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SUMMARY. In this paper we investigate the usage of different bootstrap methods to estimate the variance 
of the fitted values from a neural network regression models with possibly depended errors. We 
particularly focus on residual bootstrap, moving block bootstrap, sieve bootstrap and post-blackening 
bootstrap. The performance of the proposed approaches are evaluated by a Monte Carlo experiment. 
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1. Introduction 
 

Let { }tY , { }K,2,1,0 ±±∈t , be a (possibly non stationary) process modelled as : 
 

( ) ttt ZfY += x ,         (1) 
 
where f is a non linear continuous function, ( )dttt xx ,,1 K=x  is a vector of d non 
stochastic explanatory variables defined on a compact ℵ⊂ℜ d, and { }tZ is a stationary 
noise process with zero mean. The function f in the model (1) can be approximated with 
a single hidden layer feed-forward neural network; Hornik et al. (1989) have shown 
that this class of non linear functions can approximate any continuous function 
uniformly on compact sets, by increasing the size of the hidden layer.  

In this context, the use of asymptotic results for estimating the standard errors of 
fitted values, if possible in principle, become soon very difficult and almost impractical 
in real problems. This motivates increasing interest in resampling techniques (see 
Tibshirani, 1995; Refenes and Zapranis, 1999 inter alia) as alternative and/or 
complementary tools to the asymptotic ones.  

The aim of the paper is to extend some of the common bootstrap proposals to the 
context of possibly non stationary time series, specified according to the model (1), to 
estimate the sampling variability of the neural network estimators. We particularly focus 
on evaluation of the accuracy of the bootstrap estimates based on four different 
approaches: the residual bootstrap, the moving block bootstrap, the sieve bootstrap and 
the post-blackening bootstrap.  
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 The paper is organised as follows. In the next section we focus on the use of neural 
networks in regression context and report some asymptotic results. In section 3 we 
propose and discuss the use of bootstrap techniques to evaluate the variance of the 
estimation of the function f  by neural network. In the last section, to evaluate the 
performance of the different proposed bootstrap techniques,  we report the results of a 
Monte Carlo simulation experiment.   
 
 
2. Neural networks in regression models 
 

Neural Networks have been used in various fields to approximate complex non linear 
structures. Here we consider the single hidden layer feedforward network of the form: 
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where ( )mmcc aa ′′= ,...,,,..., 11θ  with ( )kdkk aa ,,1 K=′a ; kc , mk ,,1 K=  is the weight 
of the link between the k-th neuron in the hidden layer and the output; kia  is the weight 
of the connection between the j-th input neuron and the k-th neuron in the hidden level. 

In the formulation (2) the bias term of the hidden layer and that of the output are both 
zero. Moreover, we suppose that the activation function of the input is the logistic 
function )1/(1)( xex −+=φ  and that of the hidden layer is the identity function. Barron 
(1993) has shown that for sufficiently smooth functions the L2 approximation with these 
activation functions is ( )mO /1 . 

The vector θ has to be chosen to minimise the least squares criterion: 
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that is: 
 

);(minargˆ θϕθ
θ

tT Y=         (4) 

 
The derivatives of the fit criterion with respect to the weights can be calculated 

recursively from output to input by using the chain rule, a procedure known as back-
propagation (see, for example, Haykin, 1994; Lachtermacher and Fuller, 1995). This 
algorithm can take a large number of iterations to converge and local minima are very 
common.  

After having obtained an estimate of the parameters we have: 
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White (1989), using stochastic approximations, derived some asymptotic properties 

of this recursive procedure. He showed that, under some general hypotheses, the back-
propagation estimator converges almost surely to the value that minimises the expected 
mean squared error and it is asymptotically Normal. 

In previous papers (Giordano and Perna, 1998; 1999) we proved, using an alternative 
approach based on the theory of M-estimators (Huber, 1981), the consistency of the 
estimators Tθ̂  and ( )ttYf x,ˆ  and derived the asymptotic distributions both in the case 
of iid. errors that in the case of fourth order stationary and ϕ-mixing errors. 

Let ( )Tmm = , as ∞→T , under the hypotheses that ( ) ∞→Tm  and 

( )[ ] 0/2 →TTm  we proved the following theorems. 
 
Theorem 1. The estimator Tθ̂ , defined in (4), converges in distribution to a Normal 
distribution with zero mean and variance equal to:  
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and ( )xF  is the uniform distribution. 

Theorem 2. The random variables ( ) 
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The latter theorem permits to derive the asymptotic distribution of ( )ttYf x,ˆ  which is 

distributionally equivalent to ( )tg x . 
It is evident, from the previous results, the variance of the estimators involved is 

difficult to evaluate analytically. To overcome the problem, in previous papers 
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(Giordano and Perna, 1998; 1999), we derived the following upper bounds for the 
coefficient variance: 
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in which: ( )22rCc f = , r is the radius of the compact ℵ ; dwwfwC
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=  and ~( )f w is 

the Fourier transform of the function f. 
It follows that the variance of ( )tg x  can be approximated by: 
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The upper bounds have a quite complex structure not feasible for the applications 
and for an easy practical usage. This is quite common in the setting of nonparametric 
estimation where asymptotic techniques, even if available in principle and very useful to 
study the theoretical properties of the statistics involved, are only rarely used. It is much 
more common to carry out stochastic simulations such as bootstrapping to provide 
feasible estimators of the sampling variability. In the context of neural networks the 
bootstrap technique has been pursued in Tibshirani (1995) and Refenes and Zapranis 
(1999), inter alia. Bootstrap works by creating many pseudo-replicates, bootstrap 
sample, of the training set and then re-estimating the statistics on each bootstrap sample. 

In particular, we compare the residual bootstrap (a typical proposal in neural 
networks) with different non-parametric bootstrap schemes. They have a wider range of 
applications and give consistent procedures under some very general and minimal 
conditions. These are genuine non parametric bootstrap methods which seem the best 
choice when dealing with non parametric estimates. In our context, no specific and 
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explicit structures for the noise must be assumed. This can be particularly useful in 
neural networks when the specification of the parameters can heavily affect the structure 
of the residuals. 
 
 
3. The bootstrap approach 
 

As first proposed by Efron (1979), bootstrap methods are designed for application to 
samples of independent data. Under that assumption they implicitly produce an adaptive 
model for the marginal sampling distribution. Extensions to dependent data are not 
straightforward and modifications of the original procedures are needed in order to 
preserve the dependence structure of the original data in the bootstrap samples. In the 
context of neural networks applied to time series data two alternative groups of 
techniques are available. 

A straightforward approach is model based, where the dependence structure is 
modelled explicitly and completely by a neural network and the bootstrap sample is 
drawn from the fitted neural network model. The procedure can be implemented as 
follows.  

Step 1. Compute the neural network estimates ( )ttYf x,ˆ  for Tt ,,1 K= .  

Step 2. Compute the residuals ( )tttt YfYZ x,ˆˆ −=  with Tt ,,1 K=  and the centred 

residuals ∑ =−= T
t ttt TZZZ 1 /ˆˆ~ . 

Step 3. Denote by ZF~ˆ  the empirical cumulative distribution function of tZ~ , Tt ,,1 K= . 

Resample { }*
tZ  iid from ZF~ˆ  with Tt ,,1 K= . 

Step 4. Then generate a bootstrap series by ( ) ** ,ˆ
tttt ZYfY += x  with Tt ,,1 K= .  

 
Such model-based approach is, of course, inconsistent if the model used for 

resampling is misspecified. 
Alternatively, nonparametric, purely model free bootstrap schemes have been 

proposed. In those procedures blocks of consecutive observations are resampled 
randomly with replacement, from the original time series and assembled by joining the 
blocks together in random order in order to obtain a simulated version of the original 
series (Kunsch, 1989; Politis and Romano, 1992 inter alia). These approaches, known 
as blockwise bootstrap or moving block bootstrap, generally works satisfactory and 
enjoys the properties of being robust against misspecified models.  

The MBB bootstrap procedure can be adapted to possibly non stationary time series, 
in a neural network context, as follows.  

Step 1. Compute the neural network estimates ( )ttYf x,ˆ   for Tt ,,1 K= .  

Step 2. Compute the residuals  ( )tttt YfYZ x,ˆˆ −=  with Tt ,,1 K=  and the centred 

residuals ∑ =−= T
t ttt TZZZ 1 /ˆˆ~ . 
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Step 3. Fix nl <  and form blocks of length l of consecutive observations from the 
original data, i.e. the bootstrap sample is 
 
 tStlj J

ZZ ++− = ~*
)1( , bj ≤≤1 , lt ≤≤1 .  

 
where [ ]lTb /=  denoting with  [ ]x  the smallest integer greater or equal to x. Let 

bSSS ,,, 21 K  are iid uniform on { }lT −,,1,0 K . If  T is not a multiple of l, only bllT −+  

observations from the last block are used. Given bootstrap replicate { }**
1 ,, TZZ K , 

generate the bootstrap observations by setting. ( ) ** ,ˆ
tttt ZYfY += x  with Tt ,,1 K= .  

The MBB does not require one to select a model and the only parameter required is 
the block length. The idea that underlies this block resampling scheme is that if block 
are long enough the original dependence will be reasonably preserved in the resampled 
series. Clearly this approximation is better if the dependence is weak and the blocks are 
as long as possible, thus preserving the dependence more faithfully. On the other hand 
the distinct values of the statistics must be as numerous as possible to provide a good 
estimate of the distribution of the statistics and this point towards short blocks. Thus, 
unless the length of the series is considerable to accommodate longer and more number 
of blocks the preservation of the dependence structure may be difficult, especially for 
complex, long range dependence structure. In such cases, the block resampling scheme 
tend to generate resampled series that are less dependent than the original ones. 
Moreover, the resampled series often exhibits artifacts which are caused by joining 
randomly selected blocks. As a consequence, the asymptotic variance-covariance 
matrices of the estimators based on the original series and those based on the bootstrap 
series are different and a modification of the original scheme is needed. A possible 
solution is the matched moving block bootstrap proposed by Carlstein et al., (1996). 
The idea is to align with higher likelihood those blocks which match at their ends. This 
is achieved by a quite complex procedure which resamples the blocks according to a 
Markov chain whose transitions depend on the data. A further difficulty, is that the 
bootstrap sample is not (conditionally) stationary. This can be overcome by taking 
blocks of random length, as proposed by Politis and Romano (1994), but a tuning 
parameter, which seems difficult to control, has to be fixed. Anyway, a recent study of 
Lahiri (1999) shows that this approach is much less efficient than the original one and 
so no clear choice is possible.. 

A more effective solution seems to be the sieve bootstrap (see Buhlmann 1998; 
1999). It can be implemented in our context as follows.  

Step 1. Compute the neural network estimates ( )ttYf x,ˆ  for Tt ,,1 K= .  

Step 2. Compute the residuals  ( )tttt YfYZ x,ˆˆ −=  with Tt ,,1 K=  and the centred 

residuals ∑ =−= T
t ttt TZZZ 1 /ˆˆ~ . 

Step 3. Fit an autoregressive model of order p to the residuals tZ~  and compute another 
set of residuals  
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A guideline for approximating p is given by the Akaike information criterion in the 

increasing range ( )[ ]T10log10,0 , the default option of the S-plus package.  

Compute ∑ += −−= T
pt ttt pT1 )/(ˆˆ~ εεε , Tpt ,,1 K+= . 

Step 4. Denote by ε~F̂  the empirical cumulative distribution function of tε~ , 

Tpt ,,1 K+= . Resample { }*
tε  iid from ε~F̂  with Tt ,,1 K= . 

Step 5. Generate the bootstrap error series { }*
tZ , Tt ,,1 K= , defined by  
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Here we start the recursion with some starting value (the initial conditional if 

available or some resampled innovations) and wait until stationarity is reached. 
Step 6. Then generate a bootstrap series by ( ) ** ,ˆ

tttt ZYfY += x  with Tt ,,1 K= .  
 
Observe that even if the sieve bootstrap is based on a parametric model it is basically 

non parametric in its spirit. The AR(p) model here is just used to filter the residuals 
series. 

A different approach can be motivated by observing that if the model used in the 
sieve bootstrap is not appropriate, the resulting residuals cannot be treated as iid. An 
hybrid approach between the previous two, named post-blackening bootstrap (PBB in 
the following), was suggested by Davinson and Hinkley (1997) and studied by Srinivas 
and Srinivasan (2000). The procedure is much similar to the sieve bootstrap but the 
residuals from the AR(p) model are not resampled in an iid manner but using the MBB 
bootstrap. Hence, if some residual dependence structure is still present in the AR 
residuals this is kept from the blockwise bootstrap. Here, the model, usually a simple 
linear model, is used to ‘pre-withen’ the series by fitting a model that is intended to 
remove much of the dependence present in the observations. A series of innovations is 
then generated by block resampling of residuals obtained from the fitted model, the 
innovation series is then ‘post-blackened’ by applying the estimated model to the 
resampled innovations. 

The bootstrap series generated by using one of the previous methods can be used to 
approximate the sampling distribution, or some particular aspects such as its variability. 
Given the bootstrap series  *

tY , Tt ,,1 K= , compute the bootstrap analogue of the 
neural network parameters 
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and the bootstrap analogue of the neural network estimates 
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Then, estimate the variance ( )[ ]ttYf x,ˆvar  with the bootstrap variance 

( )[ ]ttYf x,ˆvar ** , where ( )[ ]ttYf x,ˆvar **  denotes the variance of ( )ttYf x,ˆ *  conditional 
on ( )ttY x,  Tt ,,1 K= , the observed data. As usual the bootstrap variance can be 
approximated through a Monte Carlo approach by generating B different bootstrap 
series and estimating the bootstrap variance as 
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4. Monte Carlo results and some concluding remarks 
 

To study how the proposed bootstrap procedures can be used to produce accurate 
estimates of sampling variability of the neural network estimates, a Monte Carlo 
experiment was performed. The simulated data set has been generated as 

( ) ttt ZxfY +=  where the deterministic part is given by the Wahba’s function specified 

as ( ) ( )xxx eeexf 32 3426.4 −−− +−= , with [ ]5.2,0∈x  as in Refenes and Zapranis 
(1999). Two different specifications for the noise process tZ  have been considered: a 
white noise and an ARMA(1,1), specified as tttt ZZ εε +−−= −− 11 5.08.0  with the 
innovations tε  distributed as a Student-t with 6 degrees. All the noise processes have 
been scaled so that the variability of the of the noise is about 20% of that of the signal. 
In figure 1 we reported a graph of the function along with its first order derivative and a 
typical realizations when considering ARMA noise.  

The simulations are based on 200 Monte Carlo runs and 50 bootstrap replicates. We 
fixed { }500,.200=T . The block length l  in the MBB scheme is fixed to 3/1Tl = , a 
value that seems to work quite well in many cases (Buhlmann and Kunsch, 1999); the 
number m of neurons in the hidden layer are and 3/1Tm =  (see Perna and Giordano, 
1999). As accuracy measure we considered the statistics 
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( )[ ] ( )[ ]{ }tttt xYfxYfT ,ˆvar,ˆvar ** −  where the ‘true’ variance, ( )[ ]tt xYf ,ˆvar , has been 
computed through 200 Monte Carlo runs. 

 
 

Figure. 1. Wahba’s function (dashed line) and its first order derivative on the left panel; a typical 
realization with an ARMA process with innovations distributed as Student –t on the right panel along 
with a neural network estimates . 

 
As stressed by Refenes and Zapranis (1999) the accuracy of the bootstrap estimates 

of ( )[ ]tt xYf ,ˆvar  can be affected by computational problems, such as sensitivity of the 
learning algorithm to initial conditions. In our simulation study, we investigated the 
impact of four strategies for the choice of the starting values in the learning algorithm, 
when generating the different bootstrap series. In the first scheme, the local bootstrap, 
they are fixed to the values that minimise the objective function (3) and equal for all the 
B resampled series (B1 in the following). In the second scheme, the local perturbated 
bootstrap, the starting values are perturbated by a small random quantity drawn from a a 
zero mean Gaussian distribution with  variance equal to 0.01 (B2 in the following). In 
the third scheme, the random global bootstrap, they are randomly selected from an 
uniform interval [ ]5.0,5.0−  (B3 in the following). Finally, in the last scheme, the fixed 
global bootstrap, the starting values are randomly selected from [ ]5.0,5.0−  and remain 
fixed when generating the resampled series (B4 in the following). 

The performance of the proposed procedures  have been examined in terms of the 
distribution of ( )[ ] ( )[ ]{ }tttt xYfxYfT ,ˆvar,ˆvar ** − . In figures 2-6 we reported the median 
of  the Monte Carlo distributions along with the quantities )(5.1 1311 QQQH −−=  and 

)(5.1 1332 QQQH −+=   where 1Q  and 3Q are the first and the third quartile.  The 
Monte Carlo distributions were computed on  200 and 500 points, respectively, equally 
spaced  in the interval [ ]5.2,0 .  

In all the cases considered it is evident that serious problems arise for critical values 
of the first order derivative of the Wahba’s function.  

As expected, for normal iid  innovations (Fig. 2 and Fig 4) , the RB outperforms all 
the other methods. It is interesting to observe that the MBB yield reasonable overall 
performances while the SB and the PBB exhibit much more variability for the estimates 
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in correspondence of the critical points of the regression function. In any case the 
performance of all methods become similar for increasing sample sizes.  

This ranking is completely different when considering noise with a much more 
complex structure, namely an ARMA with student-t innovations (Fig. 3 and Fig. 4). In 
this case, the MBB definitely seems the best choice. The variability of the MBB 
bootstrap estimates are much better than those obtained by the RB. It is quite surprising 
that the SB and the PBB behave poorly not only  with respect to the MBB but also to 
the RB, which does not consider any kind of dependence in the residuals of the fitted 
model. A possible explanation can be given considering that the neural network 
estimates catch part of the dependence structure of the noise and so the residuals of the 
fitted model do not allow an accurate estimate of the AR models on which the SB and 
the PBB are based. 

In our simulations it seems to be confirmed that a local bootstrap approach (namely 
schemes B1 and B2) should be preferred to the global ones (schemes B3 and B4). In 
these cases all the methods fails (see Fig. 6). Results, not reported here, are even worse 
when considering a noise with an ARMA structure with Student-t innovations.  

Several different aspects should be further explored to get a better insight of the joint 
usage of neural networks and bootstrap methods. An interesting point arise when 
considering the relationships between the block length of the MBB and the hidden layer 
size. In any case, these first results, and the others reported in the literature, are quite 
encouraging. Of course, the resulting combined procedure is really computer intensive, 
but this does not seem to be a serious limit due the increasing power computing 
available even on PC desktops.   
 
 
Acknowledgements 
The paper is supported by MURST98 “Modelli statistici per l’analisi delle serie 
temporali”. 
 
 
References 
 
Barron, A.R. (1993) Universal Approximation Bounds for Superpositions of a 

Sigmoidal Function, IEEE Transactions on Information Theory, 39, 930-945. 

Buhlmann, P. (1998) Sieve bootstrap for smoothing in nonstationary time series, The 
Annals of Statistics, 26, 48-83. 

Bühlmann P. (1999) Bootstrap for Time Series, Research report n. 87, ETH, Zürich. 

Buhlmann, P.;  Kunsch, H. R. (1999) Block length selection in the bootstrap for time 
series, Computational Statistics and Data Analysis, 31, 295-310 

Efron, B. (1979) Bootstrap methods: another look at the jackknife, The Annals of 
Statistics, 7, 1-26. 

Giordano F.; Perna C. (1998) Proprietà asintotiche degli stimatori neurali nella 
regressione non parametrica, Atti della XXXIX Riunione Scientifica SIS, 2, 235-242  



 11

Giordano F.; Perna C. (1999) Large Sample Properties of Neural Estimators in a 
Regression Model with ϕ-mixing errors, to appear 

Haykin, S (1994) Neural Networks: a comprehensive foundation, Macmillan, New-
York. 

Hornik, K.; Stinchcombe, M.; White, H. (1989) Multy-Layer Feedforward Networks 
Are Universal Approximators, Neural Networks, 2, 359-366. 

Huber P. (1981) Robust Statistics, J.Wiley & Sons, New-York 

Lachtermacher, G.; Fuller, J.D. (1995) Backpropagation in Time-series Forecasting, 
Journal  of Forecasting, 14, 881-393. 

Kunsch, H.R. (1989) The jackknife and the bootstrap for general stationary 
observations, The Annals of Statistics, 17, 1217-1241. 

Lahiri, S. N. (1999): Theoretical comparisons of block bootstrap methods, The Annals 
of Statistics, 27, 386-404 

Perna C., Giordano, F. (1999) The hidden layer size in feed-forward neural networks: a 
statistical point of view, Atti del Convegno SCO99, “Modelli complessi e metodi 
computazionali intensive per la stima e la previsione, 95-100 

Politis, D. N. and Romano, J. P. (1992) A circular block-resampling procedure for 
stationary data, in Exploring the limits of the bootstrap (eds. C. Page and R. LePage), 
Springer-Verlag, NY. 

Politis, D. N. and Romano, J. P. (1994) The stationary bootstrap, JASA, 1303-1313. 

Refenes, A.P.N.; Zapranis, A.D. (1999) Neural model identification, variable selection 
and model adequacy, Journal of Forecasting, 18, 299-332  

Srinivas, V.V.; Srinivasan, K. (2000) Post-blackening approach for modelling 
dependent annual streamflows, Journal of Hydrology, 230, 86-126 

Tibshirani, R. (1985) A comparison of some error estimates for neural network models, 
Research Report, Department of Preventive and Biostatistics, University of Toronto 

 



 12

Figure 2. Median (dashed line), H1 and H2 (solid line) of the accuracy measure 
( )[ ] ( )[ ]{ }tttt xYfxYfT ,ˆvar,ˆvar ** − ; Bootstrap scheme B1; normal iid innovations; T=200 

and T=500. 

 
 

RB

0 50 100 150 200

-4
-2

0
2

4
6

MBB

0 50 100 150 200

-4
-2

0
2

4
6

SB

0 50 100 150 200

-4
-2

0
2

4
6

PBB

0 50 100 150 200

-4
-2

0
2

4
6

RB

0 100 200 300 400 500

-2
.0

-1
.0

0.
0

1.
0

MBB

0 100 200 300 400 500

-2
.0

-1
.0

0.
0

1.
0

SB

0 100 200 300 400 500

-2
.0

-1
.0

0.
0

1.
0

PBB

0 100 200 300 400 500

-2
.0

-1
.0

0.
0

1.
0



 13

Figure 3. Median (dashed line), H1 and H2 (solid line) of the accuracy measure 
( )[ ] ( )[ ]{ }tttt xYfxYfT ,ˆvar,ˆvar ** − ; Bootstrap scheme B1; ARMA with Student-t 

innovations; T=200 and T=500. 
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Figure 4. Median (dashed line), H1 and H2 (solid line) of the accuracy measure 
( )[ ] ( )[ ]{ }tttt xYfxYfT ,ˆvar,ˆvar ** − ; Bootstrap scheme B2; normal iid innovations; T=200 

and T=500. 
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Figure 5. Median (dashed line), H1 and H2 (solid line) of the accuracy measure 
( )[ ] ( )[ ]{ }tttt xYfxYfT ,ˆvar,ˆvar ** − ; Bootstrap scheme B2; ARMA with Student-t 

innovations; T=200 and T=500. 
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Figure 6. Median (dashed line), H1 and H2 (solid line) of the accuracy measure 
( )[ ] ( )[ ]{ }tttt xYfxYfT ,ˆvar,ˆvar ** − ; Bootstrap scheme B3 and B4; normal iid innovations; 

T=500. 
 

 
 

RB

0 100 200 300 400 500

-2
-1

0
1

2

MBB

0 100 200 300 400 500

-2
-1

0
1

2

SB

0 100 200 300 400 500

-2
-1

0
1

2

PBB

0 100 200 300 400 500

-2
-1

0
1

2

RB

0 100 200 300 400 500

-2
-1

0
1

2

MBB

0 100 200 300 400 500

-2
-1

0
1

2
SB

0 100 200 300 400 500

-2
-1

0
1

2

PBB

0 100 200 300 400 500

-2
-1

0
1

2


