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1 Introduction

The availability of financial transactions data hoisted the interest in applied
microstructure research. Thinning raw data enables analysts to define the events
of interest, e.g. quote updates and limit-order execution, and then compute
the corresponding waiting times. Typically, the resulting duration processes
are influenced by public and private information, what motivates the use of
conditional duration models. Therefore, it is not surprising that microstructure
studies employing conditional duration models abound in the literature (e.g.
Engle and Lange, 1997; Lo, MacKinlay and Zhang, 1997; Lunde, 1999). In
particular, price durations are closely linked to the instantaneous volatility of
the mid-quote price process (Engle and Russell, 1997). Besides, price durations
play an interesting role in option pricing as well (Pringent, Renault and Scaillet,
1999). Trade and volume durations mirror in turn features such as market
liquidity and the information arrival rate (Gouriéroux, Jasiak and Le Fol, 1996).

Engle and Russell’s (1998) autoregressive conditional duration (ACD) model
is the starting point of such analyses, though there are several extensions. En-
gle (1996) and Ghysels and Jasiak (1998a) combine conditional duration mod-
els with GARCH-type effects, whereas Ghysels, Gouriéroux and Jasiak (1997)
introduce a stochastic volatility duration model to cope with higher order dy-
namics in the duration process. Ghysels and Jasiak (1998b) investigate the
persistence of intra-trade durations using a fractionally integrated ACD model,
whilst Zhang, Russell and Tsay (1999) advocate for a non-linear version of
the ACD model rooted in a self exciting threshold autoregressive framework.
Bauwens and Veredas (1999), Grammig and Maurer (1999), Lunde (1999b),
and Hamilton and Jorda (1999) argue for conditional duration models that ac-
commodate more flexible hazard rate functions. Bauwens and Giot’s (1997)
logarithmic ACD model provides a more suitable framework for testing mar-
ket microstructure hypotheses as it avoids some of the parameter restrictions
implied by the original ACD specification. Bauwens and Giot (1998) and Rus-
sell and Engle (1998) propose extensions to deal with competing risks, whereas
Russell (1998) and Engle and Lunde (1998) consider bivariate models for trade
and quote processes.

Despite the recent boom of empirical applications, the literature has devoted



so far little attention to testing the specification of conditional duration mod-
els. The practice is to perform simple diagnostic tests to check whether the
standardised residuals are independent and identically distributed (iid). If, on
the one hand, all papers use the Ljung-Box statistic to test for serial correla-
tion; on the other hand, only a few tests whether the distribution of the error
term is correctly specified. Engle and Russell (1998) and Grammig, Hujer,
Kokot and Maurer (1998) check the first and second moments of the residu-
als with particular attention to measuring excess dispersion, whilst others use
QQ-plots (Bauwens and Veredas, 1999) and Bartlett identity tests (Pringent et
al., 1999). Grammig and Wellner (1999) take a different approach by estimat-
ing and testing conditional duration models using a GMM framework. More
recently, Bauwens, Giot, Grammig and Veredas (2000) employ the techniques
developed by Diebold, Gunther and Tay (1998) to evaluate density forecasts.

Misspecification of the distribution of the error process may seem unimpor-
tant given that quasi maximum likelihood (QML) methods provide consistent
estimates (Engle, 1996). However, QML estimation of conditional duration
models may perform quite poorly in finite samples. Consider, for instance, a
model in which standardised durations have a distribution that engenders a non-
monotonic baseline hazard rate function. Quasi maximum likelihood methods
rooted in distributions with monotonic hazard rates will then fail to produce
sound estimates even in quite large samples such as 15000 observations (Gram-
mig and Maurer, 1999). The poor performance of QML estimation has quite
serious implications for models that attempt to uncover the link between du-
ration and volatility, e.g. Ghysels and Jasiak’s (1998) ACD-GARCH process.
Indeed, shoddy estimates of the expected duration may produce rather mislead-
ing results for the volatility process.

This paper develops tools to test the distribution of the error term in a
conditional duration model. We propose testing procedures that gauge the
closeness between non- and parametric estimates of the density and baseline
hazard rate functions of the standardised durations. There is no novelty in
the idea of comparing a consistent estimator under correct parameterisation to
another which is consistent even if the model is misspecified. It constitutes, for
instance, the hinge of Hausman’s (1978) specification tests and ATlt-Sahalia’s

(1996) density matching approach to estimate and test diffusion processes.



Our tests carry some interesting properties. In contrast to Bartlett identity
tests (Chesher, Dhaene, Gouriéroux and Scaillet, 1999), it examines the whole
distribution of the standardised residuals instead of a small number of moment
restrictions. In addition, our tests are nuisance parameter free in that there
is no asymptotic cost in replacing errors with estimated residuals. Further, as
all results are derived under mixing conditions, there is no need to carry out a
previous test for serial independence of the standardised errors. This is quite
convenient in view that a joint test such as the GMM overidentification test does
not pinpoint the cause of rejection. Lastly, Monte Carlo simulations indicate
that some versions of our tests are quite promising in terms of finite sample size
and power.

The remainder of this paper is organised as follows. Section 2 describes the
family of conditional duration models we have in mind. Section 3 discusses the
design of the testing procedures. Section 4 deals with the limiting behaviour of
such tests. First, we show asymptotic normality under the null hypothesis that
the conditional duration model is properly specified. Second, we compute the
asymptotic local power by considering a sequence of local alternatives. Third,
we derive the conditions in which our tests are nuisance parameter free. Sec-
tion 5 investigates finite sample properties through Monte Carlo simulations.
Section 6 tests whether ACD models are suitable to model price durations of
frequently traded stocks at the New York Stock Exchange (NYSE). In section 7,
we summarise the results and offer concluding remarks. For ease of exposition,

an appendix collects all proofs and technical lemmas.

2 Conditional duration models

Let x; = 1;¢;, where the duration x; = ¢; — t;_1 denotes the time elapsed be-
tween events occurring at time ¢; and ¢;_;, the conditional duration process
¥; o E(z;| I;—1) is independent of ¢; and I;_; is the set including all informa-
tion available at time #;_;. To nest the existing ACD models, we consider the

following general specification for the conditional expectation

dji = g(wi—laei—laui;(b)a (1)

where u;|I;_1 ~ N(0,02) and ¢ is a vector of parameters. If the interest rests

on modelling microstructure, one may incorporate additional predetermined



variables as well (Bauwens and Giot, 1997 and 1998; Engle and Russell, 1998).
Further, suppose that ¢; is iid with Burr density
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with & > o2 > 0 and mean
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It is readily seen that the conditional density of z; is also Burr with parameter
vector (51’31/1; ® K, 02). Accordingly, the conditional hazard rate function reads
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which is non-monotonic with respect to the standardised duration if £ > 1.

When o2 shrinks to zero, (2) reduces to a Weibull distribution, viz.

fw (€i, 8w) = & &y €F " exp (—&fy €F),

where &w = I'(1 + 1/k). Accordingly, the conditional distribution of the du-
ration process is also Weibull and the conditional hazard rate function reads
I'w (xl |Ii_1; GW) = k& zbi_”xf_l. In contrast to the Burr case, the condi-
tional hazard rate implied by the Weibull distribution is monotonic. It decreases
with the standardised duration for 0 < & < 1, increases for ¥ > 1 and remains
constant for & = 1. In the latter case, the Weibull coincide with the exponential
distribution and the conditional hazard rate function of the duration process is
simply T'g (z; | Ii—1; 05) = ;' Albeit Engle and Russell (1998) suggest the
use of exponential and Weibull distributions, the Burr ACD model seems to

deliver better results for price durations (Bauwens et al., 2000).

3 Specification tests

As conditional duration models are usually estimated by QML methods, like-
lihood ratio tests are available to compare nested distributions in conditional
duration models. However, due to the presence of inequality constraints in the
parameter space, the limiting distribution of the test statistic is a mixing of
x2—distributions with probability weights depending on the variance of the pa-
rameter estimates (Wolak, 1991). Accordingly, it is extremely difficult to obtain



empirically implementable asymptotically exact critical values. As an alterna-
tive, Wolak (1991) suggests applying asymptotic bounds tests, but bounds are
in most instances quite slack, yielding inconclusive results more likely.

In the following, we design a simple testing strategy which checks specifica-

tion by matching density functionals. More precisely, we test the null
Hy: 360 € © such that f(-,00) = f(-) (4)

against the alternative hypothesis that there is no such 8y € ©. The true den-
sity f(-) of the standardised durations is of course unknown, otherwise we could
merely check whether it belongs to the proposed parametric family of distribu-
tions. Accordingly, we estimate the density function using non-parametric ker-
nel methods, which produce consistent estimates irrespective of the parametric
specification. The parametric density estimator is in turn consistent only under
the null. It is therefore natural to carry a test by gauging the closeness between
these two density estimates.

For that purpose, we consider the distance

T, = / "1z € 8)[f(2,6) - f(@)]

to build a first testing procedure, which we label the D-test. We introduce the

2

f(z)dz (5)

compact subset S to avoid regions in which density estimation is unstable. The

sample analog reads

U= %Zl(%‘ €S) [f(%',é) —f(%')r, (6)

i=1
where # and f() denote consistent estimates of the true parameter y and
density f(-), respectively. The null hypothesis is then rejected if the D-test
statistic ¥ ; is large enough.

By virtue of the one-to-one mapping linking hazard rate and density func-
tions, the null hypothesis (4) implies that there exists 8p € © such that the
hazard rate function implied by the parametric model Ty, (-) equals the true
hazard function I'y(:). Accordingly, we consider a second test based on the

statistic
Ay= %Z I(z; € S) [Fg(m) - Ff(xi):l27 (™)

which we refer as the H-test. To provide a minimum-distance flavour to both

D- and H-tests, one may estimate the parametric model by minimising (6) and



(7), respectively. Though we derive in the next section the limiting behaviour
of the resulting M-estimators §2 = argming.gW¥; and on = argmingceA ¢, we

rather avoid tackling identification issues to keep focus on testing.

4 Asymptotic justification

In what follows, we derive asymptotic results for the test statistics and their
implied M-estimators using ATt-Sahalia’s (1994) functional delta method. In
fact, the limiting behaviour of the D-test was originally developed by Bickel and
Rosenblatt (1973), who assume random sampling. ATt-Sahalia (1996) extends
Bickel and Rosenblatt’s results to mixing processes to build a specification test
for diffusion processes, and shows the asymptotic normality of the implied M-
estimator. Accordingly, the set of assumptions we impose is quite similar and
the asymptotics are the same up to a weighting scheme. Before moving to the
details of the asymptotic theory, it is noteworthy that the M-estimators implied
by the D- and H-tests hinge on a two-step procedure in which the first step
involves a kernel estimation and the second step solves a minimisation problem.
As such, these estimators belong to the class of M-estimators discussed in Newey

(1994).

4.1 Assumptions

Consider a real-valued random variable z; with discretely sampled observations

Z1,...,%n. We consider the following set of regularity conditions.

A1 The sequence {x;} is strictly stationary and S-mixing with 8; = O(j %),
where § > 1. Further, E||z;||* < oo for some constant k > 25/(5 — 1).

A2 The density function f, = f(z) of z; is continuously differentiable up to
order s+1 and its derivatives are bounded and square-integrable. Further,

fz is bounded away from zero on the compact interval S, i.e. infg f; > 0.

A3 The fixed kernel K is of order s (even integer) and is continuously differen-
tiable up to order s on IR with derivatives in L*(R). Let ex = [ K*(u)du
and vg = [ [[, K(u)K (u+ v)du]2 dw.

A4 As the sample size n grows, the bandwidths for the fixed and gamma kernels

are such that h,, = o (n"2/(4*+1)) and b, = 0 (n~%°), respectively.



A5 The parameter space © C IR* is compact. Let ((-,8) denote the density
function f(-,8) for the D-test and the baseline hazard rate function I'(-, )
for the H-test. In a neighbourhood of the true parameter 8y, (-, 8) is twice
continuously differentiable in 8, the matrix E [Z((-,8) 55:¢(-,6)] has full
rank, and #;jﬁ (-,8) is bounded in absolute value for every i, j and

fc€o.

A6 Consider f, and fy in a neighbourhood Ny of the true density f,. Then,
the leading term 9 that drives the asymptotic distribution of the implied

M-estimators is such that

(i) E9; 1" < 00, for r > (3+0)(3+1/2)/n, ¥n >0

(#) E sup |19f*|2 <
f*ENf

(@)  E|9s -0z,

< lfe = 412 ooy
where c is a constant, |||| 1 (s0,m) denotes the Sobolev norm of order (co,m)

and m is an integer such that 0 < m < s/2+ 1/4.

Assumption Al restricts the amount of dependence allowed in the observed data
sequence in order to ensure that the central limit theorem holds. As usual, there
is a trade-off between the number of existing moments and the admissible level
of dependence. Carrasco and Chen (1999) offer more details concerning the
B-mixing properties of ACD models. Assumption A2 requires that the density
function is smooth enough to admit a functional Taylor expansion. Though
assumption A3 provides enough room for higher order kernels, in what follows,
we implicit assume that the kernel is of second order (i.e. s = 2). Assumption A4
induces some degree of undersmoothing to force the asymptotic biases of the test
statistics to vanish. Further, it implies that the gamma, kernel bandwidth b, is
of the same order of h2 for second order kernels (see Chen, 2000). Assumptions
A5 ensures that the M-estimators 87 and 67 are well defined. Finally, A6
guarantees that one can estimate consistently the asymptotic variance of the

M-estimators using a non-parametric correction & la Newey and West (1987).



4.2 Matching the density function

The D-test gauges the discrepancy between the parametric and non-parametric

estimates of the stationary density. The functional of interest is

¥ = [16e9) [ - f@)] fa)as, ®)

T

where 1(-) is the indicator function and 8y is the functional implied by the

estimator of 8. Assume further that it admits the following functional expansion
1
Uj=Ts+DUy(he) + 5D s(has ho) + O (IlRall?) (9)

where h, = f; — fz and || - || denotes the L? norm. By the Riesz representation
theorem, the functional derivative DU ;(-) has a dual representation of the form
DUy (hs) = [, ¥s(2)he dz. Tt follows from Aft-Sahalia’s (1994) functional delta
method that ¢y stands for the leading term that drives the asymptotic distribu-
tion of ¥ i If the first functional derivative is degenerate, then the asymptotic
distribution is driven by the second order term of the expansion.

Let f, and f; ¢ denote the true and parametric density functions, respec-

tively. The first functional derivative of ¥ reads

D) = [ (oo = fohado+2 [ 2020 D80 ~ o] (e = o),

where D@;(-) denotes the first derivative of the functional 8¢ implied by the
estimator under consideration. As D%¢(h,) is singular under the null, the

limiting distribution of lIl : depends on the second functional derivative, namely

D2 (hy, hs) / O1(%.6) O1@s01) (13, 1)) .

8f(x,0f)
—4/STD0f(hw)fwhw dx+2/sfwh§ dz. (10)

However, the first and second terms of the right-hand side do not play a role in
the asymptotic distribution of the test statistic. The functional delta method
shows indeed that the asymptotics is driven by the unsmoothest term of the
first non-degenerate derivative for it converges at a slower rate. The third term
contains a Dirac mass in its inner product representation, and thus will lead the

asymptotics.

Theorem 1. Under the null and assumptions Al to A4, the statistic
nh/ > W — hy' /25

— N(07 1)7



where SD and &% are consistent estimates of 0p = ek E[Il(x € S)fw] and
o}, = vk E[L(z € 8)f3], respectively.
Proof. See Ait-Sahalia (1996).

As the time elapsed between transactions is strictly positive, durations have
a support which is bounded from below. Further, the bulk of duration data is
typically in the vicinity of the origin. Accordingly, #2 may perform poorly due
to the boundary bias that haunts non-parametric estimation using fixed kernels.
One solution is to work with log-durations whose support is unbounded and
density is easily derived: indeed, if Y = log X, then fy (y) = fx [exp(y)] exp(y).
Alternatively, one may utilise asymmetric kernels to benefit from the fact that
they never assign weight outside the density support (Chen, 2000). In particular,
the gamma kernel

u®/" exp(—u/by)

Kw/bn-i-l,bn (u) = F(.’I;/b N l)bw/b" Il-{u € [0700)} (11)

with bandwidth b,, is quite convenient to handle a density function whose sup-
port is bounded from the origin. Therefore, we consider a second version of the

D-test in which the density estimation uses a gamma kernel.

Theorem 2. Under the null and assumptions Al to A4, the statistic

nby/ 4w ; — b 1/45
D= I € 4 N, 1),

ge

where 8g and 5% are consistent estimates of g = #E[Il(x € 8)z71/%f,] and

o = # [L(z € S)z~/2 f2], respectively.

Consider now the following sequence of local alternatives

Hﬂ : sgg ‘f["] (z,6) — f["] (z) — enlp(x)‘ = o(en), (12)

where ||f[”] — f|| = o(n_lhﬁlﬂ), En = n1/2p 1% and £p(z) is such that
€3, = E[1(z € 8)3) ()] exists and E[fp(z)] = 0. The next result illustrates
the fact that both versions of the D-test have non-trivial power under local

alternatives that shrink to the null at rate g,,.

Theorem 3. Under the sequence of local alternatives HL, and assumptions A1

to A4, #D AN (¢$/op, 1), whereas 7.0 4N (5 /06, 1).

10



To maximise power of both versions of the D-test, one could consider the
most favourable scenario to the parametric model by utilising the M-estimator

é}f . The corresponding implicit functional is then

of (z,67

[ 2G5 (o 0p) - ] s =0, (13
which produces

af z, 0 ) 9f(2,6) , - 6f
D67 (h { ST } / Yh(z)dz. (14)
Accordingly, the limiting distribution is driven by

df(x,0) 8f(x,0 ' 8f(z,0

19?(%'):1[(%’68){/8 fg;’ ) f(,g;; )f(x)dx} fg;’ ) fa). (15)

Theorem 4. Under the null and assumptions Al to A5, n'/? (é? — 6o) 4
N(0,9Qp), where Qp => 5o Cov [19?(xi),19?(xi+k)] is the long run covari-
ance matriz of 19?. In addition, if assumption A6 holds, it suffices to plug é?
into 19? and truncate the infinite sum as in Newey and West (1987) to obtain
a consistent estimator of the asymptotic variance.

Proof. See Ait-Sahalia (1996).

4.3 Matching the baseline hazard rate function

The H-test compares the parametric and non-parametric estimates of the base-
line hazard rate. The motivation is simple. The usual densities associated with
duration models, e.g. exponential, Weibull and Burr, may engender fairly simi-
lar shapes depending on the parameter values. In turn, they hatch very different
hazard rate functions: it is flat for the exponential, monotonic for the Weibull
and non-monotonic for the Burr.

The functional of interest reads

2 ~
A;= [ [Tol@) - T;()] f da, (16)
S
Suppose that (16) admits a second order Taylor expansion about the true den-
sity, viz.
1
Aj=As+DAs(hs) + 5D*Ag(ha, hs) + O (|Ihall’) (17)

11



where Ay = fs [Fg(x) - Ff($)]2fw dz and h, = fw — fz as before. The first

functional derivative is then

DAj(hy) = /s[rg(x)—rf(x)fhwdx

+2 /8 [Cs(2) - T4 ()] arggx) D6, (he) — DTs (o) | fo da, (18)

where
h(z) —T¢(z) [, L(u < z)h(u)du
Sz

and S, denotes the survival function 1 — F(z). It is readily seen that, if the

DTy (hs) = (19)

baseline hazard is properly specified, the first derivative is singular.
The asymptotic distribution of the H-test relies then on the second order

functional derivative, which under the null reads

D?As(hy,hg) = 2/8[D1“f(hw)]2fwdx

+2 o0 50 [DGf(hw)]wadx
— 4 [ ZEE Dy (DI 1)z (20)

It turns out that the first term leads the asymptotics as it contains the un-

smoothest term of the expansion.

Theorem 5. Under the null and assumptions Al to A4, the statistic

nhY2A, — BT25
= 24, N(0,1),
H

where A and 2 are consistent estimates of An = ex E[1(z € S)['4(z)/S,]
and ¢ = vk E[1(z € S)T%(x)/Ss], respectively.

In contrast to the density function, in general, there is no closed form solution
for the hazard rate of the log-standardised duration. One may of course solve it
by numerical integration, though at the expense of simplicity. Notwithstanding,

it is straightforward to fashion the H-test to gamma kernels.

Theorem 6. Under the null and assumptions Al to A4, the statistic

nby/ *Az — by /X
Al = —— < 4N ,),

Ne;
where A\g and && estimate consistently A\g = ﬁE [L(z € S)z~/T4(2)/S,]
and ¢ = #E [Il(x € S)x_1/21“?}(x)/5'w] , respectively.

12



Consider next the following sequence of local alternatives

HE . sug ri"l(z,0) — FEZL] (z) — ean(x)‘ = o(en), (21)
zE

where ||1“[f"] —Tyl| =0 (n_lhﬁlﬂ), en = n~/2h " and €y () is such that
g, = E[1(z € S)&(z)] < co and E[¢y(z)] = 0. It follows then that both
versions of the H-test can distinguish alternatives that get closer to the null at

rate £, while maintaining constant power level.

Theorem 7. Under the sequence of local alternatives Hil and assumptions A1

to A4, T AN (€5 /sm, 1), whereas 7 AN (¢§ /sa,1).

Finally, consider the M-estimator 0? that minimises the distance between
the non- and parametric estimates of the baseline hazard rate function. The

corresponding implicit functional is

o (z,6%)

/ 56 ! [F(.’L’, 0?) - Ff(-’”)] f(z)dz =0, (22)

s
which results in the following first derivative
D6Y (h ar (=, 9 OL(@,6) ¢ 1) da o) i (he) f(z) do. (23)

a6’ s 08
From (19), it is readlly seen that
0Ty (x) Ty (x) YIC)

H

@ =1aes{ [ T T smyah o), (24)

is the leading term that drives the asymptotic distribution of the estimator.

Theorem 8. Under the null and assumptions Al to A5, nt/? (é}q — 6o) 4

N(0,9Q5), where Qg =Y 5o Cov [0? (@), 9 (.’L’i_;,_k):l is the long-run covari-
ance matriz of 19? . In case assumption A6 holds, one can employ Newey and
West’s (1987) non-parametric correction to obtain o consistent estimate of the

asymptotic variance.

4.4 Nuisance parameter result

All results so far consider testing an observable process {z;} with discrete obser-
vations z1,...,Zn. In the context of conditional duration models, the interest is
in testing the standardised errors €; = z;/v;, ¢ = 1,...,n. However, the process
{€;} is unobservable and the testing procedure must then proceed using stan-

dardised residuals €; = z; /1/31, it = 1,...,n. In the sequel, we derive conditions

13



in which the H-test is nuisance parameter free, and hence there is no asymptotic
cost in substituting standardised residuals for errors. The nuisance parameter
result follows in the same line for the D-test, and it is therefore omitted.

To simplify notation, let e; = e;(¢o) = z;/i(do) and &; = ei(é) = xl/dzl(é),

where ¢ is a n¢

-consistent estimator of the true parameter ¢o. The H-test
measures then the closeness between the parametric estimate 'y (éi) and the
non-parametric estimate I' i (éi) of the baseline hazard rate function. By defini-
tion, a test is nuisance parameter free if the statistic evaluated at ¢3 converges
to the same distribution of the statistic evaluated at the true parameter ¢g. We

must show then that, under the null
. 1< . ) 2
M) = -3 1E €.8) [Ty (&) - T (@) (25)

has the same limiting distribution of its counterpart A ¢(¢o) in (17).
We start by pursuing a third order Taylor expansion with Lagrange remain-

~

der of A ;(¢) about A ¢(¢o), i.e.

AjB) = AgB0) + Ny(60) (B o) + S N4(00) (6~ 90,6 — o)
+ A% (6.)($ — o, — b0, & — ¢o)
= Af(¢0)+A1+A2+A3,

where AE? (¢0) denotes the i-th order differential of A; with respect to ¢ evalu-
ated at ¢o and ¢, € [¢0, ¢A$:| The first derivative reads

Ay(go) = 2 / [Cs(e) — T4(e)] [Ty (e) — T (e)] F(e)de

S

+ [ [00(@) = 4] F e, (26)
S

where all differentials are with respect to ¢ evaluated at ¢y.

Under the null hypothesis, A’(¢9) = 0 and A’f(qﬁo) = Op (n'h;;!) given
that (f— f)2 = O, (n'h;') and (f’ - f’)2 = O, (n'h;?). Thus, the first
term A; is of order Op (n~(*Vh-1). Similarly, A%(¢o) = Op (n~'h;®) and
Ay = Op (n~(4+Dp-3). The last term requires more caution for it is not
evaluated at the true parameter ¢9. However, it is not difficult to show that

sup  |A%(¢4) = Op (n_1/2h;7/2) + O0p (n7'h%), (27)
|¢*_¢0|<€

14



so that Az = O, (n_(3d+1/2) h;7/2) +Op (n~G4+1p-3). The limiting distribu-
tion of A ;(¢) and A ;(¢o) coincide if and only if
f f

nhl/2(A1 4+ Ay + As) = 0p(1). (28)

Under the assumption A4, the bandwidth is of order o (n_2/ 9) and hence

WAL = o () 0y (W49 =g, (nt/0=4) 29)
Wy = o () 0y (-C4H9) = o, (3102 50)
Wif28s = o (=) [op (nF/19-54) 1 g, (n-0051/0)]

— oy (n21975) 4o (n/59) 6

which means that the H-test is nuisance parameter free provided that d > 7/18.
For the gamma, kernel version of the H-test, the same argument applies as b, is

of the same order of h2.

5 Numerical results

In this section, we conduct a limited Monte Carlo exercise to assess the per-
formance of our tests in finite samples. The motivation rests on the fact that
most non-parametric tests entail substantial size distortions in finite samples.
For instance, Fan and Linton (1997) demonstrate how neglecting higher order
terms that are close in order to the dominant term may provoke such distortions.
Further, despite the results on agymptotic local power, it seems paramount to
evaluate the power of our tests against fixed alternatives in finite sample.

The design takes after Grammig and Maurer (1999). We generate 15000

realisations of the linear ACD model of first order, i.e.
Vi =w+azi—1 + fhi-1, (32)

by drawing e; = z;/v; from three distributions: exponential, Weibull with
& = 0.6 and Burr with k = 2 and ¢% = 1.5. We set & = 0.1 and 8 = 0.7 to match
the typical estimates found in empirical applications. Further, we normalise the
unconditional expected duration to one by imposing w = 1— (a+ ) and then set
1o = 1 to initialise (32). Along with the full sample (n = 15000), we consider a
subsample formed by the last 3000 realisations so as to mitigate initial effects.
These are typical sample sizes for data on trade and price durations, respectively.

All results are based on 1000 replications.
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For each replication and data generating process, we first compute maxi-
mum likelihood estimates for ACD models with exponential, Weibull and Burr
distributions. Optimisation is carried out by taking advantage of Han’s (1977)
sequential quadratic programming algorithm, which allows for general inequal-
ity constraints. Next, we examine the outcomes of our five tests: the D- and
H-tests with Gaussian and gamma, kernels applied to the standardised residuals
and the D-test with Gaussian kernel applied to log-standardised residuals. Bear-
ing in mind assumption A4, we adjust Silverman’s (1986) rule of thumb to select
the bandwidth h,, for fixed kernel density estimation. The normal distribution
serves as reference only for the log-standardised durations, the reference being
the exponential otherwise. For simplicity, the gamma kernel density estimation
is carried out using b, = h2 as suggested by the asymptotic theory.

The frequency of rejection of the null hypothesis is then computed in order
to evaluate size and power of such tests. More precisely, size distortions are
investigated by looking at all instances in which the estimated model nests the
true specification, e.g. the likelihood considers a Burr density, though the true
distribution is exponential or Weibull. Conversely, to investigate the power of
these tests, we examine situations in which the estimated model does not en-
compass the true specification, e.g. the estimated model specify an exponential
distribution, whereas the true density is Weibull or Burr.

Figures 1 to 4 display the main results for n = 3000 using Davidson and
MacKinnon’s (1998) graphical representation. Each figure consists of several
charts, which are set up in the same way. On the horizontal axe is the sig-
nificance level and on the vertical axe is the probability of rejection at that
significance level. Ideally the size of a test, i.e. the probability of rejection
under the null, coincides with the significance level, whereas the power, i.e. the
probability of rejection under the alternative, is close to one. To take size distor-
tions into consideration, we consider size-corrected power, i.e. the probability
of rejection given simulated rather than asymptotic critical values.

The performance of the D-test for log-standardised durations is a salient
feature in all figures. The results are quite encouraging in that such testing
procedure is mildly conservative and have excellent power. Besides, the amount
of trimming does not seem to affect these results. In fact, no trimming seems

the best strategy, though the differences are not statistically significant. On the
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other hand, the other four tests are to some extent disappointing. In partic-
ular, the inferior performance of tests based on gamma kernels are somewhat
surprising in view of the absence of boundary bias. Such outcome may be due
to the inefficient criterion we have adopted to chose the bandwidth.

Figures 1 and 2 consider the case in which durations follow a Burr ACD
process. Figure 1 shows that both D- and H-tests using a Gaussian kernel fail
to entail good size performance. In particular, the H-test with Gaussian kernel
rejects in every instance the specification of the model, though it is correct.
Heavy trimming in the lower tail improves slightly the performance of the D-test,
but the distortions are still substantial. Using a gamma, kernel, the probability
of rejection of the D-test is about 42% irrespective of the weighting scheme and
the level of significance at hand. A similar result is due to the H-test with
gamma, kernel.

Figure 2 illustrates the fact that our tests have, in general, good power
against exponential (first column) and Weibull (second column) alternatives.
Using a Gaussian kernel, the D-test necessitates heavy trimming in the lower
tail, whereas the H-test requires trimming in the upper tail. The intuition is
simple. Density estimation with fixed kernels performs poorly close to the origin
due to the boundary bias and thus deleting the observations in the lower tail
decreases distortions in the D-test. By the same token, pointwise estimates of
the hazard rate function are quite unstable in the upper tail because the survival
function approaches zero. Therefore, it is not surprising that a higher amount
of trimming is necessary in the upper tail for the H-test. Accordingly, the good
size-corrected power of both D- and H-tests with no trimming comes at the
expense of huge size distortions (see figure 1).

The first and second column of figure 3 document respectively the size and
power of our tests when standardised durations have a Weibull distribution.
The most striking feature in figure 3 is the complete failure of the D-test with
gamma, kernel and both H-tests in terms of size performance. In turn, the
D-test using a Gaussian kernel performs reasonably well provided that severe
trimming is applied to the lower tail; power is trivial otherwise. The intuition
is two-fold. First, as aforementioned, this sort of trimming is necessary to
counteract the boundary bias of fixed kernel density estimation. Second, the

Weibull density is typically very steep near the origin. As durations get close to
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zero, the parametric estimates of the density approaches infinity as opposed to
non-parametric estimates which are bounded. As such, squared differences can
get extremely large and the remedy is to introduce more trimming,.

Figure 4 reveals that size distortions are less palpable when durations follow
an exponential ACD model. The D-test using a Gaussian kernel is slightly
more conservative than the D-test applied to log-standardised residuals. Severe
trimming in the upper tail is afresh essential to H-tests, though size distortions
remain material. Last but not least, our results accord with Grammig and
Maurer (1999) in that there is no increase in size distortions if the estimated
model considers a more general distribution than necessary. Differences are so
minor that we have opted to display only the case in which we estimate a Burr
ACD model, though the true distribution is exponential.

To conserve on space, we refrain from displaying similar graphs for the full
sample (n = 15000) in view that, on balance, the results bear great resemblance.
Nonetheless, we collect in table 1 the main statistics for the case in which the
data follow a Burr ACD model. In particular, size distortions remain roughly
constant, whereas power improves mildly in general — major improvements take
place only for the H-tests. In all, the D-test for log-standardised durations seem
to outperform the other variants we have proposed. Nonetheless, as the other
tests also entail reasonable size-corrected power, one may take advantage of

resampling techniques to mitigate size distortions.

6 Empirical application

In this section, we use real world data to test the performance of the linear ACD
model (32) with exponential, Weibull and Burr distributions. Data were kindly
provided by Luc Bauwens and Pierre Giot and refer to the NYSE’s Trade and
Quote (TAQ) data set. Bauwens and Giot (1997 and 1998) and Giot (1999)
describe more thoroughly the data.

We focus on data ranging from September to November 1996. In particu-
lar, we look at price duration processes of five actively traded stocks from the
Dow Jones index: Boeing, Coca-Cola, Disney, Exxon, and IBM. Trading at the
NYSE is organised as a combined market maker/order book system. A desig-

nated specialist composes the market for each stock by managing the trading
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and quoting processes and providing liquidity. Apart from an opening auction,
trading is continuous from 9:30 to 16:00. Price durations are defined by thin-
ning the quote process with respect to a minimum change in the mid-price of
the quotes. We define price duration as the time interval needed to observe a
cumulative change in the mid-price of at least $0.125 as in Giot (1999).

For all stocks, durations between events recorded outside the regular opening
hours of the NYSE as well as overnight spells are removed. As documented
by Giot (1999), price durations feature a strong time-of-day effect related to
predetermined market characteristics such as trade opening and closing times
and lunch time for traders. To account for this anomaly, we consider seasonally
adjusted price durations z; = X;/o(¢;), where X; is the raw price duration in
seconds and g(-) denotes a daily seasonal factor which is determined by averaging
durations over thirty minutes intervals for each day of the week and fitting a
cubic spline with nodes at each half hour. The resulting (seasonally adjusted)
price durations z; serve then as input in the sequel.

Table 2 reports some descriptive statistics for price durations. There are
two common features across stocks: highly significant serial correlation and
some degree of overdispersion. That is not surprising: Indeed, ACD models are

precisely designed to deal with these stylised facts.

6.1 Estimation and test results

We invoke (quasi) maximum likelihood methods to estimate linear ACD models
with exponential, Weibull and Burr distributions. We address both in-sample
and out-of-sample performances by splitting the sample. More precisely, we
reserve the last third for out-of-sample evaluation. Table 3 summarises the
estimation results. For every stock, the Burr ACD model reveals a considerable
better fit as indicated by log-likelihoods. On the contrary, the gains in using
a Weibull rather than an exponential distribution are quite marginal in most
instances. To see why, it suffices to notice that the Weibull estimates of & are
always close to one. In fact, it turns out that & < 1 for every Weibull ACD
model, implying that the hazard rate function decreases monotonically with the
standardised duration. Conversely, & estimates are significantly greater than
one for all Burr ACD models, what indicates non-monotonic baseline hazard

rate functions. Accordingly, ACD specifications with exponential and Weibull
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distributions produce similar estimates for duration processes as opposed to
Burr ACD models. For Boeing and IBM price durations, differences are indeed
striking. All in all, parameter estimates suggest substantial persistence in the
rate at which price changes.

Next, we evaluate the performance of the estimated ACD models by examin-
ing both in- and out-of-sample standardised durations, which we hereafter refer
as residuals and forecast errors, respectively. Tables 4 to 6 portray the results of
the D- and H-tests, which are very much in line with Bauwens, Giot, Grammig
and Veredas’s (2000) analysis rooted in density forecasting techniques. Table 4
reports the p-values of the D-test using a Gaussian kernel for log-standardised
durations. As fingered by the Monte Carlo investigation, there is no need for
trimming. Residual analysis favours clearly the Burr ACD model as it cannot
be rejected at conventional levels of significance for Boeing, Coca-Cola, Disney
and Exxon price durations. Contrariwise, the exponential and Weibull alterna-
tives perform quite poorly for every stock, but the Coca-Cola. The linear ACD
model is rejected both in- and out-of-sample for IBM price durations irrespec-
tive of the distribution. Inspecting the other forecast errors, we find evidence
of misspecification only for Boeing and Disney price durations, what probably
reflects the presence of structural changes.!

Table 5 displays the outcomes of the D-test with Gaussian kernel for raw
standardised durations. We consider three weighting strategies. The first exerts
no trimming whatsoever, what should produce an extremely conservative test
given the results in section 5. Indeed, apart from a borderline result for the
Disney residuals of the Burr ACD model, such testing procedure always rejects
the null. The second scheme trims realisations out of the interval (z,1 — x),
where z denote the empirical 0.025-quantile. As expected, besides some few
cases involving residuals of Burr ACD models, rejecting the null remains the
rule. Lastly, applying heavy trimming in the lower tail recovers by a long chalk
the figures in table 3. The only difference is that the Burr ACD model appear
now to produce Boeing forecast errors and IBM residuals that satisfy the null.

Of course, this is perchance an artifact due to the weighting procedure since
1

Further analysis reveal indeed that the last third of the sample yields quite distinct
estimates for linear ACD models. Nonetheless, the p-values of the D-test for log-standardised
durations depict a pattern similar to previous in-sample results. It easily rejects both expo-
nential and Weibull specifications in every instance, whereas the Burr ACD model fail only
for IBM price durations. These additional results are of course available upon request.
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misspecification might occur precisely in the trimmed part of the distribution.

Table 6 documents once more how unreliable are H-tests using a Gaussian
kernel. Model specification is rejected in nearly all cases even if we introduce
severe trimming in the upper tail as suggested in section 5. By the same token,
tests based on gamma kernels do not seem very informative. Indeed, all p-
values are inferior to 0.0005, mirroring the flimsy finite sample properties of
such tests. Figures 5 illustrates the results by plotting the non- and parametric
density estimates for Exxon standardised durations. If, on the one hand, non-
parametric density estimates oscillate nicely around estimates from the Burr
ACD specification; on the other hand, parametric estimates implied by the
exponential and Weibull alternatives are consistently above or below their non-
parametric counterparts in some intervals.

For completeness, we check whether standardised residuals are serial inde-
pendent using the BDS test (Brock, Dechert, Scheinkman and LeBaron, 1996).
In contrast to the Ljung-Box statistic, the BDS test is sensitive not only to
serial correlation but also to other forms of serial dependence. Moreover, the
BDS test is nuisance parameter free for additive models (de Lima, 1996), what is
quite convenient given that we test estimated residuals rather than true errors.
A simple log-transformation renders the linear ACD model additive, hence it
suffices to work with log-standardised durations. Table 7 reports the results.
For the Boeing price durations, serial independence seems consistent only with
the residuals of the Burr ACD model. For Coca-Cola, ACD models seem to
produce serially independent residuals irrespective of the distribution, though
out-of-sample performances are poor. In turn, all ACD models seem to capture
well enough both in- and out-of-sample intertemporal dependence for Disney
price durations. Evidence is somewhat inconclusive for Exxon price durations
by virtue of the multitude of borderline results. In contrast, the p-values for
the IBM log-standardised durations provide strong evidence against the serial
independence of both residuals and forecast errors.

Altogether, the figures in table 8 reinforce the evidence provided by the D-
test in tables 3 and 4. In particular, none of the linear ACD models seems to
fit properly IBM price durations. In turn, the Burr ACD model entails superior
performance relative to the exponential and Weibull ACD models for the other

four price durations.

21



7 Concluding remarks

This paper deals with specification tests for conditional duration models, though
there is no impediment in using such tests in other contexts. For instance, one
could test GARCH-type models by checking whether the distribution of the
standardised error is correctly specified. Similarly, Cox’s (1955) proportional
hazard model implies testable restrictions in the hazard rate function. The main
reason to focus on conditional duration models stems from the poor performance
of quasi maximum likelihood methods in this context (Grammig and Maurer,
1999).

We propose two testing strategies, namely the D- and H-tests, which rely
on gauging the discrepancy between non- and parametric estimates of the den-
sity and baseline hazard rate functions of standardised durations, respectively.
Agymptotic theory is derived for non-parametric density estimation using both
fixed and gamma, kernels. The motivation for the latter is to avoid the bound-
ary bias that plagues fixed kernel estimation. All in all, our tests have some
attractive theoretical properties. First, they examine the whole distribution of
the standardised residuals instead of a limited number of moment restrictions.
Second, they are nuisance parameter free. Third, they are suitable to weak
dependent time series and, as such, there is no need to test previously for serial
independence of the standardised errors.

There are two main topics for future research. First, it is still unclear how
to select bandwidths for both fixed and gamma kernel estimations. A possi-
ble solution relies on cross-validation methods, which Chen (2000) shows to be
particularly valuable to gamma kernel estimation. More precisely, one builds
a grid of bandwidth values satisfying assumption A4 and then takes the band-
width that minimises the test statistic. Second, resampling techniques may
deliver more accurate critical values. Indeed, there is vast literature on boot-
strapping smoothing-based tests, e.g. Fan (1995) and Li and Wang (1998).
Under serial independence of the standardised residuals, the usual bootstrap
algorithm presumably works. Suitable bootstrap schemes are also available un-
der weak dependence, such as Politis and Romano’s (1994) stationary bootstrap
and Biihlmann’s (1996) sieve bootstrap, in case one prefers to relax the serial

independence assumption.
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Appendix: Proofs

Lemma 1. Consider the functional Ig = fooo P fif dz, where f, = f(z) is a
pointwise gamma kernel estimate of f; = f(z). Under assumptions A1, A2 and
A4,

—1/4

nb}/‘lIG - b;\/:_r E [x_1/290w] 4N (O’ %E [x_l/Q : w]) ’

provided that the above expectations exist.

Proof. See Fernandes (1999).

Lemma 2. Suppose that a functional @, is Fréchet-differentiable relative to
the Sobolev norm of order (2,m) at the true density function f with a regular
functional derivative ¢¢. Then, under assumptions A1l to A4, nl/2 (<I> f—<I> f) 4,
N(0,Va), where Vy, = 372 Cov[ps(z:), ¢#(itr)] is the long run covariance
matrix of ¢y.

Proof. See Aft-Sahalia (1994).

Lemma 3. Consider a sequence {X; : ¢ = 1,...,n} that satisfies assumption
Al. Suppose that the U-statistic U, = ZKKK” H,(X;,X;) with symmetric
variable function H,(-,) is centred and degenerate. If

Ex, x; { E%, [Hn(X1, X1)Hn (X1, X2)]|} + L Ex, x, [Hj (X1, X2)]

— 0
E%, x, [Ha(X1, Xo)]

as sample size grows, then

d n2 2
Un — N 0, ?EX1,X2 [Hn(Xl,Xg)] .
Proof. See Hall (1984) and Khashimov (1992).

Lemma 4. Consider the functional I = [, ¢, f2dz, where [, denotes the
integral over the support of z and f'w = f (z) is a pointwise fixed kernel estimate

of f; = f(z). Under assumptions Al to A4,
nhY?I — h' 2 e E [pg) -2 N (0,0 E [02 f]) ,

provided that the above expectations are finite.
Proof. The derivation uses lemma 3, i.e. Khashimov’s generalisation of Hall’s
central limit theorem for degenerate U-statistics to weakly dependent station-

ary processes. We start by decomposing the functional in order to force the
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emergence of a degenerate U-statistic. Let r,(z,X) = oy ’Kp,(z — X) and
Fn (2, X) = rn(z,X) — Ex[rn(z, X)), where Kj,, (u) = hy;' K (u/hy). Then,

2
- 1
-/ [;rn(x,xn/T do =53 [ rale, Xora(e, Xz,
= 2]

or equivalently, I = I 4+ I, + I3 + I, where

L, = 22:/7"nxXrnxX)d

i<j
I, = n—QZ/wri(x, X;)dz

I; = %/E& [Pr(z, X)]dz

I, = W/Fn(x,Xi)Ex [rn(z, X)]dz.

We show in the sequel that the first term is a degenerate U-statistic and will
contribute with the variance in the limiting distribution, whilst the second will
contribute with the asymptotic mean. In addition, the third and fourth terms

are negligible under assumption A4. The first moment of r,(z, X) reads
Ex[ra(z, X)] = 1/2/ K. (7 — X)f(X)dX = ¢1/2/K (@ + uhn)du
YL / K(u [ ; F(@)uhn + f”(x*)u%i] du
= o’ f+0(h),

where f(9 denotes the i-th derivative of f and z* € [z, z+uh,]. Applying similar
algebra to the second moment yields Ex [r2(z,X)] = hy' ek ¢z fo +O(1). This

means that

B = L[ Exe 0= [ 0 gt + 00)] @

nthlex /gowfw dz + O (n_l) ,

whereas Var(ly) = O (n~2h;2). It follows then from Chebyshev’s inequality
that nh}L/2I2 - hEI/Q ex E[pz] = 0p(1). In turn, we have that
n(n —1) 2 n(n—1) 4 4
I = T/wEX [rae, X)] dz = "2 0 (1) = 0 (h3)
which, under assumption A4, implies that nhi/ ’n = o(1). Further,

E(Is)

)] Ex [rn(z,X)] dz =0,
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whilst E(I3) = O (n™'h%). It suffices then to impose assumption A4 to en-
sure, by Chebyshev’s inequality, that nhi?I; = op(1). Finally, recall that
L =3, Ho(Xi, X;), where Hy(X;, X;) = 2072 [, #n (%, X;)Fn (2, X;)dz. As
H,(X;, X;) is symmetric, centred and such that E [Hp(X;, X;)|X;] = 0 almost
surely, I; is a degenerate U-statistic. Thus, it follows immediately from lemma,
3 that nhi*I; <% N(0, Vi), where

nth

Ve = 2 nEX1,X2 [HEL(X17X2:|

= o [ / Fn(x,Xl)Fn(x,Xg)dxrf(Xl,XQ)d(Xl,XQ)
~ on, / 5 [ / Fn(x,X)Fn(y,X)f(X)erd(x,y)

= / o2 [/K Ku+v)f(z — uhy,)du

—hn/K(u)f(x—uhn)du/K(u)f(x+vhn—uhn)du d(z,v)

~ / @2 [/K K(u+v) f(x—uhn)rd(x,v)

~ 2ok [ f2as,
x

which completes the proof.

Proof of (10). Consider the following expansion

() = Vppqn = /8 [f(2,8,) = f(z) = yh(@)]* [f (@) + yh(z)] de,

where i97 = Opnn Differentiating with respect to -y yields

Pl g [ IR 1(0,6,) - £(0) - 1h(@)] (@) + 9ha)] do
~2 [ [7(@.6) - 1) = 9h@)] @) + h(@]h(z) o
+ [ 1£@.6,) = £(@) = @) (o) do

Under the null, the parametric specification of the density function is correctly
specified, i.e. f(z,0) = f(z); hence the first functional derivative D¥; =
2 W, 5 (0) is singular. In turn, the second functional derivative reads

oy f,

PUpnly) _ z/a%wﬁw@gwi
vy s 0606 87 87’

[f(.’l:, 07) —fz— ’th] [fw + ’th] dz

af(
* 2/ f 3’)/87 [f(2,6y) = fo — Yha] [fo + Yhe] dz
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0f(x,6,) 81 (z,8.) 86, 96,
+2/f fag;')ayay[f‘” vhg] dz
/af O e+ 2] s

df(z,0.) 00
4 /5 %W [£(@,6) = fo = ¥ha] b da,

2/8[fw+7hw] B dx—4/$[f(x,0.,) — fu — yhe] 2 dz,

which reduces to (10) by evaluating at v = 0 and imposing the null.

Proof of Theorem 2. Under the null, the following functional Taylor expan-

sion is valid
Ty = / 1w € 8) [P (2,) + fob(e) )] AH (@) H(y) + O (I1hell®)
z,y

where Z? is a continuous functional which includes the first and second terms
of (10) as well as the regular part of its third term and d(,) is a Dirac mass at

z. Replacing kg by f» — f, ensues that the first term
| 1@e 9@ in@ann)
wiy

is negligible since it converges at a faster rate T' to a sum of independent x?2
distributions (Serfling, 1980; Ait-Sahalia, 1994). In turn, applying lemma, 1 with
pr = L(z € 8)f, yields that

/ 1 € 8) fud(ey(y) AH (2)AH (y) = /8 foh2 da

converges in distribution at rate nbn/ to a Gaussian variate with mean b, 1 45@

and variance o%.

Proof of Theorem 3. The conditions imposed are such that the functional
Taylor expansion under consideration is valid even in case the z;,, i1 =1,...,n,
are a double array. Thus, for the D-test with fixed kernel, it ensues that, under

HP and assumptions A1l to A4,

1/2 n

sp i1 ZIL (@in € S) [f @in,07) — Fl@im)]® &3 N(0,1),

aDn

where the superscript [n] denotes dependence on f "], The first result follows

[n]
then by noting that 6p r, op and

1 2
o = Y l(zineS [f["] (Tin,Op1m1) — f[n](ﬂﬁin)]
im1
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2
= E {1($1n €S) [f[n] ($1n,9f[n1) - f["](xm)] } + Op ("_1/2)
= 2B (@1 € S)fp(m10)] + 0, (7' 2)
= nlhIV265 + o, (n—1hT—L1/2) )
Applying a similar argument to the gamma kernel version of the D-test com-

pletes the proof (see the proof of theorem 7).

Proof of (18). Consider the following expansion

2
M) = Agpon = [ [0, @) = Trin (@] 1£@) + vh(e)] da,
where 6, = 671~ to simplify notation. Differentiating with respect to y entails

Ohsn() _ /3F97(x) 6,
S

oy o

50 5 06, (@) = Dpen ()] [£(2) + 7h(x)] o

OL 't yn(7)

-2 oy [T, (x) = Tpyn(@)] [f(2) + vh(2)] do

S
+ [ [0, @) = Trrn(@)) i) d,
S

which recovers (18) if evaluated at v = 0.

Proof of (20). Computing the second differential of the expression above with
respect to v yields

?Asn(y) _ 8°Ty. (z) 86., 86,
o 2)s o608 oy oy [To, (2) = Tyiyn(@)] [f(@) +vh(2)] dz

- 2/ ar:;&(x) (‘iyg:)y/’ [To, (&) = Tn(@)] [f(2) +vh(z)] dz

) /8 0Ty, (z) 0Ly, (z) 06 06, [f(z) + vh(z)] de

0 o0 oy o7
_ 4/ (91_‘&Y (x) % O ¢y i ()
s 08 Oy oy

[/ (2) + vh(z)] dz

+ 4/5 argb(gﬁ) %iqj [To, (@) = Tyiyn(@)] h(z)dz

-2 % [T, (2) = Tpyn(@)] [f (@) + vh(2)] do
3Ff ~h 3Ff ~h
v2 [ Bt Bt (1) 4 i) ao
—a [ L@ py ) 1y @) b da,
s Ay

which equals (20) for v = 0.
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Proof of Theorem 5. Under the null, the following functional Taylor expan-

sion is valid
Apen = / 1z € 8) [ (2,y) + 556y (v)] dH(2)H(y) + O (|1,
wiy

where Z? is a continuous functional encompassing the second and third terms
of (20) as well as the regular part of its first term and S, denotes the survival

function 1 — F(z). Replacing hg by f, — fo ensues that the first term

[ 1@e 9@ i@
wiy
converges at a rate T' and therefore it is negligible. In turn, applying lemma 4

with @, = L(z € S)S;! yields that
/ 1z € 5)S;"6(0) () AH (2)dH (y) = / S-1h2 do
T,y S

converges weakly at rate nh}/ 2 %o a normal distribution with mean hn Y 2)\H

and variance ¢,.

Proof of Theorem 6. Consider the above functional Taylor expansion with
he = fs — fz. Once more, the first term converges at a rate T, whereas lemma
1 implies that
/ 1@ € 8)558() (v) dH (2)dH (y) = / (e € §)f,1% do

z,y z
converges in distribution at rate nbi/ * to a normal variate with mean bn v 4)\0

and variance ¢Z.

Proof of Theorem 7. Afresh, the corresponding functional Taylor expansion
is consistent with the double array sequence z;,, ¢ = 1,...,n. Thus, for the

H-test with gamma kernel, we have that, under H{Z and assumptions A1 to A4,

g nb/t1 g 2 gl
Tn — C\G Ezl(xzn ES) [F(.’L’,ef) —Ff(l')] _>N(071)
i=1

[n]
The result follows then from the fact that ¢ 2= ¢o and

1 & n 2
A = — D l(min €S [F["] (@ins Optm) — F[f ]($in)]
i=1

2
- E {Il(.’L'1n €S) [r[nl (10,8 ) — T (.’L'1n)] } +0, (n—1/2)
= 22 [L(@1 € )8 (@1n)] + 0p (n710,1/4)

= 7' S + o, (n_lbgl/‘l) .
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We omit the proof for the fixed kernel version of the H-test in view that it is

completely analogous (see the proof of theorem 3).

Proof of Theorem 8. The implicit functional corresponding the M-estimator

associated with the H-test is

/ %:90?) [F(m, 0?) - Ff($):| f(z)dz =0,
S

which results in the following expansion

H
/s % [D(z,65) = Tgiqn(2)] [f(2) +vh(z)] dz = 0.

Differentiating with respect to « entails then

&I'(z,6H) 06
/s % a—; [T(2,6%) = Tsiqn(@)] [f(2) + yh(2)] de

OT(z,61") OT(z, 611) 61
+/5 6 50 oy

[ (z) + yh(z)] de

+/ Or(@.6,) [(@,65) = Tr1n(@)] h(z)dz
S

00
aT(z, 61
_/8 (;0 ol ) arf-(‘;;h(-’lf) [f(.’l:) + ’Yh(.’l:)] & = o0,

which recovers (23) if one imposes the correct specification of the model and
evaluates at ¥ = 0. As the first term in the right-hand side of (19) converges at
a slower rate than the second, (24) will drive the asymptotic distribution of 0}{ .

A straightforward application of lemma 2 completes then the proof.
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Table 1

Finite sample properties of the testing procedures

Data generating mechanism: Burr ACD process

Sample size: 15000

Number of replications: 1000

trimming

actual size

power: Weibull ACD

1% 5% 10% 1% 5% 10%
D-test for standardised durations, Gaussian kernel
none 0.9720 0.9800 0.9870 0.0130 0.9330 1.0000
(0.025, 0.025) 0.9650 0.9750 0.9840 0.0070 0.1730 1.0000
(0.04, 0.01) 0.9630 0.9720 0.9820 0.0060 0.0530 1.0000
(0.25, 0.01) 0.6980 0.7290 0.7470 0.0020 0.9400 1.0000
(0.30, 0.01) 0.5720 0.6110 0.6500 0.0020 0.9670 1.0000
D-test for log-standardised durations, Gaussian kernel
none 0.0390 0.0880 0.1120 1.0000 1.0000 1.0000
(0.025, 0.025) 0.0450 0.0900 0.1260 1.0000 1.0000 1.0000
(0.05, 0.05) 0.0470 0.1010 0.1280 1.0000 1.0000 1.0000
D-test for standardised durations, gamma kernel
none 0.6700 0.6960 0.7110 0.1520 0.9910 0.9910
(0.05, 0.05) 0.6150 0.6380 0.6550 0.0020 0.0110 1.0000
(0.05, 0.20) 0.5820 0.5980 0.6080 0.0020 0.0110 1.0000
(0.20, 0.20) 0.5970 0.6130 0.6260 0.0020 0.0430 0.9850
H-test for standardised durations, Gaussian kernel
none 0.9570 0.9860 0.9950 0.0090 0.0450 0.9700
(0.025, 0.025) 0.8710 0.9000 0.9110 0.0070 0.0300 0.2460
(0.04, 0.01) 0.8960 0.9310 0.9490 0.0070 0.0270 0.1440
(0.25, 0.01) 0.8930 0.9240 0.9380 0.0030 0.0150 0.6160
(0.30, 0.01) 0.8760 0.8990 0.9150 0.0030 0.0140 0.7980
H-test for standardised durations, gamma kernel
none 0.9570 0.9860 0.9950 0.0080 0.9910 0.9910
(0.05, 0.05) 0.8000 0.8170 0.8260 0.0030 0.0140 0.9950
(0.05, 0.20) 0.5630 0.5720 0.5780 0.0030 0.0130 0.9870
(0.20, 0.20) 0.5680 0.5740 0.5790 0.0020 0.0100 0.9780
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Table 2

Descriptive statistics of price durations

stock sample size mean overdispersion Q(10)
Boeing 2620 1.001 1.338 322.3
Coca-Cola 1609 1.002 1.171 69.7
Disney 2160 1.004 1.209  137.3
Exxon 2717 1.000 1.196 68.2
IBM 6728 1.015 1.427 1932.6

Data correspond to seasonally adjusted durations between bid-ask
quotes such that a cumulative change in the mid-price of at least
$0.125 is observed. Overdispersion stands for the ratio between stan-
dard deviation and mean. Q(10) denotes the Ljung-Box statistic of
order 10.
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Table 3
Maximum likelihood estimates of the ACD models

stock w o 8 K o? log £
Boeing
Exponential 0.031 0.114  0.861 -1784.7
(0.023)  (0.041)  (0.059)
Weibull 0.034 0.121  0.851 0.895 -1764.4
(0.025) (0.042) (0.061) (0.016)
Burr 0.057 0.169 0.789 1.093 0.339 -1740.1
(0.033) (0.046) (0.067) (0.036) (0.061)
Coca-Cola
Exponential 0.159  0.109  0.727 -1016.5
(0.042)  (0.026) (0.051)
Weibull 0.159  0.109  0.727  0.959 -1014.8
(0.042) (0.026) (0.051) (0.019)
Burr 0.161 0.124 0.715 1.124 0.286 -1007.1
(0.042)  (0.030) (0.051) (0.050) (0.079)
Disney
Exponential 0.074  0.046  0.889 -1613.0
(0.030)  (0.015)  (0.033)
Weibull 0.074 0.046 0.888  0.969 -1611.8
(0.031) (0.015) (0.034) (0.018)
Burr 0.099 0.048 0.867 1.219 0.396 -1588.0
(0.044)  (0.018) (0.049) (0.045) (0.067)
Exxon
Exponential 0.065 0.046  0.890 -1803.2
(0.037)  (0.016)  (0.048)
Weibull 0.066 0.045 0.889  0.962 -1800.8
(0.038) (0.016) (0.049) (0.016)
Burr 0.102 0.039 0.863 1.250 0.464 -1766.2
(0.055)  (0.015) (0.061) (0.044) (0.068)
IBM
Exponential 0.010  0.090  0.905 -5044.3
(0.005)  (0.019) (0.021)
Weibull 0.010 0.090 0904 0.985 -5043.4
(0.005) (0.019) (0.021) (0.011)
Burr 0.017 0.112 0.880 1.263 0.420 -4952.0
(0.009) (0.029) (0.033) (0.025) (0.038)

The column log £ displays the value of the log-likelihood, whereas the rows with

figures in parentheses report robust standard errors.



Table 4

D-test results for price log-durations, Gaussian kernel

stock in sample out of sample
Boeing

Exponential 0.000 0.000

Weibull 0.000 0.000

Burr 0.138 0.009
Coca-Cola

Exponential 0.029 0.821

Weibull 0.316 0.877

Burr 0.666 0.969
Disney

Exponential 0.000 0.000

Weibull 0.000 0.000

Burr 0.160 0.000
Exxon

Exponential 0.000 0.007

Weibull 0.000 0.028

Burr 0.137 0.261
IBM

Exponential 0.000 0.000

Weibull 0.000 0.000

Burr 0.003 0.000
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Table 5

D-test results for price durations, Gaussian kernel

in sample out of sample

stock 0,0) (2525) (30,1)  (0,0) (2.52.5) (30,1)
Boeing

Exponential 0.000 0.000 0.000 0.000 0.000 0.000

Weibull 0.000 0.000 0.000 0.000 0.000 0.000

Burr 0.000 0.140 0.688 0.001 0.000 0.421
Coca-Cola

Exponential 0.000 0.000 0.921 0.000 0.010 0.939

Weibull 0.000 0.000 0.949 0.000 0.070 0.901

Burr 0.001 0.032 0.985 0.041 0.337 0.709
Disney

Exponential 0.000 0.000 0.000 0.000 0.000 0.000

Weibull 0.000 0.000 0.000 0.000 0.000 0.000

Burr 0.075 0.291 0.388 0.000 0.000 0.000
Exxon

Exponential 0.000 0.000 0.000 0.000 0.000 0.000

Weibull 0.000 0.000 0.000 0.000 0.000 0.000

Burr 0.000 0.000 0.205 0.005 0.036 0.226
IBM

Exponential 0.000 0.000 0.000 0.000 0.000 0.000

Weibull 0.000 0.000 0.000 0.000 0.000 0.000

Burr 0.000 0.000 0.099 0.000 0.000 0.003

The weighting scheme (z,y) is such that the first  and last y percent of the sample

are trimmed out.
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Table 6

H-test results for price durations, Gaussian kernel

in sample out of sample

stock 0,0 (5200 (0,00 (5:20)
Boeing

Exponential 0.000 0.000 0.000 0.000

Weibull 0.000 0.000 0.000 0.000

Burr 0.000 0.000 0.273  0.000
Coca-Cola

Exponential 0.000 0.000 0.000 0.000

Weibull 0.000 0.000 0.000 0.000

Burr 0.000 0.000 0.000 0.000
Disney

Exponential 0.055 0.000 0.000 0.023

Weibull 0.134 0.000 0.000 0.319

Burr 0.350 0.017 0.000 0.000
Exxon

Exponential 0.000 0.000 0.000 0.000

Weibull 0.000 0.000 0.000 0.000

Burr 0.000 0.000 0.000 0.000
IBM

Exponential 0.000 0.000 0.000 0.000

Weibull 0.000 0.000 0.000 0.000

Burr 0.000 0.000 0.000 0.000

The weighting scheme (z, y) is such that the first z and last y
percent of the sample are trimmed out.

45



Table 7

The BDS test for serial independence, p-values

in sample out of sample

stock m=2 m=3 m=4 m=2 m=3 m=4
Boeing

Exponential 0.000 0.000 0.004 0.019 0.012 0.039

Weibull 0.000 0.001  0.006 0.019 0.012 0.042

Burr 0.002 0.002 0.014 0.152  0.161  0.247
Coca-Cola

Exponential 0.253  0.270  0.092 0.000 0.000 0.000

Weibull 0.252  0.269 0.093 0.000 0.000 0.000

Burr 0.253 0.272  0.099 0.000 0.000 0.000
Disney

Exponential 0.242 0.230 0.163 0.241 0.100 0.135

Weibull 0.248 0.233 0.167 0.249 0.101 0.134

Burr 0.260 0.230 0.154 0.240 0.102 0.132
Exxon

Exponential 0.0563  0.039  0.073 0.114 0.063 0.019

Weibull 0.0561 0.038 0.071 0.114 0.0564 0.019

Burr 0.038 0.026 0.054 0.163 0.803 0.027
IBM

Exponential 0.000  0.000  0.000 0.001  0.001 0.001

Weibull 0.000 0.000 0.000 0.001  0.001 0.001

Burr 0.000 0.000 0.001 0.002 0.001 0.002

The BDS test was computed using embedding dimension m and tuning parameter ¢

set to the standard deviation as recommended by Brock et al. (1996).
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