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Abstract

The paper is devoted to the problem of incorporating prior informa-
tion in the regression analysis. Some indices of uncertainty of the prior
knowledge are proposed and their usefulness is studied. To incorporate
prior information together with its uncertainty into regression estimation
some coefficients of uncertainty are introduced as well. Performance of
estimators based upon proposed descriptions of uncertainty is examined
via computer simulations.

1 Introduction

Let us consider the ordinary linear model Y = Xβ + Z, where Y is a vector
of observations of the dependent variable, X is a matrix of the observations of
explanatory variables, β is a vector of unknown regression coefficients and Z
is a vector of random disturbances (all quantities of appropriate dimensions).
Let us assume E(Y ) = Xβ and Cov(Y ) = Σ and the matrix X has a full rank.
The paper is devoted to the problem of incorporating prior information in the
estimation of the model coefficients. We assume the prior information β = bp
was derived from previous regression analysis performed (perhaps by someone
else) for some phenomenon which was described by the same regression equation
as the one we investigate. However, we cannot be sure that the phenomenon
was described by exactly the same regression equation and we do not know how
reliable are the obtained results - the prior information is uncertain. In such a
case first we have to decide whether to make use of the information or not. If yes,
we should choose a proper estimator. The usual least-squares estimator dLS does
not incorporate any prior information about the regression equation. To make
use of the information we need some alternative and the statistical theory help
us. We are presented with various Bayes, robust Bayes and minimax estimators,
see e.g. [1, 2, 4]. However, their optimal performance depends on the problem
formulation (e.g on the performance criterion) as well as on the description of
the prior information. In practical applications, however, it is usually difficult
to decide what description of our prior knowledge would be the most suitable -
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the knowledge may have different nature and various origins. In the paper [3]
we compare various methods for choosing parameters of robust linear estimators
incorporating the prior information in the situation described above. In our
paper we introduce some indices to ”measure” the uncertainty connected with
such information. Next we propose a method of incorporating the uncertainty
into regression estimation. The usefulness of various uncertainty indices as well
as the performance of the introduced estimators are examined via computer
simulations. During the simulations we generate the prior information as well as
the observations for regression analysis (changing at random all characteristics
of examined models). Consequently we study the performance of considered
estimators for thousands data sets.

2 Problem Statement and Notation

In the sequel the model our prior information is obtained from will be called
the previous model. The model we are to examine will be called the current
one. Symbols bp, bc denote the least-squares estimates of the true parameters
βp, βc of the previous and current models while Sp, Sc denote the estimates of
the standard deviations of random disturbances for each model, respectively.

We examine the following class of linear estimators:

d(ϑ,∆,Σ)(Y ) = C(∆,Σ)XTΣ−1Y + C(∆,Σ)−1ϑ (1)

where C(∆,Σ) = (XTΣ−1X + ∆−1)−1. Such estimators arise as solutions to
some problems of Bayes estimation. The value of ϑ may be thought of as a
prior guess for β, while ∆ reflects our uncertainty connected with the guess.
The estimator d(ϑ,∆,Σ) is also minimax linear for some problems with unknown
matrices ∆,Σ and given ϑ, see [2]. Similar in structure estimators were also
obtained as solutions to the problem of minimax linear estimation when the set
of the states of nature was given in the form of restricted parameter space, see
[4] for references.

To make use of the estimators given by (1) one has to set up the parameters
∆,Σ, ϑ and usually it is not very clear how to do it. The computer simulations
show that in our case, when we know bp and some other fundamental quantities
obtained during previous regression analysis, the intuitive methods of determin-
ing the parameters ϑ as bp and Σ as diagonal matrix with the elements Sc on
principal diagonal are quite satisfactory, see [3]. The most confusing point is
how to determine the matrix ∆ describing our uncertainty connected with the
prior information. In the paper we deal with the problem. We examine the
case where the matrix is defined as diagonal one with the elements ∆ii equal to
Max(bpi , spi). Here bpi is the i-th component of bp and spi stands for the stan-
dard error of estimation of bpi . We denote this matrix by ∆∗. As potentially
good uncertainty indices we consider the following functions:

IUijl = T iRDj(
R2
c

R2
p

)l , i = 0, ..., 3 , j = 0, ..., 3 , l = 0, ..., 3 (2)
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where a statistic T is given by T =‖ ( bp1−bc1sc1
, ...,

bpk−bck
sck

) ‖, a relative distance

RD between estimates is given by RD =
‖bp−bc‖
‖bc‖ and R2

c , R
2
p are multiple coef-

ficients of determination for the current and previous model, respectively. With
the help of computer simulations we verify this idea and choose the most useful
index IU∗. Next we propose some method of determining the matrix ∆ based
upon the chosen index IU∗.

3 Description of Simulations

Simulations performed in our studies were based on two described below pro-
cedures - Single Estimation Simulation Procedure and Main Simulation
Procedure . All procedures were programmed with the help of the programming
tools of Mathematica 4.0, the product of Wolfram Research, Inc.

Single Estimation Simulation Procedure (SESP).
An input for this procedure consists of the matrices of the observations of ex-

planatory variables for both models i.e. Xp, Xc, the true regression parameters
βp, βc (maybe different), the distributions πp, πc, i.e. their shapes and moments.
During SESP we generate random vectors of observations of the dependent vari-
ables, Yp, Yc, each according to an appropriate model. We also obtain and write
down the prior information bp, Sp, spi , i = 1, ..., k. Next we compute the values
d(Yc) of all estimators d under consideration as well as bc - the value of dLS .
For each estimator d we write down L(d(Yc), βc) =‖ d(Yc)− βc ‖ and Relative

Improvements (w.r.t dLS) RI(d) =
L(dLS(Yc),βc)−L(d(Yc),βc)

L(dLS(Yc),βc)
For each examined

estimator d we additionally write down a variable called Better(d) which is
equal to 1 if RI(d) > 0 or equals 0 otherwise. An average value of Better(d)
is an estimated probability that given estimator is better than dLS in terms of
considered loss function. It will be denoted by PB(d). Apart from the above
quantities we remember as well many other characteristics, among them the
values of the indices IUijl.

Main Simulation Procedure (MSP).
An input for this procedure consists of the distributions πp, πc (in our re-

search the distributions were normal). As a first step of this procedure we
randomly generate the quantities which form an input for SESP i.e.: dimen-
sions k, np, nc , matrices Xp, Xc,, vectors βp, βc. The regression parameter βc is
obtained by random transformation of βp, what reflects the fact that the investi-
gated model may be different from the previous one. These generated quantities
do not change during a single MSP. As a second step of MSP we execute SESP
over a hundred times and write down average values of all quantities computed
during these SESPs.

With the help of presented above procedures we simulated over a million
problems of regression estimation. For each of the problem the dimension of
regression parameter was drawn from the set [3,...,15], the degree of freedom
was a random number between 3 and 150. The matrices of observations of
explanatory variables were random as well.
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4 Results

Some characteristics of generated data are presented in Table 1.

Tab.1 Some characteristics of generated data

Mean Median Max Min
Sp 462 314 1874 3.13
Sc 514 331 2001 3.59
Sc/Sp 1,33 1,21 3,8 0,45
T 10.97 6.02 102 1.65
RD 1.41 0.57 25.8 0.04
R2
p 0,74 0,79 0,98 0,29

R2
c 0,82 0,87 0,98 0,30

Let for a given value K the symbol dK denote an estimator d(bp,K·∆∗,ScI),
see Section 2.

In the next table we show the values of the Pearson contingency coefficient
C between both RI and PB gained by the estimator d1 and the values of a
given function IUijl (indicated at the first row by the value of indices ijl).
The coefficients are computed on the base of whole data gathered during the
first part of our research and consisting of 6 901 records. Each record contains
average values of the above mentioned quantities - see description of simulation
procedures - computed for a hundred of SESP. Thus it is based on 690 100
simulations of regression problems. In Table 2 we present the results for only
few functions IUijl- the most promising ones and some other to compare.

Tab. 2. Pearson contingency coefficients C for the whole data.

110 120 130 111 121 131 112 122 132

RI(d1) 0.37 0.25 0.22 0.48 0.32 0.30 0.41 0.36 0.25
PB(d1) 0.42 0.20 0.14 0.49 0.27 0.19 0.44 0.29 0.19

We see that the performance (in terms of RI as well as PB) of the estimator d1
is clearly dependent on the values of indices IU111, IU110, IU112. Because the
performance depends upon the prior information it suggests the indices could
indicate how useful is the information incorporated by the estimator. This fact
is confirmed by Pearson correlation coefficients r presented in Table 3.

Tab. 3. Pearson correlation coefficients r for the whole data.

110 120 130 111 121 131 112 122 132

RI(d1) -0.21 -0.12 -0.08 -0.25 -0.17 -0.10 -0.24 -0.19 -0.12
PB(d1) -0.28 -0.09 -0.05 -0.32 -0.12 -0.06 -0.30 -0.13 -0.07

One can see that the correlation between IU111, IU110, IU112 and both RI and
PB is negative so, the greater is the value of any of the indices the worse is the
performance of the estimator. It means that the information the estimator d1 is
based on is the more uncertain (and misleading) the greater are the indices.The
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correlation is even stronger when we ignore small changes in the values of the
indices. To verify this we sorted all data according values of each of the indices
and then we divided it into 50 Classes of Values (CoV). Next we compute the
correlation coefficients r between the average value of the index for a given CoV
and average values of both RI and PB in this group of data. The results are
presented in Table 4.

Tab. 4. Pearson correlation coefficients r for 50 CoV of IUijl

110 120 130 111 121 131 112 122 132

RI(d1) -0.72 -0.48 -0.41 -0.74 -0.49 -0.42 -0.70 -0.48 -0.41
PB(d1) -0.60 -0.22 -0.15 -0.62 -0.22 -0.15 -0.59 -0.23 -0.16

In view of Tables 2, 3 and 4 the function IU111 seems to be most correlated
with the performance of d1. Thus we choose it as uncertainty index and denote
IU∗. To study how the amount of uncertainty which should be incorporated
into estimation depends on the value of IU∗ we compare performance of the
estimators dK for various values of K (the bigger K the larger amount of uncer-
tainty is incorporated). Table 5, providing us with the results of the comparison,
is based on next 418 400 simulations.

Tab. 5. Average RI of dK for different CoV of IU∗

CoV of IU∗ d0.5 d1 d9 d49 d64 d100
0-1 10,0% 9,0% 3,0% 0,8% 0,6% 0,4%
1-2 10,0% 9,0% 3,0% 0,6% 0,5% 0,3%
2-4 4,0% 7,0% 5,0% 2,0% 2,0% 1,5%
4-8 -39,0% -24,0% 0,5% 1,3% 1,2% 1,1%
8-20 -95,0% -61,0% -8,0% -0,5% -0,2% 0,01%
20-50 -143,0% -85,0% -9,0% -0,9% -0,6% -0,3%
over 50 -224,0% -131,0% -15,0% -2,0% -1,3% -0,7%

We see that the estimator d1 can be used when IU∗ < 4 (RI is positive).
However, when IU∗ is smaller than 2 more profitable is estimator d0.5 what
means that we can be more trustful. When the index has value greater than 4
we lose using d1 - our information is misleading. We cannot trust in it. The
uncertainty can be reflected by greater value of K, compare the performance
of the remaining estimators presented in Table 5. The results suggest that the
uncertainty incorporated into regression can be described by a matrix ∆ =
CU(IU∗) · ∆∗ for some increasing function CU - the function will be called
Coefficient of Uncertainty. In our studies we have examined various proposals
for the coefficient and we obtained good estimators for CU given by:

CU(x) = (0.07x2 + 0.3)1[0,2)(x) + (0.1x2 + 0.1x)1[2,20)(x)

+(15x2 − 100x− 3958)1[20,∞)(x) (3)

where 1A(·) is a characteristic function of the indicated set A.
The comparison of the estimator dCU based upon the coefficient with esti-

mators dK is provided in Table 6. The results are based on another 376 500
simulations of regression problems.
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Tab. 6. Average RI of dK and dCU for different CoV of IU∗

CoV IU∗ dCU d0.5 d1 d9 d49 d100 d200
0-1 7,8% 6,8% 6,2% 1,9% 0,4% 0,2% 0,1%
1-2 7,2% 6,5% 6,7% 1,7% 0,4% 0,2% 0,1%
2-4 6,9% 2,6% 6,7% 2,6% 0,7% 0,4% 0,2%
4-8 11,3% -19,4% -6,9% 2,3% 1,4% 0,9% 0,5%
8-20 7,2% -70,1% -38,3% -3,6% 0,0% 0,2% 0,2%
20-50 2,2% -123,8% -63,7% -5,9% -0,6% -0,2% 0,0%
over 50 0,3% -234,3% -118,2% -14,7% -2,0% -0,8% -0,3%

Note that the estimator dCU has positive average relative improvement for
all classes of values of the uncertainty index.

5 Concluding Remarks

On the base of the performed computer simulations we can judge that the
function IU111 is a good indicator of the uncertainty of the prior information. In
a case where we do not know the value of R2

p the index can be replaced by IU110,
see Tables 2,3, and 4. The amount of uncertainty introduced into regression
estimation should be an increasing function of the uncertainty index. A good
proposal for the function (called coefficient of uncertainty) is the function given
by (3). We should stress however, that our results were obtained under the loss
given by Euclidean norm: L(d, β) =‖ d − β ‖ and when the distributions of
disturbances were normal. The studies should be carried on to determine the
form of the coefficient of uncertainty when the criterion of performance is given
by other loss functions (eg. quadratic) or for other than normal distributions.
It should be also verified whether in such cases the index IU∗ is still correlated
well enough with the results of estimation.
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