
1

THE USE OF TIME AND FINANCIAL VALUE IN PROJECT
DECISION TREES - A SPECIFIC MODEL AND AN ALGORITHM FOR

ROLLING BACK THE TREES

GODINHO, P.C.; Faculty of Economics of the University of Coimbra and INESC; Av. Dias
da Silva, 165; 3004-512 Coimbra; Portugal; Phone number: +351+239790571; Fax number:
+351+239403511; E-mail:pgodinho@sonata.fe.uc.pt

COSTA, J.P.; Faculty of Economics of the University of Coimbra and INESC; Av. Dias da
Silva, 165; 3004-512 Coimbra; Portugal; E-mail: jpaulo@ sonata.fe.uc.pt

Keywords: Project Analysis and Evaluation; Multicriteria Decision Making; Real Options

ABSTRACT

This paper aims to present an algorithm for an efficient evaluation of very large
bicriteria decision trees, considering a specific model. We begin with a presentation of our
general approach for representing investment projects using real option decision trees, when
time and financial value are considered the relevant criteria. We assume that the decision
maker may want to use either the expected value approach or the binomial model for option
valuation to aggregate the financial value and we propose an approach for the aggregation of
time. We also discuss the identification of non-dominated strategies in such trees. Next, we
present a more specific model that allows the use of a set of rules to generate the
corresponding tree. The trees generated by the model will usually be very large and
calculations may take a long time even within computational systems. With that in mind, we
present an algorithm for a faster identification of the non-dominated strategies, without
actually building the tree. This algorithm starts with sub-trees corresponding to small project
portions (the ones that can be executed by the leaves of the tree), and considers consecutively
larger project portions until the non-dominated strategies for the whole tree are identified. We
present an illustration example of the use of the algorithm. Then, we compare the
performance of an implementation of the algorithm with the performance of an
implementation of the basic methodology (that consists on building and evaluating the tree).

2

1. INTRODUCTION

Decision trees provide a way of representing sequences of decisions and uncertain
events through time, so that decisions made today take proper account of what can be done in
the future. These characteristics make them particularly useful in the representation and
evaluation of investment projects (see Magee, 1964 and Brealey and Myers, 1991). It is now
acknowledged that the classical decision tree analysis treats project risk incorrectly
(Trigeorgis and Mason, 1987, Trigeorgis, 1996, Godinho and Costa, 1999), so most authors
recommend the use of option pricing theory in the evaluation of project decision trees
(Trigeorgis and Mason, 1987, Brealey and Myers, 1991, Trigeorgis, 1996, Herath and Park,
1999, Godinho and Costa, 1999, for example).

The traditional use of decision trees in project evaluation only considers the financial
perspective. However, there are often certain factors that cannot be incorporated in the
financial value of a project and that are very important in deciding whether or not the project
should be undertaken. Time is one important criterion that is often overlooked in the project
evaluation literature (Godinho and Costa, 1999). In a construction project, for example, there
will usually be a deadline. If the company does not meet the deadline, it may have to pay
some compensation, and its image may be damaged in a way that is hard to quantify. Other
times there may exist some benefits from an early conclusion of the project, like the
possibility of undertaking other projects or seizing other opportunities. Competitive
interaction will often provide other important reasons to use time as a criterion. In order to
deter competitive entries, to gain a competitive advantage or to avoid losses resulting from an
early competitive entry, companies may want to undertake a project as soon as possible,
while trying to maximise its financial value. In such circumstances, companies may want to
use both time and financial value in the definition of their strategies.

The efforts for the use of multiple criteria in project trees evaluation have been based
on multi-attribute utility theory (MAUT). Hertz and Thomas (1983) present an overview of
some methodologies for the evaluation of multicriteria decision trees, based on utility theory.
Godinho and Costa (1999) discuss some drawbacks of these approaches. Smith and Nau
(1995) also use utility theory to evaluate project decision trees in incomplete markets.

Godinho and Costa (1999) present a new approach that incorporates both time and
financial value in decision trees for the evaluation of investment projects. It focuses on the
use of time and financial value, but we think it can be easily extended to other criteria. This
new approach allows decision-makers to identify all the non-dominated1 strategies, letting
them use any multicriteria method to choose among them, including methods that do not
assume the existence of a utility function. It also allows the decision-maker to use either real
option trees or classical decision trees analysis. We outline this approach in section 2, and we
follow it in the remainder of this paper.

We acknowledge that this approach will usually lead to very large decision trees, and
that the required calculations may take a long time even within computational systems. So, it
is useful to develop specific models for particular problems, and algorithms to efficiently
identify the non-dominated strategies. Section 3 of this paper presents a particular model that

1 An alternative is non-dominated if none of the other alternatives is better or equal in all the criteria and better
in at least one criterion.

3

allows the use of some simple rules to build the corresponding tree, based on the general
approach that we are following. This model assumes that some different processes may be
used to undertake an homogeneous task, each process having a constant cost and requiring a
constant time per utilisation, and that there are costs and setup times for changing the process
being used. By using a process, the task will advance by one of two different portions in a
process utilisation, with corresponding probabilities. Section 4 presents an algorithm that
allows a faster identification of the non-dominated strategies, without requiring the definition
of the corresponding tree. This algorithm is particularly efficient when the number of
non-dominated strategies is small, not only because it cuts the non-interesting branches, but
also because it does not even consider most of them ‘a priori’. Also, the algorithm is able to
avoid the repetition of calculations for similar branches of the tree. This is also an effort in
the way of developing models for particular situations and efficient methods for evaluating
them. Section 5 presents an illustration example of the use of the algorithm. In section 6 we
compare the performance of an implementation of the algorithm with the performance of an
implementation of the basic methodology (that consists on building and evaluating the tree).
We can conclude that the algorithm performs much better than the basic method, both in
terms of speed and in terms of memory usage, when the number of non-dominated strategies
is small and the trees are large. Finally, we present our conclusions in section 7. The tables
with the most important parameter distributions we used and the most important results are
shown in the appendix.

2. THE GENERAL APPROACH FOR THE USE OF TIME AND FINANCIAL
VALUE IN PROJECT DECISION TREES

This section presents the general approach for the use of time and financial value in
project decision trees that was proposed in Godinho and Costa (1999). We assume that we are
maximising financial value in the form of the Net Present Value (NPV) and minimising the
time. This approach focuses on the identification of the non-dominated alternatives2, allowing
the decision-maker to choose one of these alternatives using any multicriteria method.

The evaluation of the decision tree will be a two-step process. In the first step, time
increments and cash flows (or other value increments) are forwarded to the leaves, in order to
calculate the criteria values for each leaf. In the second step, event probabilities are adjusted
(if necessary) and the tree is rolled back. The rolling back process will differ from the one
usually used, since it must allow the identification of all the non-dominated alternatives, and
not only the one best alternative.

The aggregation of criteria values across event nodes is based on the adjustment of
probabilities. Time and financial value may follow different aggregation rules, so the adjusted
probabilities for these criteria may differ. We may even end up with three different
probabilities in the same branch: the basic (initial) probability, a value-adjusted probability
and a time-adjusted probability.

The financial value that corresponds to a given event node will always be the sum of
the values corresponding to its branches, weighted by their value-adjusted probabilities,

2 An alternative will be non-dominated if none of the other alternatives has both a shorter or equal time and a
larger or equal financial value, with a strict inequality for at least one of these criteria.

4

regardless of whether classical or real option evaluation are being used. The adjustment of
probabilities will depend on the kind of evaluation being used. If, on the one hand, the
classical evaluation of decision trees is being used, then there is no need to adjust
probabilities (value-adjusted probabilities will be equal to the initial probabilities).
Conversely, if the binomial model for option valuation is being used, probabilities must be
adjusted to risk-neutral value-adjusted probabilities according to the twin security pricing
process3.

The approach followed for the aggregation of time across event nodes relies on the
use of certainty equivalents. We start by asking the decision-maker for a certainty equivalent
of a specified uncertain time. Suppose that the situation shown in figure 2.1 is found on the
tree being evaluated. Assuming linearity, we can calculate certainty equivalents for all event
nodes with the same probabilities. If the decision-maker provides a certainty equivalent of
2.5, then he or she is implicitly adjusting probabilities to (50%, 50%). So, each time the pair
of probabilities (60%, 40%) comes up, these will be adjusted to (50%, 50%).

 p-=60% T=2

 p+=40% T=3
Figure 2.1: Example of a binomial node with uncertain time.

 p- T=m

 p+ T=M
Figure 2.2: A generic binomial node with uncertain time.

If we consider the generic process shown in figure 2.2, with m being the shortest time,
M the longest time, p- and p+ their corresponding probabilities, and CE the certainty
equivalent time provided by the decision-maker, then the adjusted probabilities will be pT

-

=(M-CE)/(M-m) and pT
+=(CE-m)/(M-m). Assuming linearity, we can replace every instance

of (p-, p+) by the time-adjusted probabilities (pT
-, pT

+). This approach for the aggregation of
time across event nodes is quite general, since some common approaches, like the use of the
maximum time to completion, the minimum time to completion and the average time to
completion are particular cases of this approach.

The evaluation of decision nodes must provide all the non-dominated alternatives.
This means that all decisions involving non-dominated alternatives must be made at the root
node. Three different rules are used in order to accomplish this.

The first rule is that two consecutive decision nodes are merged. This means that,
when there are consecutive decision nodes, we will consider one choice among all the
alternatives represented by these nodes, and not consecutive choices among some of those
alternatives. Figure 2.3 shows the use of this rule.

3 In the case of event nodes that correspond to events that do not influence the value of the twin security, these
risk-neutral value adjusted probabilities will be the same as the initial probabilities.

5

This rule allow us to choose directly among alternatives A, B and C, without being
forced to choose between A and B before considering alternative C.

The second rule is to eliminate all dominated alternatives in a decision node. This
means that we can eliminate one alternative in a decision node if there is another alternative
with a larger or equal financial value and a shorter or equal time, given that one of the
inequalities is strict. If, in figure 2.3, alternative B were dominated by alternative C (having a
smaller or equal financial value and a longer or equal time, one of the inequalities being
strict), then it would be eliminated from the decision node.

A A

→ B
B

 C C

Figure 2.3: Example of the use of rule 1. A, B and C are different alternatives.

The third rule is that if there is an event node before a decision node, then the decision
is postponed by considering all possible combinations of decisions. Figure 2.4 shows the use
of this rule.

A A

→ C
B B

 C
 C

Figure 2.4: Example of the use of rule 3. A, B and C are different alternatives.

Note that, if the lower branch would have a decision node with two alternatives, the
total number of alternatives in the resulting tree would be four. This rule may cause a large
growth in the number of alternatives. So, it is important to use the second rule in each
decision node, in order to prevent the number of alternatives from becoming too large.

By using these rules, all decisions involving non-dominated nodes are delayed until
all event nodes are evaluated. Then, any multicriteria method may be used to choose among
these non-dominated alternatives.

This section presented the general approach for the use of time and financial value in
project decision trees that was proposed in Godinho and Costa (1999). This approach
identifies all the non-dominated alternatives, allowing the decision-maker to use any
multicriteria method to choose among them. In the next section we will define a particular
model based in this general approach.

6

3. A PARTICULAR MODEL FOR A SPECIFIC CASE

This section presents a particular model, based on the general approach described in
the previous section. This particular model is defined for a specific type of problems, and it
allows the use of a set of rules to define the corresponding decision tree. This is intended as
an effort in the way of developing models for particular situations and efficient methods for
evaluating them.

We consider a project that consists on undertaking an homogeneous task. The task
may be the construction of a road in an homogeneous landscape or the production of a
number of identical items. We define x0 as the number of “development units” required to
complete the task.

We assume that n different processes, Pi, i=1, …, n, may be used to undertake the
task. We use event nodes for the representation of the project advance and we consider that
we can only change the process being used at the end of a complete process utilisation.
Processes may differ by the use of different technology, different human resources, etc. Each
process Pi is characterised by:

- a given time, ti, representing the duration of each utilisation of the process;

- a given cost per utilisation of the process, ci;

- a set of switching costs, representing the cost of switching to each of the other
processes, ci,j, j=1, …, n, j≠i (ci,i=0);

- a set of setup times, representing the setup time necessary to switch to each of the
other processes, ti,j, j=1, …, n, j≠i (ti,i=0);

- a probability distribution for project advance for each utilisation of process Pi,
represented by a binomial event node, as shown in figure 3.1.

 P1,i

x1,i

 P2,i

 x2,i

Figure 3.1: Binomial event node representing project advance for each utilisation of
process Pi.

x1,i and x2,i (x1,i>0, x2,i>0) are the possible project advance amounts under process Pi,
and P1,i and P2,i are the corresponding probabilities, with P1,i+P2,i=1, P1,i≥0 and P2,i≥0. Note
that this representation assumes the temporal independence of project advances: the
probability distribution of project advance under a given process is constant, and
consequently independent of previous project advances. We assume, without loss of
generality, that x1,i≤x2,i. We will also hereafter assume, for simplicity sake and without loss of
generality, that x0=1 and thus x1,i and x2,i can be interpreted as portions of the project. We will
use x to represent the unexecuted portion of the project (obviously x≤1).

7

This model assumes that the use of the processes is indivisible. This means that we
can only change the process being used at the end of a complete utilisation (this is a direct
consequence of the use of event nodes for the representation of the project advance). We also
assume that even if, at the end of the task, the unexecuted portion of the project (x) is smaller
than the project advance in the next use of the process (i.e., x<xb,i for the process i being used
and for the considered branch b, b being 1 or 2), the time and cost for a complete utilisation
of the process will be required anyway.

According to the general approach that we are following, financial value (in this case
replaced by cost) and time are aggregated according to value- and time-adjusted probabilities.
We will now discuss the calculation of these probabilities. First we will consider the
value-adjusted probabilities, represented by PV

b,i, b=1,2, i=1,…,n. The cost per process
utilisation is constant for each process, meaning that the cost risk is only related to the project
duration risk and to the process choices, and it doesn’t seem possible that any financial asset
will reflect that risk. The cost risk will thus be unsystematic risk, meaning that no risk
premium should be demanded. So, the value-adjusted probabilities will be equal to the initial
probabilities, PV

b,i= Pb,i, b=1,2, i=1,…,n.

Time-adjusted probabilities will be handled differently. For each different pair of
initial probabilities occurring in the definition of the processes, the decision-maker will be
asked to provide two certainty equivalents, one corresponding to the situation where time is 1
in the upper branch and 0 in the lower, and the other corresponding to the situation where
time is 0 in the upper branch and 1 in the lower (see figure 3.2). From these certainty
equivalents, two pairs of time adjusted probabilities are calculated, (PT,1

1,i, PT,1
2,i) and (PT,2

1,i,
PT,2

2,i), respectively. The first pair will be used when the time in the upper branch is longer
than the time in the lower branch, and the second pair will be used in the opposite situation.

Figure 3.2: Certainty equivalents requested to the decision-maker for the calculation
of time-adjusted probabilities.

Some underlying assumptions of this model, particularly the assumptions of binomial
event nodes and indivisible process utilisation may, at a first sight, seem too restrictive for the
model to be useful. We don’t think it will be so. Although in a real life problem it will
probably be possible to completely define how much time will a process be used and there
will be statistical distributions for project advance, models like this may be used as a proxy to
these problems, by defining the processes such that the duration of each utilisation is very
small. When very small process durations are considered, the project time and cost
distributions (under a given process) will be approximately log-normally distributed, and this
log-normal distribution will be an acceptable assumption for many problems. A similar
approximation is done in some continuous time real option problems, particularly when
multiple options are involved (see, for example, Trigeorgis, 1993).

P1,i

P2,i

P1,i

P2,i

T=1

T=0

T=0

T=1

CE=? CE=?

8

The assumptions concerning constant costs per utilisation for each process and
constant switching costs may also be challenged, since it is reasonable to assume that, at least
in projects with a long time span, costs may rise during the project life. We think that, in most
situations, it is reasonable to assume that costs rise at a rate similar to the risk-free interest
rate. In this case, the present value of the costs will be constant over time, and it will thus be
reasonable to use constant real costs to represent the present value of the nominal costs.

The decision trees corresponding to this model will usually be very large. In fact, for
each process utilisation and for each branch, there will be a decision node with n branches
representing the choice of the process, each of these branches having a binomial decision
node. Even in the simple case when we have 3 processes, every non-leaf branch will be
divided in 6 different alternatives for each process utilisation. So, particularly when we intend
to use this model as a proxy for continuous time problems, having thus to use short process
utilisation times, the decision trees corresponding to this model will be very large. Even
within computational systems, this trees may require a very large memory space and the
corresponding calculations may take a very long time. It is thus very important to develop
some algorithms for an efficient identification of the non-dominated strategies. The next
section will present an algorithm for an efficient identification of the non-dominated
strategies in this particular model.

4. AN ALGORITHM FOR THE GENERATION OF THE NON-DOMINATED
STRATEGIES

The previous section presented a particular model based on the general approach that
we described in section 2. We argued that the decision trees corresponding to this particular
model will usually be very large, and calculations will take a long time even within
computational systems. This section will present an algorithm for an efficient generation of
the non-dominated strategies corresponding to this particular model. The algorithm takes
advantage of the fact that, at least when the number of non-dominated strategies is low, there
will be many sub-trees leading to the same set of non-dominated sub-strategies.

Each sub-tree of the tree, starting at a given level, will correspond to the execution of
a portion of the project: the portion of the project that was not executed in the previous
branches of the tree. For example, consider two processes, P1 and P2, with x1,1=0.1 and
x2,1=0.15, for P1, and x1,2=0.11 and x2,2=0.14, for P2. Let us assume that we start with process
P1 and we advance by branch 1 (x1,1=0.1). Then we will be left with an unexecuted portion of
the project of x=1-0.1=0.9. The next node in this path will be a decision node, and the
sub-tree starting with this node will correspond to the execution of a project portion of x=0.9.
If in this decision node, we choose to use once again P1, we will then have an event node that
is the root of a sub-tree that corresponds to the execution of a portion x=0.9 of the project,
starting with process P1. This sub-tree will, in practice, only be used to calculate the
non-dominated sub-strategies that allow the completion of a portion x=0.9 of the project (in
spite of the fact that they are really sub-strategies, we will hereafter call them strategies, for
simplicity sake). Now, let us assume that, in another tree path, we have another sub-tree that
corresponds to the execution of a portion x=0.9 of the project, starting with process P1 (it
does not really happen in this tree, but let us assume so for now). We will not have to build
both sub-trees, because, after the first one is built, we know that the second will lead to the
same set of non-dominated strategies. Moreover, the sets of non-dominated strategies that

9

allow the completion of a given portion x of the project by starting with a given process, will
be the same for the values of x belonging to a given interval. This means that another
sub-tree, corresponding to the execution of a portion x’=0.89≠0.9 of the project starting with
process P1, may lead to the same set of non-dominated strategies that we have in our previous
sub-tree, if both x=0.9 and x’=0.89 belong to the same interva l I of values of x for which the
non-dominated strategies beginning with P1 are equal. In this case, we would only have to
calculate one sub-tree, since the other would lead to the same non-dominated strategies. In
such a situation, representing by I the interval for which the set of non-dominated strategies is
common, and i being the number of the first process being used in the sub-trees (in this case,
i=1), we would say that S(i,I) was equal to the common set of non-dominated strategies (the
notation will be later detailed).

To see clearly that the sets of non-dominated strategies that allow the completion of a
given portion x of the project by starting with a given process will be the same for a given
interval of values of x, let us once again use the values of the previous example, and let us
analyse the lowest level of the tree. If we have already executed a portion of the project that
is larger or equal than 0.9, and we decide to use process P1 after that, we know that, after
using P1 once, the project will be concluded. Since this is true if the unexecuted portion of the
project is positive and smaller or equal than 0.1, we can say that S(1,]0,0.1]) is equal to a set
with the strategy of using P1 once. So, when we have an unexecuted portion of the project
x∈]0,0.1] and we decide to use P1 next, we know that our only non-dominated strategy will
be the strategy belonging to S(1,]0,0.1]). Similarly, for P2 we can say that S(2,]0,0.11]) is
equal to a set with the strategy of using P2 once. Notice that, if we have an unexecuted
portion of the project of x∈]0,0.1] and have not yet decided which process to use next, we
also know that the only possible non-dominated strategies for that portion of the project will
be those in S(1,]0,0.1]) and S(2,]0,0.11]). For larger values of x, we will also have identical
sets of non-dominated strategies for intervals of values of x, thus allowing us to avoid the
calculation of sub-trees leading to the same non-dominated strategies.

This algorithm begins with the identification of the non-dominated strategies for small
project portions. In our previous example, we would start with the calculation of S(1,]0,0.1])
and S(2,]0,0.11]). Then, the non-dominated strategies for smaller project portions are taken
into account in the identification of non-dominated strategies for consecutively larger project
portions. In our example, the next set S(1,I) would represent the use of process P1 first and
then the use of a non-dominated strategy in the upper branch. Since the non-dominated
strategy to be used in the upper branch could be from either S(1,]0,0.1]) or S(2,]0,0.11]), we
would generate two different strategies. Notice that a strategy generated in such a manner
would be valid for undertaking a project portion smaller or equal than 0.15, because we are
not considering the use of another strategy in the lower tree branch. So, we would have
S(1,]0.1,0.15]) equal to the set of two strategies that were generated (if they were both
non-dominated), or equal to a set with one of those strategies (if the other strategy is
dominated by this strategy). We continue until the complete project is considered. The
identification of non-dominated strategies for large project portions takes into account the
non-dominated strategies for smaller projects portions, allowing the algorithm to identify and
disregard the dominated strategies as soon as they come up, and also allowing it to avoid the
repetition of identical calculations that is often performed in decision trees, as was previously
explained. In fact, the algorithm starts with sub-trees corresponding to small project portions
(the ones that can be executed by the leaves of the tree), and considers consecutively larger
project portions until the non-dominated strategies for the whole tree are identified.

10

In order to define the algorithm, we define S(i) as the set of non-dominated strategies
that allow the completion of the project starting with the use of process Pi. Each strategy in
S(i) is non-dominated in the sense that there is neither a strategy in S(i) nor in any other S(j),
j=1, …, n, j≠i, that dominates it. S(i,x) will be the ordered set of strategies that allow the
execution of a portion x of the project by starting with the use of process Pi and are not
dominated by any other strategy in this set. This means that a strategy in S(i,x) may be
dominated by a strategy belonging to S(j,x), j≠i. We consider S(i,x) to be also defined for
intervals of values of x. We define that S(i,I)=S if ∀ x∈I, S(i,x)=S.

The nth strategy of S(i,x) will be identified by sn(i,x). Each strategy sn(i,x) will have
the form sn(i,x)=((j1,y1), (j2,y2),t,c,xmax), where:

⋅ (jb,yb) identifies the next strategy (the next sub-branch) to be followed in the upper
branch (if b=1) or in the lower branch (if b=2); the next strategy in that branch will be
syb

(jb,x-xb,i) (if x-xb,i<0 then (jb,yb)=(0,0));

⋅ t is the process time;

⋅ c is the process cost;

⋅ xmax is the largest value of x for which the strategy is valid.

The algorithm will successively calculate S(i,I) for the different processes and for
intervals I where the set of strategies does not change. It starts by calculating S(i,]0,x1,i]) for
each process Pi. Then, assuming that x’ is the upper limit of the last interval I for which S(i,I)
was calculated, and x’’ being the next value that may cause a change in the set of
non-dominated strategies, the set S(i,]x’,x’’]) will be calculated. These changes in the set
S(i,I) are caused by the fact that, when the value x’’ rises above a given value, some
strategies may no longer be valid for undertaking a portion x’’ of the project. Note that a
change in the set of non-dominated strategies may be caused either by the upper or by the
lower branch. So, although x1,i will always cause the first change in the set of non-dominated
strategies4, x2,i will also cause a change in the set of non-dominated strategies. In order to
efficiently identify S(i,]x’,x’’]), its calculation will be based on the results obtained for
previous intervals, and also for the other processes.

The next S(i,I) to be calculated always refers to the process Pi for which the
calculations are “less advanced”, that is, the process Pi for which the last S(i,]x’,x’’]) that was
calculated corresponds to a smaller x’’. After S(i,1) is calculated for all processes, S(i) will
then be defined as the set of strategies belonging to S(i,1) that are not dominated by any
strategy belonging to a set S(j,1), j≠i.

The number of intervals I=]x’,x’’] that correspond to different sets of non-dominated
strategies S(i,I) may increase exponentially as the values of x’ and x’’ increase. This will be
particularly true when the number of non-dominated strategies is large. Also, when x is large,
the number of different values of x for which S(i,x) is required will be quite small. Consider,
as an example, that there are two processes, P1 and P2, with possible advance amounts of
x1,1=0.045 and x2,1=0.06 for P1 and x1,2=0.055 and x2,2=0.07, for P2. In order to calculate the
non-dominated strategies for these processes, we obviously need to calculate S(i,1) for both
processes. The calculation of S(i,1) for any process Pi will require the use of the sets

4 Remember that in the previous section we defined that x1,i≤x2,i.

11

S(j,1-xb,k) for both processes (j=1 and j=2) and for the advance amounts, xb,k, of both
processes (k=1 and k=2) in both branches (b=1 and b=2). This means that, in this case, to
calculate S(i,1) for any process we need S(j,0.955), S(j,0.945), S(j,0.94) and S(j,0.93), for
both processes (j=1 and j=2). While, for values of x between 0.95 and 1, the number of
intervals with different non-dominated strategies may be as large as 10 (for each process), it
will only be necessary to know the sets of non-dominated strategies for two different values
of x, x=1 and x=0.955, in order to calculate the set of non-dominated strategies that lead to
project completion.

To prevent a large growth in the number of different intervals I for which S(i,I) is
calculated, we define a threshold τ, we calculate all the values of x≥τ for which the sets S(i,x)
are needed, and we place them in set V. Then, when we calculate the sets of non-dominated
strategies for values of x larger than τ, we compare the upper limit, x’’, of the interval
I=]x’,x’’] for which the next S(i,I) could be calculated, with the smallest value in the set V
that is larger than x’ (we will call it v). If v>x’’ we know that, for all the values of x in the
interval I, S(i,x) will not be necessary for the calculation of S(j,1), for any process. So, we
may proceed with the calculation of S(i,v), since the smallest value of x after x’ for which the
set of non-dominated strategies will be necessary is x=v. In such a situation we will say that
S(i,]x’,v])=S(i,v), to keep the interval notation, although this set may not be the set of
non-dominated strategies for some values of x belonging to that interval. If x’’≥v, we
calculate S(i,]x’,x’’]) as usual. Once again, if, for a previous interval, we had x’’<v, it may
happen that this set will not be the set of non-dominated strategies for all the values of x
belonging to the interval]x’,x’’]. However, it will always be the set of non-dominated
strategies for all the values belonging both to the interval and the set V, and we will keep the
interval notation for coherence.

We can now ask which value should the threshold τ have. On the one hand, if τ will
have a large value (near 1), the algorithm may calculate many sets of non-dominated
strategies, S(i,I), that are not necessary. On the other hand, if τ has a small value, the
calculation of the set V may take some unnecessary time, since the reduction in the number
of sets of non-dominated strategies may occur only for large values of x. We have no reason
to think that there may be a reduction in the number of sets S(i,I) calculated when the
considered values of x∈I are smaller that 0.5, since for x<0.5 the number of intervals I will
always grow slower than the number of values in V. So, we do not recommend the use of
values of τ lower than 0.5. When the number of strategies in S(i,I) grows fast for small values
of x∈I (this will happen when the values of ci,j and ti,j are near 0), so will the number of
intervals, and it will be useful to use τ=0.5. When the number of strategies in S(i,I) grows
slowly (for large values of ci,j and ti,j), a larger value of τ may be used. Since the time
necessary for the calculation of V will usually be small when compared with required for the
calculation of the sets of non-dominated strategies S(i,I), we recommend the use of τ=0.5 in
the general case.

For the definition of the algorithm we will use the following notation:

V: set of values x≥τ such that S(j,x), j=1,…,n, may be necessary to calculate S(i,1),
i=1,…,n.

li, i=1,…,n: upper limit of the last interval I for which the set S(i,I) was determined;

12

lci, i=1,…,n: upper limit of the last interval I for which the set S(i,I) was recalculated
(notice that lci may be different from li since sometimes S(i,1) may be kept from the previous
iteration);

u: upper limit of the interval I for which S(i,I) is being calculated;

Mi, i=1,…,n: set of sub-branches (j,b) of S(i,I) that will be modified after the last
calculation of this set of non-dominated strategies. Each pair (j,b) means that process Pj is
used in the upper (b=1) or lower (b=2) branch of the tree; j=0 means that no other process
than the initial Pi is used in the considered branch;

NDBb,i, b=1,2, i=1,…,n: set of non-dominated sub-branches ((j,y),t,c) for the upper
(b=1) or the lower (b=2) branch of the tree corresponding to the last S(i,I). Each ((j,y),t,c)
means that the strategy sy(j,x-xb,i) is used in the branch b of the tree, with a total time for that
branch equal to t and a total cost equal to c; j=0 means that no other process than the initial Pi

is used in the branch b;

DBb,i, b=1,2, i=1,…,n: set of dominated sub-branches ((j,y),t,c) for the upper (b=1) or
the lower (b=2) branch of the tree corresponding to the last S(i,I);

Bb, b=1,2: set of non-dominated sub-branches ((j,y),t,c) that are not included in
NDBb,i and can be used, after the utilisation of the process under consideration, in the upper
branch (for b=1) or in the lower branch (for b=2);

Di, i=1,…,n: set of dominated strategies formed in the tree corresponding to the last
S(i,I) by using branches belonging to NDBb,i, b=1,2 (although none of the branches is
dominated, the strategy is dominated);

a(i,j,b), i=1,…,n, j=0,1,…,n, b=1,2: next value for which a change in S(i,I) may occur
due to the use of process Pj after the initial process Pi in the upper (b=1) or lower branch
(b=2); if, for j=0, a(i,0,b)<+∞, then the next change in S(i,I) will occur before the first choice
of process in the corresponding branch;

⋅ xmin(s), for a given strategy s belonging to S(i,x), for any given i=1,…,n and x∈]0,1]:
the lower limit of the first interval I for which the strategy was placed in the set of
non-dominated strategies S(i,I);

Ei, i=1,…,n: ordered set of the values that caused changes in S(i,I);

RE: set of strategies that will be removed from S(i,I) in the current iteration;

ALL: set of all strategies, both dominated and non-dominated, that were generated for
the calculation of the current S(i,I).

By using this notation, the algorithm can be broadly defined as follows:

1. For each process Pi, i=1,…,n, let S(i,]0,x1,i])={((0,0),(0,0),ti,ci,x1,i)}, xmin(s1(i,]0,x1,i])=0,
lci=x1,i, li=x1,i and initialise Ei={x1,i}, Di=∅, Mi=∅, NDBb,i={((0,0),ti,ci)}, DBb,i=∅,
a(i,0,b)=xb,i, b=1,2, and a(i,j,b)=+∞, j=1,…,n, b=1,2.

2. Calculate V, using the auxiliary set V1: start with V=∅ and V1={1} and, while V1≠∅,
remove from V1 the largest value x∈V1, add x to V and add to V1 the values x1=x-xb,i≥τ,
b=1,2, i=1,…,n.

13

3. If S(i,1) is calculated for all the processes, then go to step 18.

4. Let Pi be the process with a smaller li.

5. For all a(i,j,b)≤li, add (j,b) to Mi and update a(i,j,b): if j≠0, let a(i,j,b)=xb,i+min{e∈Ej: e>li-
xb,i}; otherwise let a(i,0,b)=+∞ and, additionally, let a(i,k,b)=xb,i +xb,k, for all k=1,…,n

6. Let u be the minimum value of a(i,j,b) for Pi and let I=]li,u].

7. If li≥τ and min{v∈V:v>li}>u then let i=]li,v], let u=v and update Mi and a(i,j,b): for all
a(i,j,b)<v, add (j,b) to Mi and, if j≠0, let a(i,j,b)=xb,i+min{e∈Ej: e≥u-xb,i}; otherwise let
a(i,0,b)=+∞ and, additionally, let a(i,k,b)=xb,i+min{e∈Ej: e≥u-xb,i}, for all k=1,…,n

8. Define RE as the set of strategies that belong to S(i,li) and that are not valid for undertaking
a project portion belonging to interval I; note that these will be the set of the strategies
containing sub-branches that belong to Mi whose xmax<u.

9. If RE=∅ the let S(i,I)=S(i,li), remove li from Ei and go to step 16.

10. Calculate Bb, b=1,2, the set of non-dominated sub-branches that are not included in either
NDBb,i or DBb,i and can be used in the upper branch (for b=1) or in the lower branch (for
b=2); the calculation of Bb, b=1,2, involves the use of the set Mi and the xmin of the strategies:
the sub-branches placed in Bb will be the strategies s belonging to S(j,u-xb,i) such that (j,b)
belongs to Mi and xmin(s)≥lci (the strategies s with xmin(s)<lci already belong to either NDBb,i

or DBb,i).

11. Update the sets DBb,i and NDBb,i, using Bb: this means removing from DBb,i and NDBb,i

the sub-branches that can no longer be used to build strategies to undertake a portion u of the
projects (those corresponding to strategies with xmax<u-xb,i), moving from DBb,i to NDBb,i the
sub-branches that are no longer dominated, placing in DBb,i the sub-branches in Bb that are
dominated and in NDBb,i those that are not dominated.

12. Define the set ALL of all the strategies belonging to Di that are still valid for undertaking
a project portion belonging to interval I (those with xmax≥u).

13. Use the sub-branches belonging to the sets Bb and NDBb,i, b=1,2, to generate the new
strategies that may be considered for inclusion in S(i,I), and add these strategies to the set
ALL; these will be the strategies that start by using process Pi, have an upper sub-branch
belonging to either B1 or NDBb,1\B1, and have a lower sub-branch belonging to either B2 or
NDBb,2\B2 (the combination of an upper sub-branch belonging to NDBb,1\B1 and a lower
sub-branch belonging to NDBb,2\B2 does not have to be considered, since such strategies will
have been generated in previous iterations and already belong to either S(i,I) or Di).

14. Let S(i,I)=S(i,li), remove from S(i,I) the strategies belonging to RE, add to S(i,I) all the
non-dominated strategies belonging to ALL and let Di be the set of all dominated strategies
belonging to ALL; for all the strategies s that were included in S(i,I) and do not belong to
s(i,li), let xmin(s)=li.

15. Let lci=u and Mi=∅.

16. Let li=u and add u to Ei.

17. Return to step 3.

14

18. For each process Pi, let S(i) be the set of strategies belonging to S(i,1) that are not
dominated by any strategy belonging to other S(j,1), j≠i.

19. Stop.

This section described an algorithm for an efficient generation of the non-dominated
strategies corresponding to this model presented in the previous section. The next section will
present an illustration example of the use of the algorithm.

5. AN ILLUSTRATION EXAMPLE

This section will present an illustration example of the use of the algorithm described
in the previous section. We will consider two process, P1 and P2, whose characteristics are
shown in figure 5.1.

Figure 5.1: Characteristics of processes P1 and P2.

In order to calculate the time-adjusted probabilities, the decision-maker would be
required to provide certainty equivalents for three different situations. We assume the
certainty equivalents shown in figure 5.2.

Figure 5.2: Certainty equivalents assumed for the example.

The certainty equivalents will be used for the calculation of the time-adjusted
probabilities. We will get PT,1

1,1=81%, PT,1
2,1=19%, PT,2

1,1=65%, PT,2
1,1=35%, PT,1

1,2=
PT,2

2,2=63% and PT,1
2,2=PT,2

1,2=37%. We can thus define the time aggregation functions,
TAF(t1,t2,i), for the two processes, P1 (i=1 in the function) and P2 (i=2 in the function). We
get:

Process P1:

P1,1=70%

P2,1=30%

x1,1=0.35

x2,1=0.55

Process P2:

P1,2=50%

P2,2=50%

x1,2=0.3

x2,2=0.6

c1=2
t1=1

c2=3
t2=1

c1,2=c2,1=2; t1,2=t2,1=0

P1,1=70%

P2,1=30%

P1,1=70%

P2,1=30%

T=1

T=0

T=0

T=1

CE=0.81 CE=0.35

P1,2=50%

P2,2=50%

T=0

T=1

CE=0.63

15

TAF t t
t t if t t

t t if t t
(, ,)

. . ,

. . ,1 2

1 2 1 2

1 2 1 2

1
081 019

0 65 0 35
=

⋅ + ⋅ ≥
⋅ + ⋅ <





; (5.1)

TAF t t
t t if t t

t t if t t
(, ,)

. . ,

. . ,1 2

1 2 1 2

1 2 1 2

2
0 63 037

0 37 063
=

⋅ + ⋅ ≥
⋅ + ⋅ <





; (5.2)

We can also define the value aggregation functions, VAF(t1,t2,i), for the two
processes, P1 (i=1 in the function) and P2 (i=2 in the function):

VAF c c c c(, ,) . .1 2 1 21 0 7 0 3= ⋅ + ⋅ ; (5.3)

VAF c c c c(, ,) . .1 2 1 22 05 05= ⋅ + ⋅ ; (5.4)

The complete decision tree for this example would have 63 nodes and 64 leaves. Part
of the decision tree is shown in figure 5.3. The complete tree can be easily obtained by
combining the processes through the use of the same rules.

We will now use the algorithm described in the previous section to identify the
non-dominated strategies without building the tree. We will use τ=0.5.

In step 1, we make the initialisations. The initial sets S(i,I), that correspond to the
values of x∈I that only require the process Pi to be used once, and the initial values of li, Di,
NDBb,i and DBb,i are shown in table 5.1.

Table 5.1. Initialisations

I=1 i=2
S(1,]0,0.35]) {((0,0),(0,0),1,2,0.35)}
S(2,]0,0.3]) {((0,0),(0,0),1,3,0.3)}

lci 0.35 0.3
li 0.35 0.3

Mi ∅ ∅
Ei {0.35} {0.3}
Di ∅ ∅

NDB1,i {((0,0),1,2)} {((0,0),1,3)}
NDB2,i {((0,0),1,2)} {((0,0),1,3)}
DB1,i ∅ ∅
DB2,i ∅ ∅

We define the set of values belonging to a(i,j,b), for i=1,2, as a matrix A(i), with the
values of j in the rows and the values of b in the columns. We get:

A()

. .

1

0 35 055

= + ∞ + ∞
+ ∞ + ∞

















(5.5)

16

A()

. .

2

0 3 0 6

= + ∞ + ∞
+ ∞ + ∞

















(5.6)

In (5.5) and (5.6), a(i,0,b)=xb,i, for i=1,2, b=1,2, meaning that first change in S(i,I),
i=1,2, will be due to the first choice of process in either the upper or the lower branch of the
tree. Since the next change in S(i,I), i=1,2, will be due to the first choice of process in one the
branches, we cannot yet consider the sub-branches of either the upper or the lower branch of
the tree, so the other elements of A(i), i=1,2, are +∞.

Figure 5.3: Part of the decision tree of the example.

Then, we calculate the set V, using an auxiliary set V1. We start with V=∅ and
V1={1}. Then we move the largest value, x=1, from V1 to V, and we add to V1 all the values
x1=x-xb,i, b=1,2 and i=1,2, that are larger or equal than τ=0.5. The values of x-xb,i will be 0.7,
0.65, 0.45 and 0.4. Since both the values 0.4 and 0.45 are smaller than τ, we will have
V1={0.7,0.65}, and V={1}. Next we move, first the value 0.7 and then the value 0.65, from

…

…

…

x1,2=0.3

x1,2=0.3

x1,1=0.35

x1,1=0.35

x1,1=0.35

x1,1=0.35

x2,1=0.55

x2,1=0.55

x2,1=0.55

x2,1=0.55

x2,2=0.6

x2,2=0.6

P1

P1

P1

P1

P2

P2
P2

P2

T=3; C=6

T=3; C=9

T=3; C=6

T=3; C=9
T=3; C=6

T=3; C=6

T=3; C=9

T=3; C=9

17

V1 to V. In both cases all the values of x-xb,i are smaller than τ, so no new values will be
included in V1. After the value 0.65 is moved from V1 to V, V1 will be empty, so the final set
V is V={1,0.7,0.65}.

In step 4 we define that the next process to be considered is P2, since it has got the
lowest li. Since the only value in A(2) that is smaller or equal than l2=0.3 is a(2,0,1)=0.3, we
let M2={(0,1)} (meaning that the first change in S(2,I) is due to the first choice of process in
the upper tree branch) and update A(2). We have now

A()

.

.

.

2

06

0 65

06

=
+ ∞

+ ∞
+ ∞

















(5.7)

Let us now examine the meaning of A(2). a(2,0,1)=+∞ means that the next change of
strategy in S(2,I) will not occur before the first choice of process is made in the upper branch,
while a(2,0,1)=0.55 means that the next change of strategy in S(2,I) may be due to the first
choice of process in the lower branch, that will occur for x=0.6. Since the next change in
S(2,I) will either occur before the first choice of process in the lower branch or due to that
choice of process, we cannot yet consider the sub-branches of the lower branch of the tree, so
a(1,1,2)=a(1,2,2)=+∞. a(1,1,1)=0.65 represents the next possible change in S(2,I) due to the
use of process P1 in the upper branch. When P2 is the first process to be used, the first change
in S(2,I) will occur for x=0.3. Since the first possible change in S(1,I) will occur for x=0.35,
the change due to the use of P1 after P2 in the upper tree branch will occur for
x=0.3+0.35=0.65, so a(2,1,1)=0.65. The same reasons let us calculate a(2,2,1)=0.3+0.3=0.6.

The next possible change in S(2,I) may occur for u=0.6, since 0.6 is the smallest value
belonging to A(2). This means that I=]0.3,0.6]. The only strategy belonging to S(2,0.3), that
is ((0,0),(0,0),1,3,0.3), will not be valid for S(2,]0.3,0.6]), since the value xmax for the strategy
(0.3) is smaller than the values in the interval, so RE={((0,0),(0,0),1,3,0.3)}.

The possible sub-branches that can be used in the upper tree branch are ((1,1),2,7)
and ((2,1),2,6). Since the former sub-branch is dominated by the latter, B1={((2,1),2,6)}, and
we have DB1,2={((1,1),2,7)} and NDB1,2={((1,1),2,6)}. There will not be any change in the
lower branch, since for x∈]0.3,0.6] there is not any choice of process in the lower branch, so
B2=∅, and we have no changes in NDB2,2 and DB2,2.

Since Di is initially empty, the set ALL will only contain the new strategies generated
from sub-branches belonging to Bb and NDBb,2, b=1,2. B2=∅, so the only new strategies will
be generated by the combination of sub-branches belonging to B1 with sub-branches
belonging to NDB2,2. We get one new strategy, ((2,1),(0,0),1.63,4.5,0.6), and
ALL={((2,1),(0,0),1.63,4.5,0.6)}. The only strategy in S(2,0.3) will not be valid for
undertaking a project portion belonging to]0.3,0.6], so it will not be included in
S(2,]0.3,0.6]). S(2,]0.3,0.6]) will thus include the non-dominated strategies of ALL, and D2

will include the dominated strategies, so D2=∅ and

S(2,]0.3,0.6])= {((2,1),(0,0),1.63,4.5,0.6)} (5.8)

Since the strategy ((2,1),(0,0),1.63,4.5,0.6) is now included for the first time in a set
S(2,I), we have xmin(((2,1),(0,0),1.63,4.5,0.6))=0.3. We make l2=lc2=0.6, and E2={0.3,0.6}

18

The next iterations are similar, and provide the following sets of strategies:

S([1,]0.35,0.55])={((1,1),(0,0),1.81,3.4,0.55)} (5.9)

S([1,]0.55,0.65])={((1,1),(1,1),2,4,0.7)} (5.10)

S([2,]0.6,0.65])={((1,1),(2,1),2,6.5,0.65)} (5.11)

At this point we have l1=l2=0.65. Since l1=l2, we may choose either P1 or P2 for the
next iteration. We choose P1, and get M1={(2,1)} and

A() . .

. .

1 0 7 0 9

0 95 085

=
+ ∞ + ∞















. (5.12)

So, u=0.7 and I=]0.65,0.7]. We now have l1≥ τ, so we will now compare u with the
smallest value in V that is largest than l1=0.5. That value is 0.7, and it is equal to our initial u,
so we will proceed without changing u and A(1). Since the only strategy belonging to
S(1,0.65) is still valid for undertaking a project portion in the interval]0.65,0.7] (its xmax is
0.7), we have RE=∅, S(1,]0.65,0.7])=S(1,0.65)={((1,1),(1,1),2,4,0.7)} and l1=0.7. The value
xmin(((1,1),(1,1),2,4,0.7))=0.55 will not be altered, since it always remains the same after the
strategy is included in a S(2,I) set for the first time.

In the next iteration we get

S(2,]0.65,0.85])={((2,1),(2,1),2.4,6.25,0.9)} (5.13)

At this point, the smallest li is l1=0.7, so we choose P1. We will have M1={(1,1);(2,1)}

A() . .

. .

1 09 09

0 95 085

=
+ ∞ + ∞















. (5.14)

The lowest value in A(1) is now 0.85, so u=0.85. Since l1≥ τ, we will now compare u
with the smallest value in V that is largest than l1=0.7. That value is 1, meaning that we can
now calculate S(1,]0.7,1]). We get, in the next iterations,

S(1,]0.7,1])={((1,1),(1,1),2.96,5.82,1.05);((1,1),(2,1),2.93,6.75,1.05)} (5.15)

S(2,]0.85,1])={((1,1),(2,1),2.86,8.25,1)} (5.16)

Now, we go to step 16. Since none of the strategies belonging to S(i,[1,1]), i=1,2, is
dominated by a strategy belonging one of these sets, they are all non-dominated strategies for
the project. So:

S(1)= S(1,]0.7,1])={((1,1),(1,1),2.96,5.82,1.05);((1,1),(2,1),2.93,6.75,1.05)} (5.17)

S(2)= S(2,]0.85,1])={((1,1),(2,1),2.86,8.25,1)} (5.18)

We can now build the trees corresponding to these non-dominated strategies. We
show these trees in figure 5.4.

19

Figure 5.4: Non-dominated strategies of the example

P1

T=2.96
C=5.82 P1

P1

P1

P1
P1

P1

T=2.93
C=6.75 P2

P2

P1

P1

P1

P2

T=2.86
C=8.25 P2

P2

P1

P1

P1

20

This section presented an illustration example of the algorithm. In the next section we present
the results of some tests to the implementation of the algorithm.

6. SOME TESTS TO THE ALGORITHM

This section presents the results of some tests to the performance of the algorithm. We
made an implementation of the algorithm and an implementation of the basic methodology
(building and rolling back the whole tree), and we describe our most important results in this
section.

The implementations were made in Borland Delphi 4, and the tests were performed in
a 350MHz Pentium II Personal Computer with 64MB RAM memory and about 1GB of disk
space being used as virtual memory.

For these tests, some sequences of files were generated. In every case, the first
element of the sequence is generated by defining some parameters as constants, and the
remaining parameters as samples of given uniform distributions. The others elements of each
sequence are defined through sequential changes in given parameters.

For each set of parameter distributions, 20 sequences were generated. In order to
capture the typical behaviour of both the algorithm and the basic methodology for each
parameter distribution, the two highest times and the two lowest times were removed, and the
average of the remaining 16 times was calculated. The tables with the most important
parameter distributions used and the most important results are shown in the appendix. We
broadly call to the set of sequences generated for each set of parameter distributions, a
“sequence”. Each table in the appendix has the same number as its corresponding sequence.

In all the tests we have used τ=0.5. We always generate only the different
non-dominated strategies (alternative strategies with identical cost and time are not
generated). Most sequences were generated using 2 processes, and only sequence 6 used 3
different processes.

Since the probabilities will not, in general, have a significant effect in either the size
of the trees or the number of non-dominated strategies, we always used the same distributions
for the probabilities: the basic probabilities for both branches belong to [0.49,0.51], the
probability for the branch with the longer time belong to [0.55,0.6], and the probability for
the branch with the shorter time belong to [0.4,0.45].

In order to prevent any one process from dominating the other, we always used one
process with a shorter duration and a higher cost than the other. When two processes with
similar advance amounts were used, the first process has t1=1 and c1=2, and the second
process has t2=2 and c2=1.

The advance amounts are used to increase or decrease the size of the complete tree
(larger advance amounts correspond to smaller trees), and the switching costs and setup times
are used to increase or decrease the number of non-dominated strategies (larger switching
costs or setup times will usually lead to fewer non-dominated strategies).

In the first tests we used similar advance amounts for both branches of each process,
and for both processes. We used values of xb,i, i=1,2, b=1,2, belonging to [0.09,0.1] (sequence

21

1) and [0.08,0.085] (sequence 2). The switching costs and setup times for the first element of
the sequences were chosen such that there would only be a very small number of
non-dominated strategies. In order to achieve that, we have chosen values near 1/xb,i for these
parameters. Then, we decreased the values of these parameters in order to have an increasing
number of non-dominated strategies.

In sequence 1 the algorithm performs better when the number of non-dominated is
smaller than 1000, and worse otherwise. For this sequence, the basic method always takes a
minimum time (about 3.6 seconds), no matter how small is the number of non-dominated
alternatives, while the algorithm takes a time that is indistinguishable from 0 for a small
number of non-dominated strategies (less than 174). This is because the basic method always
has to build the tree, that has a reasonable size.

For sequence 2, we were unable to run the basic method, since the available disk and
memory space (about 1GB) was insufficient to build and evaluate the tree. However, we were
still able to run the algorithm. This seems to show that the algorithm is more efficient in
memory usage terms than the basic method.

Next we still used processes whose xb,i were similar, but differed between the upper
and the lower branch. In sequence 3 we used x1,i∈[0.14,0.15] and x2,i∈[0.19,0.2]. Once again
we started by defining switching costs and setup times such that there would only be a very
small number of non-dominated strategies, and then we decreased the values of these
parameters in order to have an increasing number of non-dominated strategies. The
performance differences between the algorithm and the basic method are never large in this
sequence. However, the algorithm performs better than the basic method, except when we
have 285 non-dominated strategies.

In sequence 4 we used processes with different xb,i: x1,1∈[0.07,0.08] and
x2,1∈[0.09,0.1], for P1, and x1,2∈[0.105,0.12] and x2,2∈[0.135,0.15], for P2. Since the advance
amounts of the two processes are quite different (the project will advance much more in an
utilisation of P2 than in an utilisation of P1), we tried to prevent one process from being much
better than the other by adjusting the corresponding durations and costs. So, we defined t1=1
and c1=2, for P1, and t1=3 and c2=1.5 for P2. We started with large setup times and switching
costs, to get a small number of non-dominated strategies, and decreased these parameters to
increase the number of non-dominated strategies.

In this sequence, the algorithm performance seems to be worse than the performance
of the basic method when the number of non-dominated strategies is large. For a small
number of non-dominated strategies, the algorithm always performs better than the basic
method. Once again, the basic method always takes a minimum time (about 1.9 seconds), no
matter how small is the number of non-dominated alternatives, while the algorithm takes a
time that is indistinguishable from 0 for a small number of non-dominated strategies.

In sequence 5 we analyse the performances of the algorithm and the basic method
when the size of the tree increases and the setup costs and switching times also increase,
keeping the number of non-dominated strategies very small (equal to 2). In these sequence,
xb,i initially belongs to [0.25,0.26], for i=1,2 and b=1,2, and is decreased along the sequence.

For this sequence, the algorithm performs much better than the basic method. The
algorithm times only start to be distinguishable from 0 when xb,i∈[0.0311,0.0323], while the
basic method times are already distinguishable from 0 for xb,i∈[0.1395,0.1450]. Also, we

22

were only able to run the basic method until the tree size reached about 11 million nodes
(xb,i∈[0.0846,0.0879]), and after that we ran out of disk and memory space. However, we
were able to run the algorithm until the last values we tried (xb,i∈[0.0028,0.0029]). This
clearly shows, once again, that, when the number of non-dominated strategies is small
(because of large setup times and switching costs), the algorithm is clearly faster and much
more efficient in memory usage terms than the basic method.

Finally, we used a sequence with 3 processes, sequence 6. We used xb,i, i=1,2,3,
b=1,2, belonging to [0.19,0.2], and t1=1 and c1=3, for P1, t2=2 and c2=2, for P2 and t3=3 and
c3=1, for P3. The values of the switching costs and setup times were initially set to 5 and then
decreased. The results were consistent with the results we had for 2 processes: the algorithm
times are slightly lower for a small number of non-dominated strategies, and slightly higher
for a large number of non-dominated strategies.

So, we reached two general conclusions. First, the algorithm shows no clear
improvement over the basic method when the number of non-dominated strategies is large,
and many times it even seems to perform slightly worse in these situations. Second, the
algorithm performs much better than the basic method, both in memory usage terms and in
terms of time, when the number of non-dominated strategies is small and the trees are very
large. Other tests were performed, both for situations similar to those presented but using
different parameters and for other different situations .The results of those tests always
supported these conclusions. The new situations considered included:

- increasing the tree size and simultaneously increasing the number of non-dominated
strategies at different (slower and faster) rates;

- considering setup times different from the switching costs, and considering
asymmetric setup times and switching costs for the projects (the cost and time necessary to
switch from Pi to Pj was made different from the cost and time necessary to switch from Pj to
Pi, for j≠i).

So, we can say that, while not being able to generate a large number of
non-dominated strategies in a short time, the algorithm seems very well fit to be used in some
interactive decision methods. A possible approach would be the generation of only a few
non-dominated strategies, and asking the decision-maker to compare them or choose some of
them. According to the answer of the decision-maker, a new set with some non-dominated
strategies would be generated and the decision maker would be questioned again. The process
would be repeated until we got a set that surely included the non-dominated strategies
preferred by the decision-maker.

This section presented the more important results of some tests that were made in
order to assess the performance of the algorithm. The next section presents our conclusions.

7. CONCLUSIONS

This paper focused on the use of two criteria, time and financial value, in project
decision trees, and on an efficient identification of the non-dominated strategies for a specific
model, both in terms of speed and memory resources.

23

We started by presenting the general approach for representing investment projects
using decision trees, when time and financial value are considered the relevant criteria. This
general approach is based on Godinho and Costa (1999), and it focuses on the identification
of the non-dominated strategies. It allows the decision maker to use either the expected value
approach or the binomial model for option valuation to aggregate the financial value, and
suggests a specific approach for the aggregation of time.

Next, we presented a more specific model that allows the use of a set of rules to
generate the corresponding decision tree. This model assumes that some different processes
may be used to undertake an homogeneous task, each process having a constant cost and
requiring a constant time per utilisation, and that there are costs and setup times for changing
the process being used. By using a process, the task will advance by one of two different
portions, with corresponding probabilities. The decision trees generated by this model will
usually be very large and calculations may take a long time even within computational
systems. With that in mind, we present an algorithm for a faster identification of the
non-dominated strategies without requiring the definition of the corresponding decision tree.
This algorithm is particularly efficient when the number of non-dominated strategies is small,
not only because it cuts the non-interesting branches, but also because it does not even
consider most of them ‘a priori’. Also, the algorithm is able to avoid the repetition of
calculations for similar branches of the tree. This intends to be an effort in the way of
developing models for particular situations and efficient methods for evaluating them. We
present an illustration example of the use of the algorithm.

Then, we compare an implementation of the algorithm with an implementation of the
basic method (that consists on building and then evaluating the tree). We reach two
conclusions. First, the algorithm shows no clear improvement over the basic method when
the number of non-dominated strategies is large, and many times it even seems to perform
slightly worse in these situations. Second, the algorithm performs much better than the basic
method, both in memory usage terms and in terms of time, when the number of
non-dominated strategies is small and the trees are very large. So, we can say that, while not
being able to generate a large number of non-dominated strategies in a short time, the
algorithm seems very well fit to be used in some interactive decision methods. A possible
approach would be the generation of only a few non-dominated strategies, and asking the
decision-maker to compare them or choose some of them. According to the answer of the
decision-maker, a new set with some non-dominated strategies would be generated and the
decision maker would be questioned again. The process would be repeated until we got a set
that surely included the non-dominated strategies preferred to the decision-maker.

24

APPENDIX – TABLES WITH THE TESTS RESULTS

This appendix provides the most important results of the tests described in section 6.

The implementations were made in Borland Delphi 4, and the tests were performed in
a 350MHz Pentium II Personal Computer with 64MB RAM memory and about 1GB of disk
space being used as virtual memory.

For these tests, some sequences of files were generated. In every case, the first
element of the sequence is generated by defining some parameters as constants, and the
remaining parameters as samples of given uniform distributions. The others elements of each
sequence are defined through sequential changes in given parameters. For each set of
parameter distributions, 20 sequences were generated. The two highest times and the two
lowest times were removed, and the average of the remaining 16 times was calculated. The
values shown in the tables are the average values, for these 16 sequence elements, of the
algorithm time, basic method time, number of non-dominated strategies and size of the tree
(in event nodes). We broadly call to the set of sequences generated for each set of parameter
distributions, a “sequence”. Each table has the same number as its corresponding sequence.

In all the tests we have used τ=0.5. We always generate only the different
non-dominated strategies (alternative strategies with identical cost and time are not
generated). The process parameters are shown in the tables or in the table legends, except the
probabilities. The probabilities we used were P1,i∈[0.49,0.51], P2,i=1-P1,i, PT,1

1,i∈[0.55,0.6],
PT,1

2,i=1- PT,1
1,i, PT,2

1,i∈[0.4,0.45] and PT,2
2,i=1-PT,2

1,i, for all the processes Pi and all the
sequences.

Table A.1 - Sequence 1
Parameters

t1,2=t2,1=c1,2=c2,1

Algorithm
Time (sec.)

Basic method
Time (sec.)

Non-dominated
strategies

Size of the tree
(event nodes)

10.0 0.00 3.57 2 2797633
9.0 0.00 3.56 5 2796211
8.0 0.00 3.58 14 2797633
7.0 0.00 3.71 55 2796210
6.0 0.12 3.68 197 2796211
5.5 3.76 6.56 470 2797624
5.0 5.81 8.19 569 2797624
4.5 77.68 75.84 1151 2797633
4.0 137.98 126.85 1268 2797633

Other parameters: xb,i∈[0.09,0.1], i=1,2, b=1,2; t1=1, c1=2, t2=2, c2=1.

25

Table A.2 - Sequence 2

Parameters
t1,2=t2,1=c1,2=c2,1

Algorithm
Time (sec.)

Basic method
Time (sec.)

Non-dominated
strategies

Size of the tree
(event nodes)

12.0 0.00 - 3 20000000*
10.0 0.00 - 16 20000000*
9.0 0.00 - 40 20000000*
8.5 0.03 - 88 20000000*
8.0 0.07 - 117 20000000*
7.5 0.53 - 228 20000000*
7.0 1.43 - 314 20000000*
6.5 8.72 - 586 20000000*
6.0 23.12 - 772 20000000*
5.5 149.11 - 1373 20000000*

Other parameters: xb,i∈[0.08,0.085], i=1,2, b=1,2; t1=1, c1=2, t2=2, c2=1;
-: it was not possible run the basic method for these parameters due to lack of memory;
*: a low estimate of the size of the tree is shown, since it was not possible to build the complete tree
for these parameters.

Table A.3 - Sequence 3
Parameters

t1,2=t2,1=c1,2=c2,1

Algorithm
Time (sec.)

Basic method
Time (sec.)

Non-dominated
strategies

Size of the tree
(event nodes)

7.00 0.00 0.00 2 5749
5.00 0.00 0.00 6 5749
3.00 0.00 0.00 39 5749
2.00 0.00 0.05 88 5713
1.67 0.09 0.10 143 5599
1.33 0.29 0.30 217 5702
1.00 0.48 0.53 285 5699
0.67 18.04 20.81 778 5695
0.33 173.60 184.87 1916 5695

Other parameters: x1,i∈[0.14,0.15] and x2,i∈[0.19,0.20], i=1,2; t1=1, c1=2, t2=2, c2=1.

Table A.4 - Sequence 4
Parameters

t1,2=t2,1=c1,2=c2,1

Algorithm
Time (sec.)

Basic method
Time (sec.)

Non-dominated
strategies

Size of the tree
(event nodes)

10 0.00 1.85 8 1272559
9 0.00 1.85 18 1272559
8 0.00 1.90 38 1272559
7 0.03 1.88 74 1272559

6.5 0.11 1.93 114 1272559
6 0.54 2.20 186 1266209

5.5 1.95 2.97 268 1266209
5 7.19 6.14 388 1266209

4.5 29.80 21.27 662 1251021
4 77.64 57.83 885 1248462

Other parameters: x1,1∈[0.07,0.08], x2,1∈[0.09,0.1], x1,2∈[0.105,0.12] and x2,2∈[0.135,0.15]; t1=1,
c1=2, t2=3, c2=1.5.

26

Table A.5 - Sequence 5
Parameters

t1,2=t2,1=c1,2=c2,1

Algorithm
Time (sec.)

Basic method
Time (sec.)

Non-dominated
strategies

Size of the tree
(event nodes)

[0.2500,0.2600] 10.0 0.00 0.00 2 170
[0.2116,0.2201] 13.5 0.00 0.00 2 682
[0.1791,0.1863] 18.1 0.00 0.00 2 2730
[0.1516,0.1577] 24.4 0.00 0.00 2 10922
[0.1395,0.1450] 28.3 0.00 0.02 2 35133
[0.1283,0.1334] 32.8 0.00 0.03 2 43690
[0.1180,0.1228] 38.0 0.00 0.11 2 174762
[0.1086,0.1129] 44.1 0.00 0.38 2 534012
[0.0999,0.1039] 51.2 0.00 0.50 2 699050
[0.0919,0.0956] 59.4 0.00 3.23 2 2796202
[0.0846,0.0879] 68.9 0.00 20.70 2 11184810
[0.0778,0.0809] 79.9 0.00 - 2 38000000*
[0.0716,0.0744] 92.7 0.00 - 2 1.8E+08*
[0.0606,0.0630] 124.7 0.00 - 2 5.5E+09*
[0.0513,0.0533] 167.8 0.00 - 2 3.2E+11*
[0.0434,0.0451] 225.7 0.00 - 2 4.0E+13*
[0.0367,0.0382] 303.8 0.00 - 2 1.2E+16*
[0.0338,0.0351] 352.4 0.00 - 2 2.9E+17*
[0.0311,0.0323] 408.7 0.03 - 2 9.7E+18*
[0.0286,0.0297] 474.1 0.06 - 2 4.3E+20*
[0.0263,0.0274] 550.0 0.08 - 2 2.7E+22*
[0.0242,0.0252] 638.0 0.17 - 2 2.4E+24*
[0.0223,0.0232] 740.1 0.22 - 2 3.2E+26*
[0.0189,0.0196] 995.9 0.22 - 2 2.0E+31*
[0.0160,0.0166] 1340.0 0.22 - 2 9.8E+36*
[0.0135,0.0140] 1803.1 0.22 - 2 5.1E+43*
[0.0114,0.0119] 2426.3 0.23 - 2 4.3E+51*
[0.0097,0.0101] 3264.8 0.25 - 2 1.0E+61*
[0.0082,0.0085] 4393.2 0.25 - 2 1.2E+72*
[0.0069,0.0072] 5911.4 0.28 - 2 1.4E+85*
[0.0059,0.0061] 7954.4 0.30 - 2 4.1E+100*
[0.0050,0.0052] 10703.5 0.33 - 2 7.4E+118*
[0.0042,0.0044] 14402.6 0.39 - 2 2.8E+140*
[0.0036,0.0037] 19380.2 0.47 - 2 8.5E+165*
[0.0033,0.0034] 22481.0 0.52 - 2 2.3E+180*
[0.0030,0.0031] 26077.9 0.59 - 2 1.1E+196*
[0.0028,0.0029] 30250.4 0.65 - 2 1.2E+213*
Other parameters: t1=1, c1=2, t2=2, c2=1;
-: it was not possible run the basic method for these parameters due to lack of memory;
*: a low estimate of the size of the tree is shown, since it was not possible to build the complete tree
for these parameters.

27

Table A.6 - Sequence 6
Parameters

t1,2=t2,1=c1,2=c2,1

Algorithm
Time (sec.)

Basic method
Time (sec.)

Non-dominated
strategies

Size of the tree
(event nodes)

5 0.00 0.06 34 27993
4 0.00 0.05 38 27993

3.5 0.12 0.15 140 27993
3 0.17 0.19 167 27993

2.5 0.19 0.23 199 27993
2 0.27 0.29 216 27993

1.75 22.34 21.61 701 27993
1.5 40.72 38.94 861 27993
1.25 68.37 62.63 984 27993

1 94.57 91.86 1095 27993
Other parameters: xb,i∈[0.19,0.2], i=1,2,3, b=1,2; t1=1, c1=3, t2=2, c2=2, t3=3, c3=1.

28

 REFERENCES

Brealey, R. and Myers, S., Principles of Corporate Finance (McGraw-Hill, 4th edition, 1991).

Godinho, P.C. and Costa, J.P., “Incorporating Risk in a Decision Support System for Project
Analysis and Evaluation”. In: Kantarelis, D. (Ed.), Business and Economics for the 21st

Century – Volume III, Business & Economics Society International, Worcester, 1999, pp.
90-101.

Herath, H.S. and Park, C.S., “Economic Analysis of R&D Projects: An Options Approach”,
The Engineering Economist, Vol. 44, nº 1, 1999, pp. 1-35.

Hertz, D.B. and Thomas, H., Risk Analysis and its Applications (John Wiley and Sons, 1st

edition, 1983).

Magee, S., “How to use Decision Trees in Capital Investment”, Harvard Business Review,
42, September-October 1964, pp. 79-96.

Smith, J.E. and Nau, R.F., “Valuing Risky Projects: Option Pricing Theory and Decision
Analysis”, Management Science, 41, nº 5, 1995, pp. 795-816.

Trigeorgis, L., “The Nature of Option Interactions and the Valuation of Investments with
Multiple Real Options”, Journal of Financial and Quantitative Analysis, 28, nº 1, 1993,
pp.1-20.

 Trigeorgis, L., Real Options: Managerial Flexibility and Strategy in Resource Allocation
(The MIT Press, 1996)

Trigeorgis, L. and Mason, S.P., “Valuing Managerial Flexibility”, Midland Corporate
Finance Journal, Spring 1987, pp. 14-21.

