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Abstract

The paper works with an alternative version of the rational expectations

commodity storage model, where both speculators and processing firms are stockholders.

The model identifies the stocks carried by commodity processors with those stocks

described by the supply of storage model, but instead of using the convenience yield

approach, processors’ demand for stocks is derived from a model for manufacturing

inventories (Ramey, 1989). Speculators intervene in the model through enforcing the

arbitrage condition. We solve the model numerically to compare the different policy

functions implied by each model (speculators, processors and both agents.) Finally, we

present estimates of the model based on the same commodity price data used by Deaton

and Laroque.
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The Commodity Storage Model in the Presence of Stockholding by Speculators and
Processors

I. Introduction

The paper works with a version of the rational expectations commodity storage

model literature where both speculators (speculative stocks) and processing firms

(working or pipeline stocks) are stockholders simultaneously. Recent estimates of the

model have focused on solving the storage model for each type of stockholder

independently. This is, either for the case of speculative storage (see Deaton and Laroque,

1992, 1995 and 1996), or for the case of working or pipeline stocks, that we identify with

the supply of storage model 1 (Miranda and Glauber, 1993 and Miranda and Rui, 1996).

Almost no effort has been undertaken to model the interaction of both agents. Two

notable exceptions are Weymar, 1968 and Lowry, 1988 works. However, while Weymar

specifies similar functions for both agents, Lowry following Brennan, 1958, models

merchants instead of processors, as the one who carry stocks under backwardation, this,

when the price spread is below to the storage costs.)2 The interaction of both agents, but

modeled separately, is important to model more accurately commodity markets and to

represent the relation between stocks and price spreads (i.e., the Working curve, see

Working, 1933).

                        
1 Carter and Revoredo, 2000, we show that the supply of storage cost approach may
reflect only the stocks carried by processing firms. This result is obtained when
inventories of commodities (raw materials) are modeled as factors of production
following Ramey, 1989.
2 Since both, merchants and speculators, buy and sell the raw material, their difference in
the model is that the former perceive convenience yield for carrying the stocks while not
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We model explicitly processors storage using a model of manufacturing

inventories, instead of using the convenience yield explanation.  The advantage of using

an explicit structural model for manufacturing inventories is that it allows us to

understand what variables are behind the parameters of the so-called supply of storage

equation.

The model is solved numerically to compare the different policy functions

implied by each model (speculators, processors, and both agents). The model that allows

the interaction of both agents combines higher autocorrelation in the simulated price

series (since processors always carry inventories) with a non-linear price function, since

it imposes the no-negativity of speculative stocks.

Finally, we present estimates of the different versions of the storage model using

the same price data used by Deaton and Laroque (1992). The results show the

convenience of considering the phenomenon of storage under backwardation in the

model, but not of enforcing the arbitrage condition to explain aggregate price data

dynamics. However, the arbitrage condition seems appropriate when working with

market level data.

II. The model

The existing economics literature considers two main versions of the competitive

storage model, each with a different storage cost function. 3 The first model is the Deaton

                                                                        

the latter. This makes important to explain the origin of the convenience yield, a point
that is not addressed by Lowry.
3 We are only focussing only on those models that imply a non-linear price policy
function through imposing the no-negativity constraints of stocks. The reason for this
choice is that these models seem to capture better the movements in commodity prices
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and Laroque model (1992, 1995, 1996) based on competitive or speculative storage (see

Samuelson, 1971; Williams and Wright, 1991). The model is presented in (1):
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Where pc,t is the commodity price in period t, E[pc,t+1] is the conditional

expectation of price pc,t+1 at period t, St is the carryover from period t to t+1, r is the

interest rate, ht is the production in period t (also called “harvest”, see Williams and

Wright, 1991), Ct is the consumption of the commodity in the current period, Dt is the

total market demand for the commodity, equal to current consumption plus carryover to

������������	
��
�� �	���������	�������
���	�	���������Deaton and Laroque, 1992) and Pc (.)

is the inverse consumption demand function.

 An alternative version of the storage model is found in Miranda and Glauber

(1993), and Miranda and Rui (1996). These models use a storage cost function based on

the supply of storage (see Working, 1949, Brennan, 1958, and Telser, 1958). The

rationality behind the supply of storage is to incorporate the phenomenon of storage

under backwardation, a stylized fact extensively studied by Holbrook Working during the

1930s. The Miranda and Rui (1996) model is presented in (2), where the storage cost is

�	������� ���� �����	
�� 0� 1ln(It), It is the carryover stock, and the other variables have

already been defined.

                                                                        

(see Deaton and Laroque, 1992). For an evaluation of other rational expectations
commodity models see Gilbert, 1990.
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Two are the main differences implied by models (1) and (2). First, model (2)

implies the impossibility of stockouts (i.e, allows for storage under backwardation) and

therefore, in the model prices of successive periods are interconnected. This feature is not

allowed in model (1). Second, model (1) eliminates arbitrage opportunities through

imposing the arbitrage condition when the price spread is above the storage costs while

model (2) does not. While it is possible to speculate about the reasons to model in either

way a commodity market, it is better to let the stylized facts to guide the modeling.

The main stylized fact for the commodity storage model (and the origin of the

commodity storage model) is the relation between price spreads and stocks, originally

drawn by Holbrook Working in 1933. The same empirical relationship has been found in

other commodity markets (see for instance Gray and Peck, 1981 for wheat; and Gardner

and Lopez, 1996 for soybeans). Figure 1 plots the relation of price spreads and stocks for

wheat using Holbrook Working’s data.
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Source: Table VI, Working, 1933. 
Note : The regression line has been generated fitting a cubic polynomial.

Figure 1: September-July Wheat Price Spread and July 1st Total U.S. 
Commercial Stocks 1896-1932
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There are two interesting facts shown in figure 1 worth noting. First, the portion

denoted as A indicates the presence of storage under backwardation, and favors the use of

model (1), or any other model that predicts storage under backwardation. Second, the

observed relation between the price spread and stocks is not increasing when the spread is

more positive (portion B in figure 5). Instead, the relationship is a flat line, indicating the

effect of competitive forces driving extraordinary profits to zero. This portion of the

curve is evidence that favors the introduction of the arbitrage constraint.

The evidence presented in figure 1, allows us to consider a third type of model

that incorporates models (1) and (2) in just one model, since sections A and B of figure 1

suggest the use of a combination of the speculative storage model and the supply of

storage model. Instead of using the supply of storage cost, we model those inventories

explicitly using a model for inventories carried by commodity processors. Two reasons

motivate this choice: first, the criticism to the supply of storage model for not considering

a microeconomic explanation about the origin of the convenience yield term (see Deaton
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and Laroque, 1995 and Brennan, Williams and Wright, 1997). In fact, that empirical

approach has consisted on regressing price spreads on commercial stocks. Such equation

is a reduced form, and its parameters may be functions of policy variables such as storage

fee, interest rate, prices of other factors of production, etc. This generates problems for

using the estimated equation for commodity policy evaluation, which has been its main

role.

The second reason, as pointed out in the literature (see Working, 1949), is that

processing firms carry an important part of raw material stocks during the year as part of

their production process, therefore their stocks represent an important part of the stocks

observed while prices are in backwardation. The stocks carried by processors are well

documented in the economic literature, (see Abramovitz, 1950). In Carter and Revoredo

(2000), we show that a model for processors inventories can encompass a model based on

the supply of storage cost and the convenience yield explanation, such as the model used

by Miranda and Rui (1996). This result is derived from modeling raw material

inventories as factors of production such as in Ramey (1989). The model that

incorporates processors and speculators is presented in (3), and the derivation of

processor’s demand for inventories is given in the appendix.
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At is the current period availability (current production plus past carryover). PP
t  is

the price of the processed good (say flour in the case of wheat). Processors’ carryover (It)

has been derived for a particular specification of the production function as shown in the

appendix.4

III. Solution of the model

The solution of the model can be better understood by means of the diagram

presented in figure 1. This figure resembles Deaton and Laroque’s, 1992, figure 2, and

allows us to compare all the policy functions in a schematic way.

                        
4 The functional form (quasi-fixed proportions production function) was selected because
of its algebraic tractability, but the result is robust to the use of other functional forms,
since those inventories are not more than a derived demand. Also in (3) we have chosen
an specification that allows to encompass the Miranda and Rui , 1996 supply of storage
equation.
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Figure 2. Policy Function of Different Commodity Market Models
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The curve A-A’ represents the current consumption line (i.e., for exports or other

current utilization of the commodity). The model used by Deaton and Laroque (1992,

1995, 1996) is represented by the curve A-D’-D. It represents the aggregate demand

when there are no processors of the commodity in the market (e.g., sugar may be a good

example since it is already a processed good, and its trade may allow for more presence

of speculation). The aggregate demand implied by the Miranda and Glauber (1993), and

Miranda and Rui (1996) models is represented by the curve M-M’, representing the case

when there is no speculation in the raw commodity. When all the agents (processors and

speculators) are considered together, the aggregate demand curve is given by M-W-D,

where speculators start demanding commodity inventories when the availability is above

to Qct
*. When the availability is below Qct

*, processors are the only ones who are carrying
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inventories (their inventories are measured by the horizontal distance in between A-A’

and M-M’). Above Qct
* both processors and speculators are carrying inventories

(processors’ inventories are measured by the horizontal distance between A-A’ and W-

M; speculators inventories are given by the horizontal distance in between W-M and W-

D). When the availability is above Qct
* processors are carrying the maximum amount of

inventories they can demand given their storage capacity and/or the conditions in the

processed good market, since the rental price for their inventories is zero. For the

particular case of model (3), the maximum storage carried by processors is given by the

solution of the system (4). Where pct is the price of the commodity consistent with the

level of total inventories that eliminates all the arbitrage possibilities, therefore, it can be

considered constant in the solution of (4), and the system be solved for PP
t  and It .
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The key step in the algorithm is to discriminate between the existence of arbitrage

possibilities. If there are arbitrage possibilities, then speculators are going to carry

inventories to the next period and forcing prices (i.e., current and expected) to satisfy

exactly the arbitrage condition. In that case the rental cost of inventories for the

processing firms is equal to zero (i.e., ( )( ) [ ] 0pEkopr1 1t,ct,c =−++ + ), and they reach their

maximum storage according to the system (4).

The algorithm starts assuming (given the parameters of the model and given the

level of availability), that processors are the only ones that are carrying stocks in the
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market (i.e., solve the model without the presence of speculators). Once the level of

working stocks is computed, the routine tests the presence of arbitrage possibilities. If

there are no arbitrage possibilities, the total carryover in the market is equal to

processor’s carryover.  On the other hand, if there are arbitrage possibility, the routine

finds the level of total inventories that eliminates all the arbitrage possibilities, and the

commodity price consistent with that level of inventories. Given the commodity price and

the satisfaction of the arbitrage condition, the routine finds the corresponding level of

processor’s inventories by solving (4), and by residual, the level of speculative

inventories. Figure 1.a in the appendix presents a detailed flowchart of the algorithm for

the case of the price inelastic commodity supply.

The routine with a price responsive commodity production (i.e., harvest) follows

Williams and Wright’s (1991) algorithm. It requires the creation of a vector of planned

commodity production, which is improved upon in a special loop after the equilibrium

storage (for speculators and processors) has been found for all states of nature. It should

be noted that for the case of multiplicative disturbances, the supply depends on the price

incentive function (i.e., the expected marginal revenue) instead of expected commodity

prices (see, Wright, 1978). The algorithm for the elastic supply case is presented in figure

1.b in the appendix.

IV. Model simulation

Figure 3 presents the simulated policy function for model (3), and it corresponds

to the thick line shown in figure 3.
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Notes:
Function 1 = Expected price without carryover
Function 2 = Expected price considering only processors’ stocks (but from solution including speculators).
Function 3 = Expected price when only processors carry stocks.
Function 4 = Expected price when processors and speculators carry stocks.

Figure 3: Market Demand Functions
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It is clear from the commodity price literature (Deaton and Laroque, 1992 and

Miranda and Rui, 1996) that a model like (3), preserves many characteristics of the other

two models (supply of storage and speculative commodity storage model). The no-

negativity constraint of speculative stocks generates a non-linear response in prices that

seem to be an important market characteristic for commodity prices (see, Gilbert, 1990).

Also, the model predicts higher autocorrelation (i.e., such as in the supply of storage

model) since total stockout never occurs because processors are carrying stocks in all

periods. On the other hand, speculators carry the commodity when they expect capital

gains.

In addition, it is worthwhile to generate for comparison purposes (see figures 4a

to 4c) the Working curve (graph that relates price spreads to stocks) implied by each
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model solved independently (i.e., speculators only, processors only, and both

stockholders). The differences among each of the generated Working curve are striking.

The curve that considers only processors’ storage (4b) presents an increasing pattern over

the whole range of stocks. On the other hand, the curve considering only speculators’

storage (4c) does not allow for the existence of storage under backwardation, and implies

a flat line for positive values of the inter-temporal price spread.5  Finally the curve that

consider both types of stockholders (4a) combines both types of pattern (storage under

backwardation and a flat portion for positive values of the spread).

Figure 4d repeats figure 1 to ease the comparison. We have over imposed a cubic

regression line, instead of the probable quadratic or logarithmic curve used originally by

Holbrook Working (unfortunately not reported). The Working curve was the empirical

basis for his supply of storage theory (see Working, 1949).

                        
5 In order to make the models comparable, I have substituted in the original shrinkage
coefficient used by Deaton and Laroque (1992), which results in a decreasing marginal
storage cost, for a constant storage cost. That explains the flat portion shown by the
Working curve for the region of positive price spreads.
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Figure 4.a Figure 4.b

Figure 4.c Figure 4.d

Source : Figure 4.a to 4.c were computed using the following parameters (d12 =6, d22 =-5, � ������ �Z� ��� �� G�11 =2, d21 =-0.5). Figure 4.d is based on Table VI, Working, 1933. The re
gression line in figure 4.d was generated by fitting a cubic polynomial.
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Figures 5a and 5b answer the question of how important for the resulting policy

function is to assume a price responsive harvest or not. This question is interesting since

recent empirical models aimed to explain price distributions have assumed that the

commodity production (i.e., harvest) is inelastic (see Deaton and Laroque, 1992; Miranda

and Rui, 1996; Ng, 1996).  In figure 5a and 5b we have simulated the Working curve and

the market demand for three different harvest specifications. Two price responsive

harvests (with and without intercept) and a price inelastic harvest. As observed in the

figures the assumption about the functional form of the harvest and production is not

trivial since it implies important changes in the resulting market demand functions.

Figure 5a: Working Curve for Different Commodity Harvest Functions
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Assumptions:

Function 1: ht=1+0.05 PR
t

Function 2: ht=1

Function 3: ht=0.5PR
t

Figure 5b: Market Demands for Different Commodity Harvest Functions
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V. Econometric Estimates

Table 1 compares estimates of four versions of the commodity storage model. All

the models have been estimated using the pseudo maximum likelihood estimator

described by Deaton and Laroque (1995). Even if prices in the presence of speculators

are not normally distributed, the estimator is consistent.

In all the cases the harvest has been assumed to be i.i.d. normally distributed with

mean zero and variance one, and approximated by the same discrete distribution used by

Deaton and Laroque (1995). Furthermore, in all the case we have assumed an interest rate

equal to 5 percent and the consumption functions linear with parameters (a, b)

Model I, was taken directly from Deaton and Laroque (1995) and corresponds to

the commodity storage model where the cost of storage is given by the interest rate and

the shrinkage coefficient (γ). Model II corresponds to Miranda and Rui (1996) model,
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which was re-estimated using the original data (instead of using prices deflated by the

historical means as in Miranda and Rui). The parameters of the supply of storage costs

are (θ1 and θ2). Model III, is a variation of model I, that substitute the shrinkage

coefficient for a fixed storage cost, ko, (such as in Williams and Wright, 1991). Model

IV, with processors and speculators, includes the parameters of models II and III.

The econometric results, comparing the pseudo likelihood values of models II and

IV with models I and III, confirm the importance of including a component that takes into

account the phenomenon of storage under backwardation. It improves the commodity

storage model performance, as pointed out by Miranda and Rui, 1996. On the other hand,

comparison of models I and III makes clear that the shrinkage coefficient imposes a too

high cost compare with the fixed storage cost, reducing the stocks carried by speculators

and increasing the percentage of stockouts.

The comparison between models II and IV indicates that the enforcement of the

arbitrage condition is not necessary to explain the dynamics of most of the commodity

prices. The reason is in the nature of the data, aggregate average prices presents what

may be considered non-existent arbitrage opportunities, this has already been proved in

the literature (see Working, 1961 and Gilbert, 1981). Furthermore, the use of aggregate

data may explain the poor results obtained with model I, since the model that assumes an

homogeneous commodity.
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Table 1 - Parameter estimates and pseudo likelihood (PLE) of different commodity storage models 1/

Commodities
Cocoa Coffee Copper Cotton Jute Maize Palm Oil Rice Sugar Tea Tin Wheat 

Model I - Deaton and Laroque (1992, 1995)
a 0.160 0.260 0.540 0.640 0.570 0.630 0.460 0.600 0.640 0.480 0.260 0.720

0.010 0.020 0.040 0.040 0.030 0.040 0.050 0.030 0.050 0.020 0.040 0.040
b -0.220 -0.160 -0.330 -0.310 -0.360 -0.640 -0.430 -0.340 -0.630 -0.210 -0.170 -0.390

0.030 0.030 0.050 0.040 0.060 0.150 0.060 0.030 0.060 0.020 0.050 0.030
0.120 0.140 0.070 0.170 0.100 0.060 0.060 0.150 0.180 0.120 0.150 0.130
0.040 0.020 0.020 0.030 0.050 0.030 0.030 0.040 0.030 0.030 0.050 0.030

PLE 125.2 111.0 73.9 29.8 44.8 32.1 22.2 26.0 -10.7 69.3 108.9 24.6

Model II - Miranda and Rui (1996) 2/
a 0.185 0.224 0.647 0.600 0.575 0.743 0.452 0.603 0.449 0.494 0.217 0.381

0.033 0.025 0.048 0.097 0.049 0.134 0.139 0.071 0.117 0.029 0.030 0.047
b -0.330 -0.217 -0.654 -0.939 -0.427 -1.413 -1.155 -0.611 -0.923 -0.244 -0.289 -0.697

0.070 0.049 0.142 0.357 0.077 1.173 0.305 0.112 0.170 0.025 0.036 0.057

1 -0.029 -0.018 -0.041 -0.113 -0.038 -0.073 -0.087 -0.165 5/ 5/ -0.029 -0.011
0.013 0.027 0.007 0.051 0.030 0.026 0.014 0.050 0.009 0.003

2 0.023 0.025 0.028 0.058 0.051 0.043 0.047 0.122 0.013 0.022 0.019 0.002
0.010 0.022 0.003 0.027 0.023 0.026 0.007 0.031 0.010 0.003 0.005 0.001

PLE 134.4 132.3 97.4 79.9 59.2 48.1 74.4 64.7 -2.1 78.3 160.5 33.6

Model III 3/
a 0.142 0.255 0.552 0.681 0.634 0.690 0.595 0.768 0.545 0.510 0.397 0.757

0.027 0.031 0.048 0.063 0.039 0.100 0.608 0.064 0.118 0.019 0.036 0.042
b -0.234 -0.240 -0.376 -0.351 -0.348 -0.602 -0.686 -0.392 -0.758 -0.196 -0.430 -0.348

0.036 0.052 0.066 0.051 0.053 0.107 0.245 0.077 0.116 0.023 0.116 0.032
ko 0.003 0.008 0.011 0.030 0.033 0.017 0.013 0.048 0.029 0.041 0.010 0.045

0.002 0.003 0.004 0.008 0.012 0.008 0.036 0.022 0.016 0.010 0.003 0.007
PLE 132.5 132.1 92.3 46.3 52.9 37.7 54.7 36.1 -4.2 75.9 144.0 26.2

Model IV 4/
a 0.152 0.222 0.463 0.758 0.575 0.743 0.478 0.523 0.469 0.519 0.212 0.629

0.024 0.036 0.071 0.078 0.047 0.135 0.212 0.157 0.239 0.024 0.028 0.138
b -0.249 -0.315 -0.594 -0.977 -0.429 -1.413 -1.017 -1.048 -0.923 -0.208 -0.262 -1.274

0.037 0.072 0.135 0.250 0.083 1.197 0.471 0.312 0.158 0.020 0.030 0.277

1 -0.011 -0.024 -0.153 -0.098 -0.039 -0.073 -0.076 -0.241 5/ 5/ -0.028 -0.133
0.001 0.020 0.033 0.020 0.031 0.026 0.027 0.148 0.009 0.017

2 0.029 0.018 0.118 0.064 0.051 0.043 0.044 0.167 0.016 0.052 0.019 0.072
0.004 0.010 0.024 0.016 0.022 0.026 0.009 0.096 0.040 0.004 0.005 0.000

ko 0.003 0.009 0.005 0.024 0.051 0.056 0.011 0.011 0.020 0.057 0.015 0.067
0.002 0.007 0.005 0.009 0.158 0.127 0.004 0.026 0.019 0.024 0.025 0.016

PLE 135.8 135.4 101.4 77.3 59.2 48.1 73.9 64.7 -2.0 85.5 160.2 57.2

1/ All the models assume an interest rate equal to 5 percent. Standard errors are below each parameter.
2/ Miranda and Rui model estimated by pseudo maximum likelihood as in Deaton and Laroque (1995).
3/ Model with only arbitrageurs and substituting the shrinkage coefficient of Model I by a constant storage cost.
4/ Model with manufacturers, arbitrageurs and constant storage cost.
5/ Model without intercept.

The results of model IV are mixed. Despite of a possible problem of identification

of the 5 parameters involved in the model 6 it is interesting to note that it seems to

perform well for cocoa, coffee, cotton and wheat prices. However, the model is expected
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to perform better with market level data such as the one used in Working’s empirical

work.

Final Remarks

The purpose of this paper has been to extend of the rational expectations

commodity storage model, to the case where both speculators and processing firms are

stockholders. Instead of using the convenience yield explanation, we have model

processors inventory demand using a model for manufacturing inventories.  This allows

to incorporate the phenomenon of storage under backwardation (obtaining a better

description of the stylized facts observed in commodity markets) and present a structural

model that can be used for policy purposes.

The model is numerically solved to simulate the policy functions implied by

different versions of the commodity storage model. The combination of processors and

speculators allows us to obtain a model that combines the two characteristics of the

supply of storage and speculative storage models, which are a higher autocorrelation

together with non-linear price response to change in quantities.

Econometric results using aggregate price data show the convenience of including

a component that takes into account the phenomenon of storage under backwardation to

explain commodity price dynamics. On the other hand, the enforcement of the arbitrage

condition is not necessary to explain the dynamics of most of the commodity prices. The

reason is probably in the aggregate nature of the data, even if it seems useful when

working with market level data.

                                                                        
6 The possible identification problem can be solved expanding the model incorporating a
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demand for the processed good and a responsive supply of the commodity



20

V. References

Abramovitz, Moses. Inventories and Business Cycles. National Bureau of Economic
Research, New York, 1950.

Brennan, Donna C., Williams Jeffrey C., and Wright, Brian D. “Convenience Yield
Without The Convenience: A Spatial-Temporal Interpretation of Storage Under
Backwardation,” Economic Journal, 1997, 107(443), pp. 1009-23.

Brennan, Michael J. “The Supply of Storage,” American Economic Review, 1958, 47(1),
pp. 50-72.

Carter, Colin C. and Revoredo, Cesar L. “The Interaction of Commodity Working Stocks
and Speculative Stocks,” Mimeo, Department of Agricultural and Resource
Economics, University of California, Davis, 2000.

Chambers, Marcus J., and Bailey, Roy E. “A Theory of Commodity Price Fluctuations,”
Journal of Political Economy, 1996, 104(5), pp. 924-957.

Deaton, Angus, and Laroque, Guy. “On the Behavior of Commodity Prices,” Woodrow
Wilson School Working No. 145, Princeton University, 1989.

__________. “On the Behavior of Commodity Prices,” Review of Economic Studies,
1992, 59(1), pp. 1-23.

__________. “Estimating a Nonlinear Rational Expectations Commodity Price Model
with Unobservable State Variables,” Journal of Applied Econometrics, 1995, 10,
December supplement, pp. S9-s40.

__________. “Competitive Storage and Commodity Price Dynamics,” Journal of
Political Economy, 1996, 104(5), pp. 896-923.

Gardner, Bruce L. and Lopez, Ramón “The Inefficiency of Interest-Rate Subsidies in
Commodity Price Stabilization,” American Journal of Agricultural Economics, 1996,
78(3), pp. 508-16.

Gilbert, Christopher L. “The Rational Expectations Hypothesis in Models of Primary
Commodity Prices.” The World Bank, PRE Working Papers Series, 1990, No. 384.

Gray, Roger W.  and Peck, Anne E. “The Chicago Wheat Futures Market. Recent
Problems in Historical Perspective.” Food Research Institute Studies, 1981, 18(1), pp.
89-115.



21

Gustafson, Robert L. Carry Over Levels for Grains: A method for Determining Amounts
that are Optimal Under Specified Conditions. Technical Bulletin 1778, Washington
D.C.: U.S. Department of Agriculture, 1958.

Judd, Kenneth L. Numerical Methods in Economics, Massachusetts: The MIT Press,
1998.

Kaldor, Nicholas “Speculation and Economic Theory,” Review of Economic Studies,
1939-40, 7, pp. 1-27.

Lowry, Mark N., "Working Stocks and Speculative Stocks," Economics Letters, 1988,
28(4) pp. 311-14.

Miranda, Mario J. and Glauber, Joseph W. “Estimation of Dynamic Nonlinear Rational
Expectations Models of Primary Commodity Markets with Private and Government
Stockholding.” Review of Economic and Statistics, 1993, 75(2), pp. 463-70.

__________ and Rui, Xiongwen  “A Empirical Reassessment of the Commodity Storage
Model,” Mimeo, Department of Agricultural Economics, Ohio State University, 1996.

Muth, John “Rational Expectations and the Theory of Price Movements.” Econometrica,
1961, 29(3), 315-35.

Newbery, David M.G. and Stiglitz, Joseph E. The Theory of Commodity Price
Stabilization: A Study in the Economics of Risk., Oxford: Clarendon Press, 1981.

Ng, Serena, “Looking for Evidence of Speculative Stockholding in Commodity
Markets.” Journal of Economic Dynamics and Control, 20(1-3), pp. 123-43.

Ramey, Valerie A. “Inventories as Factors of Production and Economic Fluctuations,”
American Economic Review, 1989, 79(3), pp. 338-54.

Telser, Lester G. “Futures Trading and the Storage of Cotton and Wheat,” Journal of
Political Economy, 1958, 66(3), pp. 233-255.

Williams, Jeffrey C. and Wright, Brian D. Storage and Commodity Markets. New York:
Cambridge University Press, 1991.

Working, Holbrook. “Price Relations between July and September Wheat Futures at
Chicago since 1885,” Wheat Studies of the Food Research Institute, 1933, 9(6), pp.
187-274.

________. “Theory of Price of Storage,” American Economic Review, 1949, 39(6), pp.
1254-62.



22

Wright, Brian D. “The Effects of Ideal Production Stabilization: A Welfare Analysis
Under Rational Behavior,” Journal of Political Economy, 1979, 87(5), pp. 1011-33.

________ and Williams, Jeffrey C. “The Economic Role of Commodity Storage,”
Economic Journal, 1982, 92(367), pp. 596-614.



23

Appendix

Derivation of processor’s demand for inventories

Let us assume that the output (Qt, measured as the shipments of the processed

good, see Ramey, 1989) of a competitive processing industry is represented by a quasi

fixed proportions production function (i.e., )}K(f,
I

min{Q t
t

t λ
= ).7� ������ � ��� �

parameter of the production function (i.e., turnover inventory). Kt is a composite index of

other factors of production, and f (.) is an increasing function that relates other factors

with output. Under this assumption, risk neutral processors that maximizes the expected

profits (E[π]) at period t solve the following problem:

( ) ]KwIm)Kf,
I

min(P[E][EMax)1( ttttt
t

t
K,I tt

−−
λ

=π

Where Pt is the processed product price (i.e., PP
t ) net of the raw material price ctp ,

mt is the price of raw material inventories (this has been defined slightly different than in

Ramey (1989), and is defined as ( )( ) 1ctctt pkopr1m +−++= ). Where r is the interest

rate, ko is the storage cost, wt is the price of the composite factors of production. Cost

minimization implies that 
λ

= t
t

I
Q  and ( )tt KfQ = . Then the expected cost function is

given by:

[ ] [ ] ( )t
1

tttttt QfwQmE)Q,w,m(CE)2( −+λ=

                        
7 The derivation does not necessarily require that specific production function. The quasi
fixed proportions production functions was chosen because of its tractability and because
it is bounded when the price of the factor of production is equal to zero.
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Let us assume (for the purpose of obtaining the supply of storage function

developed below) that ( ) ( )( )1QlnQQf ttt
1 −=− . Thus, replacing the expected cost function

into the profit function (1) and maximizing with respect to the output. We obtain

expressions for the output (Qt) and processors’ raw material inventories of processors (I t)

that depends on the expected price for the commodity.

( )( ) [ ]{ }

( )( ) [ ]{ }






 −++λ−

λ=







 −++λ−

=

+

+

t

1ctctt
t

t

1ctctt
t

w

pEkopr1P
expI

)3(

w

pEkopr1P
expQ

Derivation of the supply of storage equation

Let us start from the storage cost function used by Glauber and Miranda, 1993,

and Miranda and Rui, 1996. The function is written in (4) such as:

[ ]
)Iln(p

)r1(

pE
)4( t10t,c

1t,c
θ+θ=−

+
+

Equation (4) is a reduced form for particular parameters of the processors’

demand for inventories (It), for a quasi fixed proportions production function. To show

this, let us write the processors’ demand for inventories (3) as in (5), and let us call

λ
= P

P
t*

t .

( )( ) [ ]{ }[ ] 






 −++−λλ= +1t,ct,c
*
t

t
t pEkopr1P

w
expI)5(

Let us simplify expression (4) by introducing parameters ß0 and ß1.
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( )( ) [ ]{ }[ ]{ }pEkopr1PexpI

w
)6(

1t,ct,c
*
t10t

t
1

0

+−++−ββ=

λ=β

λ=β

Taking natural logarithms to both sides and factoring terms we get (7)

[ ] ( ) ( )Iln
)r1(

1
ln

)r1(

1

)r1(
Pkop

)r1(

pE
)7( t

1
0

1

*
t

t,c

1t,c

β+
+β

β+
−

+
−=−

+
+

	�
�����
�� ���� �
� ������ ��� ���� ����������� 0� �
�� 1 we obtain the storage cost

��
����
�����������������
������������������������������������� 0��
�� 1 are given in (8):

( ) ( )

β+
≡θ







β+θ−≡β

β+
−

+
−≡θ

)r1(

1

)8(

ln
w

Pkoln
)r1(

1

)r1(
Pko

1

1

0
t

t
10

1

*
t

0

Therefore, the commodity model presented by Miranda and Glauber, 1993, and

Miranda and Rui, 1996, represents only the inventories carried by processors, excluding

speculative stockholding. ������ ������
���������
������
�� 0��
�� 1 as parameters are:

(1) the relative price of the processed good (net of the price of the raw material) with

respect to the price of other factors of production must be constant; (2) the prices of other

factors of production must be constant, and (3) the period considered in the model has be

relatively short to preclude of technological change.
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Figure 1.a – Flowchart for the Price Inelastic Supply Case

Set the parameters for the demand functions (d11, d21, d31,
d12, d22, d32), storage costs (ko), interest rate (r) , turnover
rate (λ), and index of other factor of production prices
(w). Also choose a low order polynomial ψ(S) to
represent Et[pct+1(St)] , the expectations at period t of the
commodity price at period t+1.

Choose a vector St of discrete values Si
t=1,..,n  to

represent the total storage in the market (processors and
speculators). Use each Si

t to create the availability matrix
with elements Aij,t+1 , each of them is defined as the mean
production (h) times (in case of multiplicative
disturbances) (1+ej)  for j=1 to m, and adding the
carryover Si

t

For each Aij,t+1, compute the storage for processors when
there are no speculators in the market (I*t+1), this is solved
numerically from the equation:

I*ij,t+1=ß0exp{ß1(Pt/ ß0-(1+r)(pct+1+ko)+ψ(I*ij,t+1)}

If G<0 then there are arbitrage opportunities. Solve for
total storage (tst+1) that makes G=0 from:

Pc[Aij,t+1- tst+1]+ko - ψ[tst+1]/(1+r)=0
Compute pct+1= Pc[Aij,t+1- tst+1] and use it to get the new
processors’ inventories from:

Iij,t+1=ß0exp{ß1((PP
t-pct+1)/ ß0}

Obtain speculative inventories (Se
ij,t+1)as a residual.

With the values for Iij,t+1 and Se
ij,t+1 compute the expected price from the formula:

[ ] [ ]∑ −−=
=

++++
m

1j
j1t,ij

e
1t,ij1t,ijt,i1tt )ePr(ISAPcS|PE

Compute the expectation for the whole Si,t vector in order to have a vector of expected prices.

Fit by regression, the obtained expected prices of the
previous step with the total storage vector to obtain the
new set of coefficients for the function ψ(S).

If the coefficients of
ψ(S) do not converge,
start the process
again.

If the coefficients of
ψ(S) converge, then
the program stops.

Verify if there are arbitrage opportunities evaluating

G=Pc[Aij,t+1- I*t+1]+ko - ψ[I*t+1]/(1+r)

If G>0 then there are no arbitrage opportunities.
and  tst+1 = I*t+1, and Se

ij,t+1=0.
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Figure 1.b – Flowchart for the Price Elastic Supply Case

Set the parameters for the demand functions (d11, d21, d31, d12, d22, d32), storage
costs (ko), interest rate (r) , turnover rate (λ), and index of other factor of
production prices (w). Also choose a low order polynomial ψ(S) to represent
Et[pct+1(St)] , the expectations at period t of the commodity price at period t+1.

Choose a vector St of discrete values Si
t=1,..,n  to represent the total storage in

the market (processors and speculators) and another for the planned
production hI , each one associated to each Si

t .
Pick the first Si

t and its associated hi to create a vector of availability with
elements Aij,t+1 , defined as  hi (1+ej) for  j=1 to m, plus the carryover Si

t

With the values for Iij,t+1 and Se
ij,t+1 compute the expected price from the formula:

[ ] ∑
= 





+−+−+=+
m

1j
)e jPr(I 1t,ijSe

1t,ijA 1t,ijPcS t,i|P 1tEt

Compute the expectation for the whole Si,t vector in order to have a vector of expected prices.

Fit by regression, the obtained expected prices of the previous step with the
total storage vector to obtain the new set of coefficients for the function
ψ(S).

If the coefficients of ψ(S) do
not converge, start the process
again.

If the coefficients of ψ(S)
converge, then the program
finishes.

With the values for Iij,t+1 and Se
ij,t+1 for the whole vector compute the price incentive (PRi) according to the

formula:

( )∑
= 





+−+−+++=
m

1j
)e jPr(I 1t,ijSe

1t,ijSite j1hiPc)e j1(PR
i

Compute the resulting planned supply from the formula hI*=h(PR
i) compare hi* with hi , if they are

different by more than the convergence criteria, solve the following equation for a hi consistent with Si,t

( ) )
m

1j
)e jPr(I 1t,ijSe

1t,ijSite j1hiPc)e j1((hhi ∑
= 





+−+−+++=

Use the new hi to compute again the equilibrium storage, until get convergence in both hi and Sit+1 (i.e.,
Iij,t+1 + Se

ij,t+1). Then pick the next pair Si, hI .

For each Aij,t+1, compute the storage for processors when
there are no speculators in the market (I*t+1), this is solved
numerically from the equation:

I*ij,t+1=ß0exp{ß1(Pt/ ß0-(1+r)(pct+1+ko)+ψ(I*ij,t+1)}

Verify if there are arbitrage opportunities evaluating

G=Pc[Aij,t+1- I*t+1]+ko - ψ[I*t+1]/(1+r)

If G<0 then there are arbitrage opportunities. Solve for
total storage (tst+1) that makes G=0 from:

Pc[Aij,t+1- tst+1]+ko - ψ[tst+1]/(1+r)=0
Compute pct+1= Pc[Aij,t+1- tst+1] and use it to get the new
processors’ inventories from:

Iij,t+1=ß0exp{ß1((P
P

t-pct+1)/ ß0}
Obtain speculative inventories (Se

ij,t+1)as a residual.

If G>0 then there are no arbitrage opportunities.
and  tst+1 = I*t+1, and Se

ij,t+1=0.


