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Abstract

In this paper we test computationally the performance of CAPM

in an evolutionary setting. In particular we study the stability of

wealth distribution in a �nancial market where some traders invest

as prescribed by CAPM and others behave according to di�erent

portfolio rules. Our study is motivated by recent analytical results

that show that, whenever a logarithmic utility maximiser enters the

market, traders who either \believe" in CAPM and use it as a rule of

thumb for their portfolio decisions, or are endowed with genuine mean-

variance preferences, vanish in the long run. Our analysis provides

further insights and extends these results. We simulate a sequence of

trades in a �nancial market and: �rst, we address the issue of how

long is the long run in di�erent parametric settings; second, we study

the e�ect of heterogeneous savings behaviour on asymptotic wealth

shares. We �nd that CAPM is particularly "un�t" for highly risky

environments.

JEL Classi�cation C61, D81, G11

Keywords Evolution; portfolio rules; CAPM ; Kelly criterion.

1 Introduction

A major part of research in �nancial economics is aimed at improving our

understanding of how investors make their portfolio decisions and hence of

how asset prices are determined. In this paper we contribute to that research
adopting a dynamic approach, where investors' wealth endowments and port-

folio rules evolve in time. There is no doubt that nowadays it makes very
little sense to study �nancial markets from a static perspective: the �nancial
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world is constantly changing, and never faster than now. Modern communi-

cations technology implies that information is transmitted faster and traders
and investors can also respond instantly to news. Moreover we observe a
growing heterogeneity of agents that approach capital markets: private in-

vestors and new types of institutions. In many countries, in fact, the spread

of information and the growth of the Internet are together reducing the im-

portance of traditional �nancial intermediaries and causing private investors

to shift from banks (and other traditional depositary institutions) to a direct

access to capital markets.
In this paper we adopt an evolutionary framework to address the issues

of �tness and survival in �nancial markets, where traders di�er in portfolio

rules and/or savings behaviour. We build a simple framework that allows
us to simulate a long sequence of trades in a competitive �nancial market

and to test computationally the asymptotic wealth distribution of traders
who follow heterogeneous portfolio rules. In particular we concentrate our
analysis on the competition between two types of traders: traders who use

(the traditional version of) CAPM as a rule of thumb for their portfolio
decisions and traders who make portfolio choices maximising a logarithmic
utility function.

The choice of this particular focus of analysis is motivated by an old de-

bate and a recent strand of literature. Despite the fact that its restrictive
assumptions have often been criticised and its predictive power has been

challenged by numerous contribution in empirical �nance (see for example

[4, 5]), the mean variance approach is a standard in �nancial economics,
and its main corollary in asset pricing, the Sharpe-Lintner-Mossin Capital
Asset Pricing Model 1, has been viewed as one of the \major contributions
of academic research in the postwar era" (Jagannathan and Wang [9], p.4).

Since a seminal article by Kelly [10], �nancial economists and applied prob-
ability theorists have been debating on the normative appeal of logarithmic
utility maximisation as opposed to the mean-variance approach in �nancial

markets. Several contributors2 have expressed their dissatisfaction with the
mean-variance approach and argued that a rational investor with a long time

horizon should instead maximise the expected rate of growth of his wealth.

1See Sharpe [17], Lintner [12] and Mossin [14].
2For example: Latane [11], Breiman [3], Hakansson [8], Finkelstein and Whitley [6],

Algoet and Cover [1].
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The portfolio choice that this type of behaviour implies is equivalent to that

prescribed by a logarithmic utility function (the so called \Kelly criterion").
Central to the debate was the claim that maximising a logarithmic utility
function would be a \more rational" objective to follow for a trader with

a long time horizon. This claim has been strongly opposed by Merton and

Samuelson [13] and Goldman [7], who stressed the obvious contradiction that

lies in arguing that rational traders should maximise a given utility function,

possibly di�erent from their own.

We believe that a useful contribution to this debate comes by the adoption
of an evolutionary technique. By showing that logarithmic utility maximis-

ers accumulate more wealth than CAPM -adepts we certainly do not prove

that they are more rational (or happier) than their mean-variance opponents.
However we may gain a better understanding of the reasons for the support

of logarithmic utility maximisation that originated the debate. We do not
attempt here a review on the literature on evolution and market behaviour.
Instead we concentrate on the more self-contained strand of literature to

which this paper speci�cally contributes. In particular, we focus on the liter-
ature that aims at studying long run �nancial market outcomes as the result
of a process akin to natural selection. In a seminal paper Blume and Easley
[2] develop an evolutionary model of a �nancial market and de�ne notions

of dominance, survival and extinction based on the asymptotic behaviour of
traders' wealth shares. They provide us with the most general analytical

result in this strand of literature. They show that, if all traders save at the

same rate and under some uniform boundedness condition on portfolios, then
there exists one globally �ttest portfolio rule which is prescribed by logarith-
mic utility maximisation. Namely, if there is a logarithmic utility maximiser
in the economy, he will dominate, determine asset prices asymptotically and

drive to extinction any other trader that does not behave, at least in the long
run, as a logarithmic utility maximiser.

In a di�erent setting, where investors choose their investment rates en-

dogenously (choosing an optimal consumption stream at the same time as an
optimal sequence of portfolios), Sandroni [15] provides analytical results that

seem to weaken Blume and Easley's �ndings. He shows that, provided that
agents' utilities satisfy Inada conditions (and that agents' beliefs are correct),

then all traders survive. Clearly Inada conditions are crucial here as they
require marginal utilities to go to in�nity whenever the consumption level ap-

proaches zero. A rational trader that can also choose his investment intensity
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would avoid extinction by suitably modifying his consumption pattern.

Sciubba [16] compares the relative �tness of logarithmic and mean-variance
preferences. Mean-variance preferences do not satisfy Inada conditions and
prescribe portfolio weights which do not necessarily display uniform bounded-

ness properties, so that none of the two previous framework directly applies.

She shows that when logarithmic utility maximisers invest at the same rate

as mean-variance investors, logarithmic traders dominate, determine asset

prices asymptotically and drive to extinction those agents who are either en-

dowed with mean-variance preferences, ore use their theoretical predictions
(CAPM) as rule of thumb. One of the sections in Sciubba [16] is indeed

devoted to the study of the role of heterogeneous savings rates in the dy-

namics of wealth accumulation. However, the stochastic process becomes so
complex in this case, that the few results that are obtainable analytically are

very weak. This is where we believe that numerical computation can provide
us with more insights into the problem.

Our results show that, even when we allow for heterogeneity in savings

rates, dominance of logarithmic utility maximisers proves robust, at least
to a certain extent. In particular, we show that logarithmic traders can \af-
ford" to save at a lower rate than CAPM traders and still dominate �nancial
markets. When logarithmic traders dominate, the wealth share of CAPM

traders converges to zero exponentially fast. In particular, we �nd that the
more risk-averse CAPM traders are, the faster they vanish. Clearly when

CAPM traders display a savings intensity that is much higher than their

opponents, then - as one would expect - they indeed dominate and drive to
extinction logarithmic utility maximisers. We identify the threshold in the
savings rates di�erential such that this \fate reversal" occurs and �nd that it
is increasing in the variance of the dividend stream. If the dividend stream

is very volatile, then the advantage of logarithmic utility maximisers with
respect to CAPM traders in terms of portfolio selection is higher. Hence
LOG traders can \a�ord" to save less and still dominate the market. Sym-

metrically, the �tness of CAPM proves particularly low in environments
characterised by high volatility. Should we trust what CAPM prescribes

when investing on Nasdaq? Probably not.
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2 The Model

A detailed description of the model is to be found in Sciubba [16]. Here we
summarise its main features. Consider a complete securities market. Time

is discrete and indexed by t = 0; 1; 2; :::. There are S states of the world

indexed by s = 1; 2; :::; S, one of which will occur at each date. States follow

an i.i.d. process with distribution p = (p1; p2; :::; pS) where ps > 0 for all
s. Asset s 2 f1; 2; :::; Sg pays a strictly positive dividend ds > 0 when

state s 2 f1; 2; :::; Sg occurs and 0 otherwise. At each date there is only
one unit of each asset available, so that ds will be the total wealth in the

economy at date t if state s occurs. This wealth will be distributed among

the traders proportionately according to the share of asset s each of them

owns. Let �st be the market price of (one unit of) asset s at date t. There
is a heterogeneous population of long-lived agents in this economy, indexed
by i 2 f1; 2; :::; Ig. Each agent is characterised by an investment rule and
an initial wealth endowment. Agent i's investment rule is f�it; �

i
tg
1

t=0
where

�it denotes agent i's investment rate at date t (i.e. the percentage of wealth

endowment at date t, eit, that i invests at date t) and �it is a vector that
describes agent i's portfolio choice at date t (i.e. the vector of portfolio

weights in the S available assets f�istg
S

s=1
for agent i at date t). Agent

i's initial wealth endowment is denoted by ei0. The tuple
�
ei0; f�

i
t; �

i
tg
1

t=0

�
constitutes a complete description of agent i. At each date t, agent i invests
a portion �it of his wealth endowment eit, in the S available assets3. We denote

by wi
t the total amount invested by trader i at date t :

wi
t = �ite

i
t (1)

Aggregate total investment will be equal to aggregate expenditure in assets.

Since there is only one unit of each asset available, then clearly:

SX
s=1

�st =
IX
i=1

wi
t = wt (2)

Equation (2) provides us with a convenient normalisation for prices. We can,

in fact, call �st the normalised market price of asset s at date t and de�ne it

3We are in fact assuming that agent i \eats" the rest of his endowment so that whatever

is not invested,
�
1� �i

t

�
ei
t
, is consumed by agent i.

5



as follows:

�st �
�stPS
s=1 �st

=
�st

wt

(3)

Finally de�ne: �t � (�1t; �2t; :::; �St). In equilibrium, prices must be such

that markets clear, i.e. total demand equals total supply. Agent i's demand

for asset s will be equal to agent i's expenditure in asset s, �ist w
i
t, divided

by the market price of asset s, �st. In the aggregate:

IX
i=1

�ist w
i
t

�st
= 1 (4)

Rewriting equation (4) we get:

�st =
IX
i=1

�ist w
i
t (5)

and using our price normalisation:

�st =
IX
i=1

�ist "
i
t (6)

where "it denotes the investment share of agent i at date t:

"it =
wi
t

wt

(7)

and also measures the \presence" of trader i in �nancial markets and his
\importance" in determining asset prices.

2.1 The Dynamics

We now ask what is the period to period dynamics of trader i's investment

share. This will allow us to follow the evolution of his \presence" in �nancial
markets and of his \importance" in determining market outcomes, namely

asset prices. Suppose that state s occurs at date t: asset s pays a dividend
ds while all other assets pay zero. The total wealth in the economy, ds, gets

distributed to traders according to the share of asset s that each of them
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owns. In particular, the investment income of trader i - that also constitutes

his wealth endowment for period t+ 1 - is equal to the following:

eit+1 =
�istw

i
t

�st
ds (8)

Aggregate wealth endowment at date t + 1 is equal to the total payout of

asset s:

et+1 =
IX
i=1

eit+1 =
IX
i=1

�isw
i
t

�st
ds = ds (9)

In period t+ 1 trader i invests a fraction �it+1 of his wealth endowment:

wi
t+1 = �it+1e

i
t+1 = �it+1

�istds

�st
wi
t (10)

In the aggregate:

wt+1 =
IX
i=1

wi
t+1 =

IX
i=1

�it+1
�istw

i
t

�st
ds =

IX
i=1

�it+1
�istw

i
t

�st
et+1 (11)

In order to formulate (10) in terms of wealth shares, it is useful to de�ne the
market average investment rate �t+1 as:

�t+1 =
IX
i=1

�it+1
�istw

i
t

�st
(12)

so that (11) can be rewritten as:

wt+1 = �t+1et+1 (13)

Dividing (10) by (11) we obtain investment shares:

"it+1 =
wi
t+1

wt+1

=
�it+1�

i
stds

�t+1�stet+1
wi
t (14)

Finally, using (9) and our price normalisation, we obtain:

"it+1 =
�it+1�

i
st

�t+1�st
"it (15)
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Equation (15) describes the period to period dynamics of the investment

share of trader i. It implies that the \impact" of trader i on �nancial mar-
kets follows a �tness-monotonic dynamic: trader i's investment share will
increase if he invests more than the market on average and if he scores, with

his investments, a payo� which is higher than the average population payo�.

In fact, if state s occurs at date t, �ist and �st give us a measure of trader

i's payo� (his bet on the lucky asset) and of the average population payo�

respectively. Following the de�nition given by Blume and Easley [2], in order

to establish whether trader i survives or vanishes, we consider the asymptotic
value of his investment share and we check whether it is bounded away from

zero or not. When trader i's investment share converges 4 to zero, his signi�-

cance in determining market outcomes vanishes and he e�ectively disappears
from the market. When trader i's investment share stays bounded away from

zero, then he contributes to determine asset prices (also asymptotically) and
we will say that, as a trader, he survives. The process described by eq.(15)
is too complex to be studied analytically in a very general case5. In fact,

even under the restriction that all shocks are i.i.d., asset prices and market
savings rates depend on the whole sequence of past history, and the low of
large numbers does not automatically help us with a solution. As we argued
in the introduction, this is why we believe that numerical analysis can help

to obtain further insights into the problem.

2.2 Types of Traders

As in Sciubba [16], we will consider the interaction between two di�erent
types of traders. The �rst type of agents is given by investors who believe in
CAPM and use it as a rule of thumb 6: at the beginning of each time period,

they observe payo�s and market prices and work out the composition of the

market and the risk-free portfolios. Finally, according to their degree of risk
aversion they choose their preferred combination between the two. At date

4Here and in what follows whenever we refer to convergence, we mean almost sure

convergence.
5I.e. without imposing some of the restrictions required, for example, by [2], [15] or

[16].
6We can think of them as of traders who have been educated in business schools. They

have been taught the model so well in their �nance courses that they believe it really

works.
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t, CAPM investors choose 
t 2 [0; 1] and invest in asset s a portion �CAPMst

of their portfolio such that:

�CAPMst = 
t�
F
st + (1 � 
t)�

M
st (16)

where:

�Fst �
�st=dsP
z �zt=dz

=
�st=dsP
z �zt=dz

(17)

and
�Mst �

�stP
z �zt

= �st: (18)

The second type of traders is given by investors who are endowed with a log-

arithmic utility function (type LOG) and who actually maximise the growth

rate of their wealth share and invest according to a \simple" and time in-
variant portfolio rule:

�LOGst = ps (19)

More generally, at each date t, a rational trader i will choose f�istg
S

s=1
so as

to maximise:
SX
s=1

psu
i

 
�istw

i
t

�st
ds

!
(20)

subject to the constraint that investment expenditure at each date is less
than or equal to the amount of wealth saved in the previous period. If ui (�)

is logarithmic, it follows that 7 �Lst = ps. We will denote by �CAPMt and �LOGt

the investment rates of traders who believe in CAPM and logarithmic utility

maximisers respectively.

3 Computer Simulation and Numerical Re-

sults

Recall eq.(6) where normalised prices are expressed as a weighted average
of portfolio rules. In the setting that we consider, where CAPM and LOG

traders interact, eq.(6) becomes

�st = "t�
LOG
st + (1 � "t)�

CAPM
st (21)

7Note that we are assuming that traders know the probability distribution p over the

state space S. In a more general framework, a trader who displays a logarithmic utility

function bets his beliefs.
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where "t denotes the investment share of LOG traders and (1 � "t) denotes

the investment share of CAPM traders. By substituting eq.(16) and eq.(19)
in eq.(21) one has

�st = "tps + (1 � "t)(

�st

ds

1P
z=1;N

�zt
dz

+ (1 � 
)�st): (22)

We solve the above equation through iteration by a numerical technique

called \relaxation". Namely, we start from a trial value for �st, we compute
a new value through the above equation and then we iterate this procedure

until a �xed point is reached. In other words, if we call � the time of the

iteration our numerical code computes the quantity

��+1st = "tps + (1� "t)(

��st
ds

1P
z=1;N

��
zt

dz

+ (1� 
)��st) (23)

and then it looks for the �xed point solution �1st that is achieved for all
the � > � � for which j��

�+1
st � ��

�

st j is less than a tolerance parameter �xed

in advance for all the assets s. This �xed point is the numerical solution of
eq.(23). Since it has been demonstrated that this solution exists and is unique
[16], it is possible to show that the above method gives a numerical value
of the solution with a desired precision bounded only by computation time.

In our simulations we stop the iteration when the relative precision of asset
prices is lower than 10�5. At this point we run two sets of simulations. The

�rst set aims at detecting the time of convergence of the stochastic process

given by the wealth shares. The second set of simulations aims at checking
the robustness of LOG dominance results to heterogeneity in savings rates.

The �rst numerical check is devoted to study the average time one can
expect CAPM traders to survive in a competition with the others. We

run a Fortran code that simulates a real evolution in a market with CAPM

traders and LOG traders. We consider a market where 100 assets are repeat-
edly traded, so that S = 100. We assume that the probability distribution

over the states of nature is uniform, so that ps = 1=S; 8s. We assume that
dividends are randomly drawn from a normal distribution N(�; �) with the

mean to variance ratio large enough to guarantee that virtually every asset
pays a positive payo�. We set the initial investment shares for the two types

of traders to be equal. None of the qualitative results that we obtain in the
simulation are driven by our choice of parameters and probability distribu-

tions. We run our simulations under the assumption (as in Sciubba [16] and
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Blume and Easley [2]) that both types of traders save at the same rate. Time

step after time step the code generates pesudo-random numbers that identify
states of nature. After each draw, prices are computed through \relaxation",
the dividends are distributed and the investment shares of the traders are

refreshed. Eventually the investment share of CAPM traders becomes lower

than a certain threshold, su�ciently small that we can conclude that CAPM

traders are extinct. We then store in the computer the time at which this

threshold is reached and we start again with a new realisation of the same

market. Given the same initial conditions in the market, we collect up to
15000 di�erent realisations of this competition between traders. The various

realisations di�er because of the randomness in the draw of the states of

nature. In all the runs CAPM traders reduce their investment shares until
extinction takes place. This result con�rms the theoretical �ndings. Fur-

thermore, through the extinction times recorded by the computer code, we
are also able to measure the density function describing the probability that
CAPM traders survive up to a time t in a competition with LOG traders.

The unit of time is given by the draw of a state of nature. That is, t = 5
means that after the initial condition 5 states of nature have been drawn
in the market, and the 5 corresponding assets payed their dividends. The
main result is that the density function is exponential. The probability for a

CAPM trader to survive decreases with time according to

P (t)dt = Ae�Ctdt: (24)

We also run di�erent simulations by changing the parameter 
 of the model,

that measures the risk-aversion of CAPM traders. The result is that the
more risk-averse the CAPM traders are, the faster their wealth share con-
verges to zero. The economic intuition for this result lies in the fact that a
higher degree of risk-aversion implies that the portfolio of CAPM is tilted to-

wards the risk-free rather than towards the market portfolio, where the most
successful trading rules are represented. In this setting, a CAPM trader

with an extremely low risk-aversion, and hence a value of 
 approximately
equal to zero, would indeed survive.

Our simulations show that exponential decay is robust with respect to

the values of 
 used. The functional form that can be hypotised for such a

decay is of the form

P (t) = Ae�Bt

2

(25)
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One can test this assumption by rescaling the di�erent data. Namely in each

simulation, if we multiply the value of time by the value of 
2 used in that
run, we should obtain di�erent functions P 0(t0) (where t0 = t
2) all behaving
in the same way. In particular these data obtained through simulations with

di�erent values of 
 should collapse together. This technique note as \collapse

plot" is shown in Fig.1. In the upper part of the �gure we plot the data

relative to 
 = 0:5; 0:7; 0:8; 0:9; 1 testing the good validity of our assumption.

We also run another set of simulations, by changing the threshold at which

the CAPM trader is considered extinct. By passing to a threshold of 0:5% of
the total wealth shares from the 5% previously used, we noticed as expected

a shift of the distribution to longer times. Nevertheless, qualitatively we

obtain the same behaviour shown in the lower part of Fig.1. In both cases
(above and below) the extimated exponential distribution is indicated by a

dashed line.
In the second set of simulations we consider the situation in which the

savings rate used by the two types of traders di�ers. In particular, we ask if

LOG traders can survive and eventually dominate CAPM traders that save
at a higher intensity. We run simulations of the �nancial market described
in the previous section, in this case under the assumption that traders have
heterogeneous savings rates. Our aim is to check whether LOG dominance

results are robust when CAPM traders save at a higher rate than logarithmic
utility maximisers. As in the previous set of simulations, we consider a

market where 100 assets are repeatedly traded, this means that S = 100.

Again, we assume that the probability distribution over the states of nature
is uniform, so that ps = 1=S; 8s. We assume that dividends are randomly
drawn from a normal distribution N(�; �) with the mean to variance ratio
large enough to guarantee that virtually every asset pays a positive payo�.

We set the initial wealth shares for the two types of traders to be equal. i
Finally we normalise the savings rate of CAPM traders to be equal to one.

Fig. 2 shows the lowest value for logarithmic utility maximisers' sav-

ings rate that still allows LOG traders to dominate (averaged across 1000
di�erent simulations), for di�erent values of the variance � of the distribu-

tion of dividends, which measures the volatility of the dividend stream. In
particular, for the sake of clarity, we introduce the quantity � representing

the maximum di�erence in saving rates between CAPM and LOG that still
allow LOG traders to dominate. Also in this case we apply the technique of

the collapse plot in order to show that the threshold at which LOG traders
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stop to dominate depends on the ratio �=�. We can interpret the graph in

�gure 2 as dividing the �, � plane in two regions: in the area (a) below
the graph, logarithmic utility maximisers dominate and drive to extinction
CAPM traders; in the area (b) above the graph, CAPM traders dominate

and drive to extinction logarithmic utility maximisers. From our results it

appears that the dominance of logarithmic utility maximisers is robust to

heterogeneity in savings rates, at least to a certain extent. In fact we obtain

that LOG traders dominate and drive CAPM traders to extinction even

when the latter display a higher savings rate (provided that it is not much
higher). This di�erence provides us with an immediate measure of the ad-

vantage of LOG traders with respect to CAPM traders in terms of portfolio

rules. We �nd that the higher the volatility of the dividend stream, the higher
is the advantage of logarithmic utility maximisers over CAPM traders. In

particular, the threshold level for the LOG traders' savings rate appears to
be a function of the mean to variance ratio of the probability distribution of
the dividends that assets pay.

4 Conclusion

In this paper we test computationally the performance of CAPM in an evo-
lutionary setting. In particular we study the asymptotic wealth distribution

across two types of traders that compete on �nancial markets: traders who

invest as prescribed by CAPM and traders who maximise the expected value
of a logarithmic utility function of wealth. Our study provides further in-
sights and extends some recent analytical results (see [16]) that prove that
the wealth share of CAPM traders converges almost surely to zero, when

a logarithmic utility maximiser with a savings rate at least as large as the
savings rate of CAPM traders, enters the market. We run two sets of sim-
ulation addressing two related, but separate, issues. First, we look at the

time of convergence of the stochastic process given by the wealth share dy-
namics. We �nd that, when savings rates are identical across the two types

of traders, the wealth share of CAPM investors decreases exponentially fast
towards zero. We also �nd that the degree of risk-aversion of CAPM traders
has a role in determining the speed of convergence: the more risk-averse the

CAPM traders, the faster their wealth share converges to zero. Second, we

check the robustness of the analytical result in Sciubba [16] to heterogeneity
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in savings rates. We �nd that LOG investors can also dominate if their sav-

ings rate is lower (but not too much lower) than the savings rate of CAPM
traders. We compute the maximum di�erence between the savings rates of
the two types of investors that still allows LOG traders to dominate and drive

to extinction all those who choose their portfolio according to what CAPM

prescribes. We argue that the di�erence between savings rates so computed

can serve as a measure of the �tness of logarithmic utility maximisation with

respect to CAPM and we �nd that it is increasing in the variance of the

dividend stream. Our results seem to suggest that, from an evolutionary
perspective, if it is true that CAPM could perform almost as satisfactorily

as logarithmic utility maximisation in markets with low volatility, it proves

particularly un�t for highly risky environments.
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Figure 2: Values of � (that is the di�erence between the saving rate of
CAPM and LOG at which CAPM starts to win the competition), with

respect to the dividends' volatility �.
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