "If-Then-Else". 

Forecast values in this example are either a positive position (i.e. r% return within n days can be achievable) 

or negative position (i.e. r% return within n days can not be achievable).  

 

In this paper, we follow our earlier work by adopting the indictors that were derived from finance literature 

(see, e.g., Alexander 1964, Sweeney 1988, Brock et al. 1992, and Fama & Blume 1966). They include three 

types of technical analysis rules (i.e. moving average rules, filter rules, trade range break rules) as follows. 

(1) MV_12 = Today's price − the average price of the previous 12 trading days 

(2) MV_50 = Today's price − the average price of the previous 50 trading days 

(3) Filter_5 = Today's price − the minimum price of the previous 5 trading days 

(4) Filter_63 = Today's price − the minimum price of the previous 63 trading days 

(5) TRB_5 = Today's price − the maximum price of the previous 5 trading days (based on the Trading 

Range Breakout rule [Brock et al., 1992]). 

(6) TRB_50 = Today's price − the maximum price of the previous 50 trading days 
  

Figure 1 shows an example of a simple GDT built by using the above grammar. A useful GDT in the real 

world may be a lot more sophisticated than this. 
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(IF  (PMV_50  <  -18.45)  

THEN  Positive 

             ELSE (IF  ((TRB_5  >  -19.48) AND (Filter_63 < 36.24)) 

              THEN Negative 

              ELSE Positive)) 

 
Figure 1. A (simplistic) GDT concerning the prediction (2.2% return within one months)  

 
 
This example rule suggests that if today’s price is more than 18.45 below the average price of last 50 days, 

then today is very likely a positive position (i.e., one could achieve a return of 2.2% or more within the next 

one months); otherwise one should depends on the values of TRB_5 and Filter_63 to make decisions. If 

today’s price is no more than 19.48 above the maximum price of the previous 5 trading days or today's price 

is more than 36.24 above the minimum price in the last 63 days, then it is also an alternative good 

opportunity to make a buy decision. 

 

FGP uses pretty standard GA and GP operators. In this paper, we focus on the fitness function. By using 

different fitness functions, the user is allowed to use FGP to achieve certain investment objectives.  

 

3. MODIFYING FITNESS FUNCTION 

3.1. PERFORMANCE CRITERIA AND EXPERIMENTAL DATA 

Before presenting the procedure of modifying fitness function, in this subsection, we need divert to describe 

some criteria to assess performances of GDTs. Since GDTs are used to predict whether an increase 2.2% or 

more within one month can be achievable at any given day, the prediction actually can be categorised as a 

two-class classification problem.  Each day can be classified into either a positive position or a negative 

position. For each GDT, we define RC, RMC, and RF as its prediction performance criteria. Formula for 

each criterion is given through a contingency table (Table 1) as follows: 
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Predicted negative positions (N-)  Predicted positive positions (N+)    
# of True Negative (TN) # of False Positive (FP) Actual negative positions (O-) 

# of False Negative (FN) # of True Positive (TP)  Actual positive positions (O+) 
 

RC = 
TP TN

O O

+
++ −

=
TP TN

N N

+
++ −

;  RMC = 
FN

O+
;  RF  = 

FP

N +
;  

 
Where O+ = FN+TP ; O_ =TN+FP;  N_ = TN+FN;  N+=FP+TP. 

 
Table 1. A contingency table for two-class classification prediction problem 
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 Figure 2. Experimental DJIA index data form 07/04/1969 to 09/04/1980 (3035 trading days) 

 

The goal for modifying fitness function is to achieve a lower RF without significantly affecting RF and 

RMC. Experiments in this paper were first carried out on DJIA closing index from 07/04/1969 to 

09/04/1981, a total of 3,035 trading days, as illustrated in Figure 2. We took the data from 07/04/1969 to 

11/10/1976 (1,900 trading days) as training data, and the period from 12/10/1976 to 09/04/1981 (1135 

trading days) as testing data. For the purpose of analysis, we chose r = 2.2 and n = 21 days, which give 

roughly 50% of positive positions in both the training and test periods. We partitioned the whole test period 

into three partitions: (a) down-trend period from 12/10/1976 to 12/04/78 (378 trading days); (b) side-way-

trend period from 13/04/1978 to 27/03/1980 (496 trading days); and (c) up-trend period from 28/03/1980 to 

Training Data

Test Data Period

Down Trend

Sideways Period

Up Trend
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09/04/81 (261 trading days). FGP was run on a Pentium PC (200MHz) using a population size of 1,200. 

The termination condition was 30 generations or maximum of 2 hours running.    

3.2. A LINEAR FITNESS FUNCTION  

In our earlier work, the fitness function mainly used in FGP was RC. By using the following fitness 

function, the user may satisfy individual objectives by adjusting the weights w_rc, w_rmc and w_rf:   

f(1) = w_rc * RC - w_rmc* RMC - w_rf * RF       (1) 

It involves three performance values, i.e. RC, RMC and RF, each of which is assigned a different weight. 

Obviously, the performance of a GDT is no longer assessed by RC only, but by a synthetical value, which is 

the weighted sum of its three performance rates. By proper adjusting sizes of three weights, one is able to 

put his emphasis on one performance than on the others. In order to achieve a low RF, one may assign a 

higher value to w_rc and w_rf  and a smaller or zero value to w_rmc.  

 

To a certain extent, the fitness function f(1) does allow us to reduce RF. However, it has  two drawbacks: 1) 

FGP’s performance is very sensitive to the three weights; 2) results are unstable. For example, in one of our 

series of preliminary experiments in which we used the following three weights: 

                    w_rc=1;    w_rmc=0   and   w_rf= α       where  0 <α ≤ 1                

We found that a slightly bigger α  almost always resulted in a GDT that did achieve a lower RF (even zero 

over training period) by making no positive recommendations over the test period. This was probably due to 

over-fitting. In contrast, a slightly smallerα usually resulted in generating GDT that it did not show any 

improvement on RF. We refer to this as the no-effect problem. Even though a plausibleα was found 

(e.g. α = 0.62), it does not generate effective GDTs reliably. For example, among 10 runs, only two runs 

generated a GDT that predicted a few correct positive positions on the test period. The remaining 8 runs 

showed either the over-fitting or no-effect problem.  
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3.3. PUTTING CONSTRAINTS INTO FGP 

We can further improve the linear fitness function f(1) by introducing constraints into it. We introduce a new 

parameter to FPG, ℜ  = [Pmin, Pmax], which defines the minimum and maximum percentage of 

recommendations that we instruct FGP to make in the training data (with the assumption that the test data 

exhibits similar characteristics, as most machine learning methods do). We call the new fitness function f(2). 

 

Choosing appropriate values for ℜ  and the weights for f(2) remains a non-trivial task, which we approached 

by trial and error. When appropriate parameters were chosen, FGP managed to reduce RF and avoid the 

over-fitting and no-effect problems. Efficacy of the constraint in fitness function is first demonstrated by the 

following experiment. 

Table 2.  FGP results on test data using f(2) with ℜ  = [35%, 50%] 
 

 

In this experiment, we took ℜ  = [35%, 50%], w_rmc = 0 and w_rf = 1, and run FGP 10 times. Results are 

showed in Table 2. The performances on each criterion are rather stable and no over-fitting problem 

occurred again. For reference, we have included the AARR (Average Annualised Rate of Return) and RPR 

(Ratio of Positive Returns) in Table 2. RPR measures the proportion of times when FGP’s recommendation 

gives a positive return, even when the target r% has not been achieved. Both AARR and RPR are used as 

reference. 

RULES RF RM C RC AARR RPR
# of 

Recomm endation
GDT 1 0.4034 0.6402 0.5392 0.6068 0.7059 357
GDT 2 0.4122 0.6267 0.5366 0.6383 0.6755 376
GDT 3 0.4012 0.6622 0.5366 0.6198 0.7096 334
GDT 4 0.4006 0.6639 0.5366 0.6260 0.7078 332
GDT 5 0.4025 0.6740 0.5339 0.6402 0.6966 323
GDT 6 0.4103 0.5946 0.5427 0.5826 0.6929 407
GDT 7 0.4147 0.6639 0.5295 0.6299 0.6735 340
GDT 8 0.3994 0.6875 0.5330 0.6398 0.6916 308
GDT 9 0.3982 0.6655 0.5374 0.6341 0.7173 329

GDT 10 0.3640 0.6959 0.5463 0.7202 0.7244 283

M EAN 0.4006 0.6574 0.5372 0.6338 0.6995 338.9

STD 0.0141 0.0299 0.0048 0.0353 0.0167 34.7
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Table 3. FGP results on test data using the general fitness function (RC) 

 

To see the effect of the constrained fitness function, we compare the above results with those generated by 

FGP using RC as the fitness function. Results are listed in Table 3. From Table 3, we can see that by using 

f(2), the mean RF is reduced from 43.51% to 40.06%. Consequently, the mean AARR increases from 

55.07% to 63.38% whilst the mean RPR rises from 65.86% to 69.95%. The price to pay for a lower RF is 

that more opportunities was missed: the mean RMC increased from 46.77% to 65.74%. The mean RC only 

slightly decreases from 54.19% to 53.72%. To determine whether result differences are statistically 

significant, the statistical two-tailed paired t-test can be applied on the null hypothesis that mean 

performances of two groups are not statistically different under each of the five criteria. Shown in Table 4 

are t-values and their corresponding p-values under each criterion. The results indicated that by using the 

constrained fitness function, the GDTs generated statistically exhibit better RF, AARR and RPR at a 

significant level of α = 0.001, though they statistically significantly get worse under RMC. However, it is 

important to note that they do not show statistical significance for RC (p-value is 0.2612). That is, RC has 

not been compromised as RF is reduced.  

 

Criteria For RF For RMC For RC For AARR For RPR 

t values -4.64 6.33 -1.16 4.69 4.71 
p values 0.000205 0.000005 0.261247 0.000182 0.000175 

Table 4. t-statistics for comparing mean performances of two groups  
(Results using RC versus results using the constrained fitness function with ℜ  = [35%, 50%]) 

RULES RF RMC RC AARR RPR
Number of 

Recommendatio
GDT 1 0.4111 0.4459 0.5656 0.5782 0.6661 557

GDT 2 0.4389 0.4493 0.5410 0.5240 0.6609 581

GDT 3 0.4235 0.5355 0.5427 0.5504 0.6897 477

GDT 4 0.4502 0.4307 0.5322 0.5496 0.6460 613

GDT 5 0.4409 0.4409 0.5401 0.5233 0.6368 592

GDT 6 0.4458 0.5253 0.5269 0.5402 0.6588 507

GDT 7 0.4333 0.5051 0.5392 0.5490 0.6557 517

GDT 8 0.4361 0.3885 0.5507 0.6034 0.6636 642

GDT 9 0.4336 0.4527 0.5454 0.5382 0.6521 572

GDT 10 0.4379 0.5034 0.5357 0.5509 0.6558 523

MEAN 0.4351 0.4677 0.5419 0.5507 0.6586 558.1

SD 0.0111 0.0471 0.0107 0.0242 0.0139 51.7



  
   

Jin Li and Edward Tsang  Page - 9/14 

4. IMPACT OF THE CONSTRAINT 
 
To further explore the impact of the constraint ℜ  on reducing RF, we took additional 5 non-overlapped ℜ s 

in the fitness function respectively. Five mutually exclusive ℜ s are: ℜ 1=[5%, 10%], ℜ 2=[10%, 15%], 

ℜ 3=[15%, 20%], ℜ 4=[20%, 35%], ℜ 5= [50%, 60%]. For each ℜ , we run FGP 10 times using all the same 

parameters (i.e., w_rmc=0 and w_rf=1). We calculated its mean performances on test data with respect to 

RF, RMC, RC, RPR, AARR and mean number of positive positions recommended (which is also referred to 

as the mean number of recommendations), respectively. Here we simply list the means of 10 runs under 

each criterion. All experimental results are showed in Table 5, including preceding results using ℜ =[35%, 

50%]. We visualise the results in Figure 3. 

 

ℜ  [%, %] RF RMC RC AARR RPR 
Number of 

Recommendations 

[5, 10] 
Mean 

SD 
0.1348 
0.1485 

0.9914 
0.0063 

0.4819 
0.0026 

2.2403 
2.2924 

0.9222 
0.1086 

6.2 
4.8 

[10, 15] 
Mean 

SD 
0.2860 
0.0622 

0.9405 
0.0165 

0.4970 
0.0076 

1.3681 
0.3052 

0.8295 
0.0440 

49.3 
13.1 

[15, 20] 
Mean 

SD 
0.3102 
0.0521 

0.8569 
0.0641 

0.5174 
0.0167 

0.9958 
0.2550 

0.7902 
0.0547 

125.1 
62.7 

[20, 35] 
Mean 

SD 
0.3600 
0.0259 

0.7525 
0.0550 

0.5341 
0.0119 

0.7568 
0.0955 

0.7361 
0.0341 

229.8 
55.1 

[35, 50] 
Mean 

SD 
0.4006 
0.0141 

0.6574 
0.0299 

0.5372 
0.0048 

0.6338 
0.0353 

0.6995 
0.0167 

338.9 
34.7 

[50, 65] 
Mean 

SD 
0.4673 
0.0137 

0.4547 
0.1040 

0.5131 
0.0164 

0.5226 
0.0163 

0.6257 
0.0167 

606.2 
115.4 

Table 5. The mean performances on test data using six different constraint values of ℜ  
 

 

Figure 3 shows that RF decreases gradually as ℜ  is reduced. The lowest RF (13.48%) is obtained by using 

the smallest ℜ  [5%, 10%] whereas the highest RF (46.73%) is obtained by using the biggest ℜ  [50%, 65%]. 

The six mean RFs in the graph suggest that taking a reduced ℜ  in the fitness function may result in a lower 

RF. Reduction in RF obviously benefited RPR and AARR. RPR rises from 57.16% to 92.85%. AARR 

increases dramatically from 40.32% to 300.33%. The GDT obtained by using the tightest constraints [5%, 

10%] provides the most reliable recommendations, as the rate of failure is only 13.48%. The only drawback 

of using constraint of this tightness is that it makes fewer positive recommendations. If we reduce ℜ  beyond 

a certain point, no positive recommendations will be made by FGP. So it is crucial to choose a proper ℜ , 
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which is a nontrivial task. The point that we are trying to make here is that ℜ  is a useful handle for tuning 

RF in FGP. 

 

Figure 3. GDT mean performances affected by the constraint ℜ  
 
 

Next we examined the properties of the GDTs that FGP generated in different market conditions, namely, 

down-trend, side-way-trend and up-trend markets as illustrated in Figure 2. Results obtained were 

consistent with those shown above. To further verify FGP’s reliability, we tested the same GDTs on a 

different test period, from 10/04/81 to 29/10/1984, which includes 900 trading days following the first test 

period. Consistent results were found. For simplicity, details of values are not presented here.  

5. COMPARISON STUDY 

Up to this point, we only tested the constrained fitness function on financial index data. Should it still be 

effective and applicable to individual stock data? How does FGP compare with other methods? To partially 

answer these questions, we referred to Saad et al (1998) in which three specially developed Neural 

Networks, (i.e. Time Delay (TDNN), Recurrent (RNN) and Probabilistic (PNN)), and a linear classifier 

were employed to address a similar prediction problem. They also have the goal of achieving low false 
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alarm. Here, we compared performances based on predictions with r = 2% and n = 22 (i.e. daily predict ions 

on whether a return of 2% or more can be achievable within the next 22 trading days).  We obtained from 

Saad the 10 stocks: 

• Apple (AAPL), IBM(IBM), Motorola(MOT), Microsoft (MSFT): representing the technology 

group which generally has high volatility 

• American Express(AXP), Well Fargo (WFC): representing the banks 

• Walt Disney Co. (DIS), McDonald (MCD): representing consumer stocks  

• Public Svc New Mexico (PNM), Energras (V.EEG): representing cyclical stocks 

All data series were ended at 06/03/1997, but with different starting dates. Following (Saad et. al 1998), for 

each stock, the last 100 days were chosen as the test data.  

 

In the experiments, we ran FGP 10 times for each data set. For each run, we took 500 trading days just 

before the final 100 days as training data, and took a constraint ℜ  = [20%, 30%] for most data sets except 

for AAPL, PNM and V.EEG, for which we took a constraint ℜ  = [10%, 20%]. The ℜ  value is chosen to 

reflect the percentage of positive positions in the data. The termination condition was 50 generations. Since 

FGP is a probabilistic technique, it is run ten times for each share. For each share, we picked the best GDT 

from the ten FGP runs for the purpose of comparison, as only the same is done for the three different neural 

networks reported in (Saad et. al 1998). 

 

Table 8 lists the performance of the three different NNs, a linear classifier and FGP on 10 stocks. The 

“Total” column summarises the total number of predicted positive positions on all 10 stocks. The last 

column, “Ave.”, reports the average rate of failure over 10 stocks. Like the NNs, FGP out-performed the 

linear classifier for any stocks. The best found GDT found 385 positive signals totally, which is slightly 

more than 372 found by the linear classifier. However, the average RF of the GDTs found, 5.08% is much 

better than 18.62%, of the linear classifier. The average RF by the best GDT found (1.29%) is better than 



  
   

Jin Li and Edward Tsang  Page - 12/14 

those of NN (3.61 to 7.56%)1. On individual shares, the RF by the best GDT found is as good as or better 

than the RF found by the NNs in 8 out of the 10 shares.  

 

AAPL IBM MOT MSFT AXP WFC DIS MCD PNM V.EEG Total Ave.
62 72 81 87 92 85 74 73 50 70 746 74.6
51 25 48 49 20 45 19 4 63 14 338

7.84 4.00 18.75 4.08 0.00 4.44 0.00 0.00 36.50 0.00 7.56

10 9 27 61 17 19 7 6 22 8 186

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.00 12.50 3.05

16 22 33 46 49 29 48 53 35 37 368

0.00 0.00 3.03 2.17 0.00 0.00 0.00 5.66 17.14 8.11 3.61

82 24 87 17 10 22 2 32 20 76 372

31.71 20.83 18.39 0.00 0.00 13.64 0.00 21.88 60.00 19.74 18.62

Mean 18.5 68.7 20.7 26.8 38.3 66.6 20.1 40.2 23.4 49.4 373

STD 9.9 3.9 5.1 6.2 9.9 11.1 3.1 1.8 5.9 9.6

Mean 9.16 10.15 1.33 3.10 3.72 8.20 0.40 0.00 13.07 4.83 5.08

STD 5.66 1.13 2.82 2.47 3.10 2.33 1.30 0.00 12.30 3.90

4 70 28 33 39 69 22 43 28 49 385

0.00 8.57 0.00 0.00 0.00 4.35 0.00 0.00 0.00 0.00 1.29

The Best 
GDT

Total N+

RF (%)

Total N+

RF (%)

Mean and 
STD of 10 

GDTs 

Total N+

RF (%)

The Linear 
Classifier

TDNN Total N+

RF (%)

RNN Total N+

RF (%)

PPN Total N+  

RF (%)

Stocks
Profit Opp. (r=2%;n=22)

Table 8. Performance comparisons among NNs., a linear classifier and FGP in terms of RF and N+ (the total 
number of predicted position positions) 

 

6: DISCUSSIONS AND CONCLUSIONS 

The work presented in this paper involves technical indicators only. In other applications, FGP has used 

indicators generated by experts or mathematical models. In historical DJIA index, FGP succeeded in finding 

patterns that repeated themselves in the test periods. Whether repeated patterns happen by chance or not in 

general is the subject of the efficiency market debate, which is beyond the scope of this paper. Our position 

is: if such patterns exists, FGP stands a chance of finding them.  

 

We have shown above successfully experiments of FGP. We do not wish to give the false impression that 

FGP can find patterns in every series. In fact, even after carefully tuning of the parameters, FGP found no 

repeated pattern in many share prices (more tests are needed to statistically establish FGP’s success rate). 

The point is: one does not have to find patterns in every series to benefit from one’s forecasting. 

 

                                                           
1 The favourable results by FGP may be partly due to the rather bullish market over test period in which over 50% of 
the positions are positive for all the shares; e.g. 87% of the positions were positive for MSFT and 92% for AXP. 
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Finally, we would like to emphasize that FGP is only a tool, not a replacement of experts. Success of FGP 

depends on the user’s choice of indicators. Besides, the users are given the responsibility to verify the rules 

that FGP generates (an advantage of genetic programming over neural networks is that decisions can be 

explained). By finding interactions between the input indicators and finding appropriate thresholds, FGP 

can be seen as a tool that extends the user’s capability and give the user an edge over other investors of the 

same calibre.  
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