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Abstract

I study the empirical properties of a non-linear stochastic dynamic representative-
agent model with rational expectations. The representative agent is assumed to have
time non separable preferences. The time nonseparability in preferences is due to
local substitution of consumption over time as well as to long-run habit persis-
tence. Specifically, I investigate whether the dynamic model replicates the observed
mean and the standard deviation of the U.S real returns in the 1965-1987 period. 1
use a projection method to solve the model and then I evaluate the intertemporal
marginal rate of substitution (IMRS) as well as the asset returns implied by the
dynamic model. First, I find that the IMRS implied by the model statistically fits
the Hansen and Jagannathan bound. Secondly, T find that combined effects of sub-
stituion and complementarity over consumption nearly solve the equity premium
and the risk-free rate puzzles. Finally, the model does also resolve the Campbell’s
stock market volatility puzzle.
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1 Introduction

This paper is motivated by two empirical issues : the equity premium puzzle and the risk-
free rate puzzle. Mehra and Prescott[15] show that Arrow-Debreu asset pricing model
could not explain high equity premia, unless agents are extremely risk averse. One re-
sponse to the equity premium puzzle is to accept these high values for the coefficients
of relative risk aversion. However, Weil[18] argues that this leads to a second puzzle.
He shows that a low riskless interest rate is possible only if agents have negative rate
of time preference, in a standard consumption-based asset pricing model. Thus, they
reduce their desire to borrow from the future. Weil calls this the risk-free rate puz-
zle. Number of authors have suggested that time nonseparability could help explain the
poor empirical performances of the standard consumption-based asset pricing model'.
Constantinides[6] argued that habit persistence could solve the equity premium puzzle of
Mehra and Prescott. However, his model only displays complementarity over consump-
tion. So, he does not take into account that consumption at dates local to time ¢ should
be relatively substitutable for consumption at time ¢. I choose to reexamine these puzzles
by introducing notions of substitution (durability) and complementarity (habit) of con-
sumption over time, as Heaton[12]. The details of the model are described in section 2. I
use a projection method to solve this non-linear stochastic dynamic model with rational
expectations. Then, I study whether the dynamic model replicates the observed mean
and the standard deviation of the U.S real returns in the 1965-1987 period.

The computational aspects of my analysis are complementary to the study of Heaton[12].
Heaton considers an economy represented by seven state variables. In contrast, I derive the
optimal portfolio rules implied by the model with only two state variables, which substan-
tially improves the accuracy of the results. Thus, the projection method is implemented
with a two state variables vector and the dividend variable is used as an exogenously given
shock. I assume that the growth rate of dividend follows a first order Markov chain. The
computational method is described in section 3. The resolution of the dynamic problem
is done in two steps. In the first step, I compute the approximations of marginal utility
of consumption and intertemporal marginal rate of substitution in consumption (IMRS).
Then, I calculate the approximations of equity price and risk-free asset price. I finally
deduce the returns on the equity and the risk-free security implied by the dynamic.

From these simulations I carry out two complementary experiments to see if this model
could explain the U.S risk premia in the 1965-1987 period. First, I test if the model’s
implications concerning the volatility of the IMRS are satisfied. I find that the IMRS
implied by the model statistically fits the Hansen and Jagannathan bound. Secondly, I
analyze the time-series properties of the simulated model. Specifically, a constrained grid

We could find other analyses of models with habit persistence in Abel[1], Campbell and Cochrane
[3], Sundaresan([17], for example.



search is carried out to find the parameter values that fit the first two observed moments.
They are chosen in order to meet the positivity of the marginal utility of consumption.
For a set of parameter values, I find a simulated premium equals to 4.7% per annum.
Though my estimate is below the 6% often cited in the literature on the equity premium
puzzle, the model do a good approximation compared to the representative-agent model.
In addition, I find that the introduction of local substitution substantially improves the
model’s ability to fit the volatility of risk-free rate, compared to the pure habit persistence
model and it solve the Campbell’s stock market volatility puzzle[2]. Finally, I conclude
that the combined effects of substitution and complementarity over consumption nearly
solve the equity premium and the risk free rate puzzles. These results are presented in
section 4, and section 5 concludes the paper with some remarks about potential extensions.

2 The model.

I consider a single-agent economy with frictionless markets and no taxes. The assumption
of a single-agent economy is standard and is made in the spirit of Lucas[14] and Cox,
Ingersoll and Ross|[7]. The representative agent has preferences over a good S;, which are
represented by the constant relative risk aversion (CRRA) utility function

[e’e] 1—/7_1
U(S)onZﬁt%= v>0,S={S:t=012.}. (1)
t=0

where [ is the agent’s subjective time discount factor, Ey(.) is the mathematical expec-
tation operator conditional on information in period zero.
I assume time nonseparability in preferences over the consumption goods C%, introducing
i) local substitution of consumption over time,
ii) habit persistence,
as in Ferson and Constantinides[10] and Heaton[12].
They assume that in and every period the new expenditures C; produce a flow of
consumptions Cf* given by

C’tF = ZéTCt,T, where 0 < § <1 and Z(ST =1 (2)

=0 7=0
The parameter ¢ measures the degree to which consumption is substitutable over time.
Finally, substitution effects and habit persistence are related according to :

Si=Cl'—a(l-0)) ¢'C, ;, 0<a<l, 0<6<1, and Y /=1 (3)

j=0 7=0



The good S; is composed of two elements. The first element represents the substitution
effect over the consumption good C;, and the weighted sum of lagged consumption flows

(1-0) 220 0°Cily
of habit stock that enters the preferences. The introduction of habit persistence effects

measures the habit stock. The parameter a gives the proportion

makes consumption complementary over time. If § = 0, then the model is just a one-
period habit model, as it was studied by Ferson and Constantinides[10]. So, when a = 0
the utility function is time-separable in consumption flow, and the model reflects only
substitution of consumption over time. When o = § = 8 = 0, the model reduces to the
case of the time-separable preferences.

Combining (2) and (3) implies that S; is given by
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C, = A(L)Cy, (4)

where ¢ = 0 + a(1 — ), and L is the lag operator. We can write S; as S; = A(2)C},
for z € R. As shown by Ferson and Constantinides, and Heaton, this model displays

substitutability for low z and habit persistence for high z. Thus, if 6 < 6, and if « is not
1—¢L

» (1=6L)(1—0L)

persistence will dominate durability. That is the reason why these authors present the

too large will be positive for low z and as far as z will become higher habit
model as a model which exhibits [ocal substitution and long-run habit persistence.

Now, I suppose an environment in which the representative agent trades on securities
markets. Two kinds of assets are traded : a risk-free asset, and a risky asset. Thus, the
representative agent is faced with the following budget constraint

Prefe + Derer + Cp = (di + pey) €21 + fi1, (5)

where e;, f; are respectively the number of shares of equity and risk-free asset purchased
by the agent at time ¢t — 1 and held until period ¢, p.;, py: are respectively the price of a
unit of the corresponding assets at time t, and d; is the stochastic dividend paid for each
unit of equity held between periods t — 1 and ¢.

The representative agent maximizes his intertemporal utility function subject to the
equations (4) and (5). The agent solves the maximization problem by determining con-
tingency plans for Cy, Sy, e, f;. The Euler equation governing the equity price is given
by

st d
A = BE, | Ay (P20 | (6)

et

’

The left hand side of (6) is the marginal utility cost of consuming one unit of numeraire

good less at time ¢ ; the righ-hand side is the expected marginal utility benefit from

Pe,tt+1+deq1
(Hth)

investing the unit in the risky asset at time ¢, selling it at time ¢t 4 1 for units,
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and consuming the proceeds. The agent equates marginal cost and marginal benefit, such
as (6) describes the optmum. If we divide both the left and the right hand sides of (6) by
A¢, we get the familiar form

Ati1 , Pe +d

L e ] R M)
t Det

where my; is the intertemporal marginal rate of substitution (IMRS) or the stochastic

discount factor, and R. ;. is the gross real rate of equity return.The first-order condition

describing the risk-free rate price is

1
N= BB =] )
Pri
and the interpretation is the same as the Euler’s risky asset equation.
In this model the marginal utility of consumption is a function of the marginal utility
and the expected marginal utilitity of S;. We get the following Euler equation

At = py — BOE; [Mt+1] ) (9)

where p,;, the marginal utilitity of S;, is a function of 1, and p,., such as

py=5S; "+ B(6+0) B [Ntﬂ] -5 (6.0) E; [NHQ} . (10)

Market clearing further imposes C; = d;, Vt.

To empirically investigate the properties of this model, I must assess the marginal util-
ity of Cy, and the price of equity. Unfortunately, I cannot analytically solve the model. 1
have to simulate the dynamic model. The new methods for simulating nonlinear rational-
expectations equilibrium models make the exploration of these issues feasible. Nonethe-
less, the marginal utility of consumption depends on current expectations of marginal
utility of S; more than one period ahead, which do not make the computational resolu-
tion easier. In the next section I present the computational method that I use to assess
the U.S real asset returns.

3 Solving method

In this section, I present how I solve the non-linear stochastic dynamic model presented
in the previous section. The economy is described by a vector of two state variables
2z = (S, Y;), where Y; 11 = S;, and a variable of an exogenously given shock d;. The
stochastic dividend evolves through time according to

dt+1 = mt-‘,—ldt



where x; is the gross growth rate of dividend. It follows a first order Markov structure
whose density of x;,1 conditional on x; is given by p,/(x;11 | ;). This process allows the
apparent non-stationarity I observe in the per capita consumption stream over the sample
period. I assume two states for the Markov chain such as :

xy = 1+¢+o0, Im=14+¢p—0

Pmm = DPmMmm =D, DPmM = Pmm =1 —p

where ¢ is the average real growth rate of per capita consumption, o is the standard
deviation of the real growth rate of per capita consumption and p = @, where p is the
first-order serial correlation of this growth rate. The US economic data in the 1965-1987
period imposes the following parameter values : ¢ = 0.0018, o = 0.036, and p = 0.43.
The model is a function of the non stationnary variable d;, in the previous section.
So the model is first deflated for dividend growth to express the model as a function of
the stationnary variable x. Specifically, the marginal utilities of S and C' are deflated by
d~", and the state variables are deflated by the dividend?. The deflated variables are in

lowercase letters. I find the following first-orders equations :

S\t = [i; — BOE; [xtjjl'ﬁt-',-l} ) (11)

iy =5, + 0 (6 +0) E; [xgglﬁt+1} — 3(0.9) E, [$;32ﬂt+2] ) (12)

where )\, and i1, represent the deflated policy variables. The recursive equation of S; is
also transformed such as there are only stationnary variables in its expression. Applying
the market clearing restriction, this equation is actually of order 2 since it includes s;, s; 1,
and it depends also on x;.jand x;. Specifically, the recursive proporties of s; are governed
by the following functions

s = (0+0)x s — (6.0)y(wim) " — gy + 1= f(s,y,2, )
Y+1 = St (13)

I still have to transform the asset prices. In fact, the equity price alone is concerned by
the modification, as far as a bond pays no dividend. The equity price is deflated by the
dividend. The new Euler equations are now in function of z;,; and are given by :

5\1‘/-1-1 —v41/ ~
<5\_ T 0 (Pegsr +1)

Pet = BE; (14)

t

2 Analytically, the deflations are such as s, = 3—;, Yy = %, fi, = 2L A = 2L and Pet = L.




Prt = BE;

<5\§\_J;1> xtﬁl] (15)

The model is solved relying on a method of weighted residuals (see Judd[13], and Chris-
tiano, Fisher [5]). I now describe the details of the method. The domain of approximation
is restricted to [Sp, Sar] X [Sm, Sar] X [Tm, ar] - The implementation of the computational
method must consider that the marginal utility of s; depends on the expected fi,,; and
fi,o. This computational issue is undertaken using the weighted residuals projection
method twice time. The resolution of the dynamic problem is done in two steps. In the
first step, I compute an approximation of ji,, in order to restrict our attention particularly
on the double projection. The approximation of fi, is denoted by ﬁ Then, I compute the
full model. I approximate p, by taking into account [, and deduce an approximation of
Py

First, we have to approximate the marginal utility of s. It is given by the following
equation

ns Ny

ﬁ(s,y,x) ~ /j(sai%x;am) = Zzaij,wqpij (87y)7 for x = Ly AL (16)

i=1 j=1

where ¢y (s,y) = Tica (2((s = 8m) / (s = sm)) = 1) Tjo1 (2((y = sm) / (sar = 8m)) = 1),
Ti(.) and T;(.) : [-1,1] — [—1,1], are Chebychev polynomials, and n, x n, is the order
of approximation. I use the linear transformation 2 ((s — s,,) / (sar — sm)) — 1 in order
to take into account that Chebichev polynomials are defined in [—1,1]. I denote a, the
ns X n, dimensional column vector that has to be solved for the two states z,,, and z,,.
These functions must satisfy the following residual function :

R(s,y,x;1) =0, for all s,y, 2z € [Sm, Snr] X [Sm, Sar] X [Tm, T ]

where the residual function is just defined by the residuals of the Euler equation (12)%. We
form projection functions to approximate R (s, y, z; ft). I implement the Galerkin method
to compute the vector a,. The Galerkin method computes the 2 x n, x n, following
projections :

SM SM N
R](am) = / / R <87y7m; ﬁax> ¢z] (87 y) dey; T = Tm, Ty, (17)

and choose a, so that P,;(a,;) = 0 for all i = 1,...,n, and j = 1,...,n,. Here the diffi-
culty is that each P,;(a,) is an integral which need to be numerically computed. Since
the 1;; are Chebichev polynomials, we numerically compute the P;(a,) using (m, x m,,)-
points Gauss-Chebyschev quadrature. To do this, we need the (ms x my) > (ns X ny)

3The residual functions are reported in the appendix A.
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grid points, which are the n roots of the n'* order Chebychev polynomials. The ap-
proximation is done for each state z. To evaluate the P,;(a,) in matrix terms, we form
the (ms x my,ng X n,) matrix X, which are composed of Chebyschev polynomials. The
matrix X is given by

X = [%1 (Say) >¢12 (87 y) ) "'7w1ny (Say) ) '-'awnsny (Say)]

where

ms My

wij (Say) = ZZ%] (slsayly) 7f0r = 17 ey Mg a‘ndj = 17 ooy Ty

lo=11,=1

Then, for the state x, we form the Gauss-Chebyschev quadrature approximation of the
(ms x my, 1) vector of the residual functions such as :

N ~ N ~ !
R <s,y,x;ﬁax) = [R (sl,yl,x;ﬁam> oy R <51,ymy,x;ﬁax) oy R <sms,ymy,x;ﬁam>]

Finally, the approximation of the equation (17) has the following form :
Pij(ax) = X'.R <s,y, x; ﬁam> =0, forz=x,,xy. (18)

(18) represents a nonlinear system of 2.n,.n, equations in the 2.n,.n, unknowns a = [a,,, a,,,]".
This system can be solved using the versions of Newton-Raphson method implemented in
the GAUSS routine, NLSY'S. I denote &, the solution of the system, in the first step,
when the state x is considered. This vector of solutions is used as a vector of initial values
in the second step.

Secondly, I define an other residual function to determine an approximation of the
price dividend ratio, p.;. As previously, the approximation of p., is given by :

ns Ty

Pe (S,y,l') ~ 53 (57 yax;bx) = Z Zbijwwij (Say) ) for z = Ty TM (19)

i=1 j=1

and the approximation has to satisfy (14), and the residual function R is just defined by
the residuals of (14)*. Then, as previously, I solve the system of 4.n,.n, equations in the
4.ngs.n, unknowns a and b

X/'R (57 Y, T, ﬁém> =0

T , forx =, zy
X' R (s,y, x; [Laz7ﬁe,bz> =0

4The residual functions are reported in the appendix A.
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I denote &, and b the solutions of the previous system. Then, I deduce the approximation
of the price of the risk-free asset for the state x

A

(S\(f (f,y,x,i) ,S,a’i’;éx)) el m] (20)

A(s,y,x;8,)

pr(s,y,2;4,) = OF

If the current state is z, the equity and the risk-free returns are respectively

]56 (f (87ya'r7j) ) SajaBSU)

R.,=FE||%. _ -
De <s,y, x; bw)

|z| —1 (21)

re= | (e aaEn) 17 ! (22)

and the expected returns are
Ri=n.Riz, +(1—7).Ris,, fori=e, f.

In this paper, we suppose a symetric matrix. So 7 is equal to 0.5.

4 The results

In this section, I carry out two complementary studies to see if the previous model could
explain the U.S risk premia in the period 1965-1987. First, I test if the model’s implica-
tions concerning the volatility of the IMRS are satisfied. Second, I analyze the time-series
properties of the simulated model. Specifically, I compute the first and the second em-
pirical moments for a particular set of parameter values, and I compare these moments
with their empirical counterpart. Then, I choose the set of parameter values that better
replicate the observed moments. I compute the moments with a simulated draw of 5500
observations, discarding the first 500 simulations. I set n, = n, = 2, and my; = m, = 8.
I use the annual U.S CRSP value weighted real return and the annual U.S real return on
Treasury Bills with one months to maturity for the period 1965-1987. In the first part of
this section, I present the results of using the methodology of Hansen and Jagannathan
and the tests of the volatility bound restrictions. In the second part of the section, I
present the results of the constrained grid search.

4.1 The Hansen and Jagannathan bound.

Hansen and Jagannathan|[11] derived a lower bound on the volatility of the intertemporal
marginal rate of substitution (IMRS) that correctly prices the assets. They compute
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their bound by taking a standard form of the Euler equations of consumption-based asset
pricing models. One advantage of their procedure is that the bound they construct makes
no reference to a particular model. It is solely calculated from returns data. In this paper,
I only consider the bound that does not impose the positivity restriction on the IMRS. To
estimate the bound, I use the US treasury Bills, r, , and the U.S CRSP value weighted
return, r.;, and two additional artificial returns, such as re¢ 1.7¢¢, Tft—1.7e+ , Which
prices are respectively re;—1, 75;—1. We denoted by @ = (res, 7t s Tetm1.Tft s Tfi—1-Tet )
the vector of asset returns and ¢; = (1,1, 741, r74—1) the vector of asset prices. I extend
this visual method by implementing a statistical procedure for judging whether the model
of section 1 is able to fit this lower bound. The test also provides one means of taking into
account the sampling error. I use here the methodology of Cecchetti, Lam and Mark[4]
to perform the statistical inference. Their statistic measures the vertical distance, labeled
A, between a sample pair (p,, 0,) and the lower bound o, where u, and o, respectively
represent the empirical mean and standard error of a particular IM RS. The candidate
IMRS is rejected if its sample pair significantly lies below the bound. In order, to evaluate
whether the difference is large, they compute the following statistic :

Hy : A0

A (6,06,

Ga ( EN )

. [{0A S OA
T (W)a Q(W%

where A has asymptotically gaussian distribution with mean 0 and variance 0%, and ig

is the estimated covariance matrix of the parameter #, such as 6 = (,uq, [T Zx), . Here, p,
is the mean vector of the four asset prices, and pu,, Y, are respectively the mean vector
and covariance matrix of the 2 x 2 assets payoffs. In practice, I compute é, and 3y by
generalized method of moments using the first two moments of asset returns and the first
moment of asset prices’. The covariance matrix ¥y is the Newey and West[16] covariance
matrix estimator.

5The moment conditions used in estimation are Elz; —p,) =0,

E [qe — 1] =0,
E [vec (mﬂé) —vec (3;) + vec (uwu;)} =0,
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Figure 1 : HJ bound and the simulated mean-standard deviation pairs.

Note : These moments are computed with a simulated draw of 5500 observations, discarding the first 500

simulations and with 3, 8, a respectively equal to 1, 0.8, and 0.6,
for 6 equal to 0.2,.0.4, 0.6, and ~ ranging from 2 to 4.5 by 0.5.

Figure 1 plots the Hansen and Jagannathan bound, denoted by HJ and represented
by the cup shaped region in the domain (E(IMRS),std(IMRS)). It is a function of
i, The figure 1 also plots the simulated mean-standard deviation pairs of the IM RS,
for different values of (3, v, 0, 8, a. These moments are computed with a simulated draw
of 5500 observations, discarding the first 500 simulations and with 3,6, a respectively
equal to 1, 0.8, and 0.6, for 6 equal to 0.2,.0.4, 0.6, and 7 ranging from 2 to 4.5 by 0.5.
The figure 1 shows that the volatility of the IM RS increases, but the mean decreases
as 7y increases, for ¢ equals to 0.4, 0.6. Therefore, the triangles and the stars move away
from the admissible region. Whereas, for ¢ equals to 0.2, the plus get nearer to the HJ
bound. Nevertheless, the model for this specification do not generate enough volatility in
the IM RS, ignoring sampling error. The tables 1, 2,3 report the results of the volatility
bound test, for different values of v, and 6. These tables are reported in the appendix
B1. The results of these tables are summarized in the figure 2. Figure 2 plots the t-ratio
of the HJ bound test for ¢ equals to 0,0.2,0.4,0.6, and for differents values of v. I only
display the t-ratio whose estimated values of u,, are below unity. As far as we know that
the risk free rate puzzle is not solve for u, values upper than one.
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Figure 2 : Hansen and Jagannathan bound test for different 6.

Note : Figure 2 plots the t-ratio of the HJ bound test for 6 equals to 0,0.2,0.4,0.6, and for differents values of +.

I only display the t-ratio whose estimated values of 4, are below unity.

In the figure 2, we see that the null hypothesis is never rejected by the pure habit
persistence model (§ = 0). In addition, for ¢ equals to 0.2, I accept the hypothesis that
the simulated points are in the HJ region, for all the 7. Although, these points do lie below
the bound, the distance is not significant. On the contrary, as the level of substituability
grows, HO is easier rejected by the HJ bound test, except for v equals to 1.5 and 2.
Therefore, as noted by Hansen and Jagannathan[11], the durability substantially reduces
the volatility of the IMRS. In addition, a low degree of durability could fit the Hansen
Jagannathan bound.

Secondly, I choose to fix 6 to 0.2, and to compute mean-standard deviation pairs for
different values of 6. I respectively set § and «a to 1 and 0.6. I recall that # measures
the persistence of the habit effect and when 8 = 0, the model is just a one-period habit
model. The figure 3 represents the simulated moments of the discount factor, for 6 equal
to 0.4,0.6,0.8. In fact, there are no significant changes for the different values of 6.

12



0.8

HJ Bound,

gamma from 2 to 4.5 by 0.5, theta=0.4.
x gamma from 2 to 4.5 by 0.5, theta=0.6.
A gamma from 2 to 4.5 by 0.5, theta=0.8.

0.7

sig(IMRS)
0.4
T

0.3

0.2

x A

O. | | | | | | | | |
© 0.975 0.980 0.985 0.990 0.995 1.000 1.005 1.010 1.015 1.020

E(IMRS)

Figure 3 : HJ bound and the simulated mean-standard deviation pairs

Note : These moments are computed with a simulated draw of 5500 observations, discarding the first 500
simulations and with 3, §, a respectively equal to 1, 0.2, and 0.6,
for 8 equal to 0.4,.0.6, 0.8, and  ranging from 2 to 4.5 by 0.5.

I have the same results when I compare the tables 4,5, 6. These tables are reported in
the appendix B2. The results of these tables are summarized in figure 4. I consider four
cases. We see that for a model without habit persistence the Hansen and Jagannathan
bound is statistically accepted, even for low level of courbature. For the three over cases,
the HJ bound test does not seem very sensitive to 6. Nonetheless, this figure shows that
as far as 6 is high, the null hypothesis is longer accepted. One of the features of the
one-period habit persitence model is its low level for 7. Ferson and Constantinides[10]
found a value under unity for v. However, this value does not seem very realistic for
Deaton[8]. So, we need a minimum level of habit persistence to have a coherent value of
~. To summarized these two figures, we find that the results do not seem very sensitive to
the persistence of the habit effect. Nonetheless, we need a minimum level of habit stock
to fit the Hansen and Jagannathan bound for an high level of ~.

In the figure 5, I plot the simulated means and the standard deviations of the IM RS,
with (3,8, 6 respectively equal to 1, 0.2, and 0.8. The parameter o can take three values :
0.4,0.6,0.7. We recall that the parameter « gives the proportion of the habit stock that
is compared to the current level of the good s. I see that for a low level of a, « = 0.4, the
plus move away from the HJ bound. Whereas as « increases, I need a lower level of v to
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be closer to the admissible region. Therefore, it seems that I need a high level of « to fit
the bound.
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Figure 4 : Hansen and Jagannathan bound test for different 6.
Note : Figure 4 plots the t-ratio of the HJ bound test for 6 equals to 0,0.4,0.6,0.8, and for differents values of ~.

I only display the t-ratio whose estimated values of p,, are below unity.
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Figure 5 : HJ bound and the simulated mean-standard deviation pairs
Note : These moments are computed with a simulated draw of 5500 observations, discarding the first 500
simulations, and with 3, §, 6 respectively equal to 1, 0.2, and 0.8,
for a equal to 0.4,.0.6, 0.8, and different values of ~.
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The tables 7,8,9 report the results of the volatility bound test. These tables are
reported in the appendix B3. The results of these tables are summarized in the figure 6.
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Figure 6 : Hansen and Jagannathan bound for different value of «.

Note : Figure 6 plots the t-ratio of the HJ bound test for a equals to 0,0.4,0.6,0.7, and for differents values of ~.

I only display the t-ratio whose estimated values of p,, are below unity.

Figure 6 plots the t-ratio of the HJ bound test for a equals to 0,0.4,0.6,0.7, and
for differents values of 7. For « equals to 0, the model reflects only the durability or
substituability of consumption over time. The HJ bound test reject this model. In
addition, for « equals to 0.4, the vertical distances between the sample pairs (p,,, 0,,), for
the set of parameters considered, and the lower bound o, are significant, even for a high
value of v. The distance is still significant for a v equal to 12. While for higher level of «,
the null hypothesis is accepted. So, I need a high proportion of habit stock to meet the
Hansen and Jagannathan restrictions.

This section allows us to have an idea of parameter values for the sensitivity analysis.
Thus, a model which fits the Hansen and Jagannathan bound is a model with a relatively
low degree of substitutability and a high proportion of habit stock.
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4.2 The equity premium and the risk-free rate puzzles.

I implemented a grid search subject to the constraints that the risk-free return mean is
between 0 and 3 percent, its volatility is smaller than 3 percent and the equity return is
larger than 5 to find the values of the parameters of interest. Futhermore, the parameter
values are chosen in order to meet the positivity of the marginal utility of consumption.
I find that ~, §, a and 6 are respectively equal to 2.9, 0.17, 0.82 and 0.61, for a discount
factor sets to unity. These parameter values imply a high proportion of habit stock and
a low substitution effect, as it was shown in the previous section. The habit persistence
effect is also strong which implies a relatively high courbature level (see figure 4). The

first two moments implied by these parameter values are reported in the table 12. In

this table, I respectively denote by r? and 7™ the observed and the simulated asset i
return. The mean and standard deviation of the real returns are reported on annualized
basis. First, for these parameter values the vertical distance between the sample pair
(u, = 0.981,0, = 0.041) and the lower bound o, is not significant. I obtain a ¢ — ratio
equals to —0.8543. So, the admissible region is fitted for these parameters values. There-
fore, this consumption-based asset pricing model generates enough volatility for the IMRS
to correctly price the assets. The model is not rejected by this nonparametric method.
Second, the simulated mean real returns on equity and bond are coherent compare to the
sample mean. Mehra and Prescott[15] have argued that the representative-agent models
yield average equity returns that are much too low relative to historical observed returns.
Our model still undervalues mean equity return. But the simulated mean equity return
is now comparable to its observed return. In addition, the simulated mean risk-free rate

is very close to observed mean bond return.

Table 12 : The moments implied by the grid search.

T,gbs T:im T;)bs Tgim (Te _ rf)obs (Te _ rf)sim
mean 0.078 0.065 0.020 0.018 0.058 0.047
std 0.186 0.14 0.052 0.047 0.1845 0.0173

Note : This table displays the sample and the simulated means and second moments of the asset returns
and risk premia. The simulated moments are obtained for 7, §, « and 6 respectively set to 2.9, 0.17, 0.82
and 0.61,and for a discount factor sets to unity. 5000 observations of the simulated series are used

to calculate the simulated moments of IMRS.

The third column of table 12 displays the average equity premium, denoted by (r. — f)ObS

for the observed and (r, — r7)*™ for the simulated. Simulated premium is 4.7% per an-
num in the model, compared to 0.39% in the standard representative-agent model, which
is the larger premium obtainable according to the simulations of Mehra and Prescott[15].
Though my estimate is below the 6% often cited in the literature on the equity premium
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puzzle, my model do a good job compared to the standard representative-agent model.
Therefore, I can conclude that combined effects of substitution and complementarity over
consumption nearly solve the equity premium and the risk free rate puzzles.

However, the second order moments are undervalued in the both cases. Nevertheless,
the standard deviation of the risk-free rate seems in line with the data. It is a good result
compared to the pure habit persistence model. In fact, this model implies extremely
volatile stochastic discount factor to explain the equity premium puzzle. Therefore, it
generates a very volatile risk free rate. For example, Cecchetti, Lam and Mark[4] found
a standard deviation for risk-free rate of 11.5%, using monthly data, for v equals to 5
and an habit parameter value sets to 0.5. Our estimates of the standard deviation for
the bond is much lower and is equal to 4.7%, using annual data. I can conclude that
the introduction of local substitution substantially improves the model’s ability to fit the
volatility of risk-free rate. Yet, it is not the case for the real equity returns. Our model is
not able to generate enough volatility for the equity return. Campbell[2] calls this the stock
market volatility puzzle®. Nonetheless, my results are better than those of Heaton[12]. My
volatility estimate is equal to 14% compares to 4.2% for Heaton. Therefore, I substantially
improve the accuracy of the model’s results, with this computation method.

5 Conclusion

The purpose of this paper was to examine the empirical properties of a non-linear stochas-
tic dynamic model with rational expectations, in which the representative agent is assumed
to display time non separable preferences. Specifically, I carried out two complementary
studies to check the empirical relevance of the model. First, I used the Hansen and
Jagannathan bound to check if the consumption based asset-pricing model with local
substitution and long run habit persistence over consumption correctly prices the assets.
I found that the IMRS implied by the model statistically fits the Hansen and Jagannathan
bound if the degree of substitutability is relatively low and the proportion of habit stock
is high. Secondly, I compared the simulated two first order moments with those observed.
I concluded that combined effects of substitution and complementarity over consumption
nearly solve the equity premium and the risk free rate puzzles. In addition, I found that
the introduction of local substitution substantially improves the model’s ability to fit the
volatility of risk-free rate, compared to the pure habit persistence model. Finally, the
model does resolve the Campbell’s stock market volatility puzzle, with our computational

6Campbell shows that the volatility of stock returns is too high to be readily explained by the
consumption-based asset pricing with power utility. Since the stock return should equal current consump-
tion growth in this model. The result is true if we suppose that log dividend equals log consumption, and
lognormality and homoskedasticity of asset returns and consumption. He also shows that the Epstein,
Zin[9] and Weil [18] utility does not provide a solution to this puzzle.
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method of asset returns. Therefore, I found that I substantially improve the accuracy of
the model’s results, compares to Heaton’s results.

Nonetheless, these results may be improved in three ways. First, I studied a par-
tial equilibrium representative-agent model. It would be interesting to consider the same
preferences in a general equilibrium model. Secondly, I also maintain the assumption of
homogeneous agents. One other possibility would be to investigate a non-linear stochastic
dynamic model with heterogeneous agents. Thirdly, I suppose a complete-market econ-
omy. However, the implications of equilibrium incomplete-market economy deserve to be
studied, because agents will be limited in their ability to smooth consumption.
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A The residual functions

A.1 The residual function of the marginal utility of S

The residual function is given by the Euler equation (12) and as the following form

R(syaifi,) = it (s.g,m50,) =577 = B(6+0) E |57 (f (5,9,2,3) 5. 550,) | @

+3*(6.0)E [E [::Uﬂ.ﬁ (f (§,g,:i’,3:v) f(s,y,2,7) ,::U;ax) ] :E] ] :1:] , for oz =z, xu

A.2 The residual function of the equity price

The residual function is given by the Euler equation (14) and as the following form

R <$7yax;ﬁamaﬁe,bx> = ﬁe (Sayax;bx) -

(A (.f (i7y7x7i:) 7375:;510@)) i‘ierl(ﬁe (f (Sayaxai.) 7S>a~:;b$) + 1) | .CL']

A (87 Y, x; éO,w)

BE

where the approximation of the marginal utility of consumption is such as ,given (11)

N5y, w:80.) = fi (5,9, 2:80.0) = B0F |7 i (f (5,9,2,3) 5, o) | 2] (23)

B The Hansen and Jagannathan bound test

In this appendix, I present the results of the HJ bound test. We consider 3 cases. In these
tables, the vertical distance between a sample pair (u,,0,) and the lower bound o, and
the statistic of the test are respectively labeled dev and tratio.

B.1 Changes in substituability

The tables 1,2, 3 report the results of the volatility bound test, for different values of ~,
and 6.

Table 1 :Results of tests of the volatility bound restrictions.8=1, §=0.2, §=0.8, a=0.6

Yoy, o Oy dev tratio

2 0979 0.0257 0.4246 -0.3989 -0.960

2.5 09764 0.0377 0.5346 -0.4969 -1.0605
3 09773 0.0420 0.4960 -0.4540 -1.0038
3.5 0.9850 0.0480 0.2194 -0.1714 -1.4939
4 09890 0.0599 0.2153 -0.1554 -0.4818
4.5 0.9941 0.0670 0.3798 -0.3128 -0.6887

Notes : 5000 observations of the simulated series are used to calculate the moments of IMRS.
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Table 2 :Results of the tests of the volatility bound restrictions g=1, 6=0.4, §=0.8, «=0.6

Yoy, o Oy dev tratio

2 09720 0.0287 0.7286 -0.6999 -1.3176
2.5 09640 0.0360 1.0911 -1.0551 -1.7093
3 09623 0.0420 1.1688 -1.1268 -1.7775
3.5 09621 0.0506 1.1780 -1.1274 -1.7730
4 0.9550 0.0580 1.5042 -1.4462 -2.0556
4.5 0.9580 0.0650 1.3662 -1.3012 -1.9271

Notes : 5000 observations of the simulated series are used to calculate the moments of IMRS.

Table 3 :Results of tests of the volatility bound restrictions.8=1, §=0.6, §=0.8, a=0.6

Yoy, Oy Oy dev tratio

2 09690 0.0280 0.8636 -0.8356 -1.4772
2.5 09620 0.0360 1.1826 -1.1466 -1.8004
3 09569 0.0410 1.4167 -1.3757 -2.0066
3.5 09511 0.0470 1.6840 -1.6370 -2.2117
4 09440 0.0520 2.0119 -1.9599 -2.4294
4.5 0.9408 0.0600 2.1599 -2.0999 -2.5093

Notes : 5000 observations of the simulated series are used to calculate the moments of IMRS.

B.2 Changes in habit stock

Tables 4, 5,6, 7 diplay the results of the volatility bound test, for different values of ~, and
0.

Table 4 :Results of the tests of the volatility bound restrictions §=1, §=0.4, §=0, a=0.6

vy Ly, Oy O dev tratio

0.1 0.9984 0.006612 0.5603 -0.5537 -1.233

0.3 0.9954 0.02121 0.4326 -0.4114 -0.9030
0.5 0.9912 0.03596 0.2735 -0.2376 -0.5639
0.7 0.9922 0.05090 0.3077 -0.2568 -0.5836
0.9 0.9874 0.06344 0.1970 -0.1335 -0.7435
1.1 09889 0.07723 0.2131 -0.1358 -0.4329
1.3 09979 0.09132 0.5389 -0.4475 -0.9931
1.5 0.9957 0.1045 0.4458 -0.3413 -0.7495
1.7 1.001 0.1196 0.6644 -0.5448 -1.235

Notes : 5000 observations of the simulated series are used to calculate the moments of IMRS.
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Table 5 :Results of tests of the volatility bound restrictionsg=1, 6=0.2, §=0.4, a=0.6

Yoy Oy Oz dev tratio

2 09790 0.0722 0.4246 -0.3524 -0.8481
2.5 09850 0.0910 0.2194 -0.1284 -1.1192
3 09910 0.1060 0.2672 -0.1612 -0.3873
3.5 1.0030 0.1280 0.7641 -0.6361 -1.4686
4 1.0060 0.1470 0.8995 -0.7525 -1.7757
4.5 1.0190 0.1660 1.4947 -1.3287 -3.2480

Notes : 5000 observations of the simulated series are used to calculate the moments of IMRS.

Table 6 :Results of tests of the volatility bound restrictions8=1, §=0.2, 6=0.6, «=0.6

Yoy Oy Oz dev tratio

2 0.9837 0.0480 0.2522 -0.2042 -0.9385
2.5 0.9829 0.0610 0.2770 -0.2160 -0.8047
3 09820 0.0720 0.3079 -0.2359 -0.7493
3.5 0.9823 0.0838 0.2973 -0.2135 -0.7105
4 09838 0.0960 0.2493 -0.1533 -0.7283
4.5 1.0030 0.1100 0.7641 -0.6541 -1.5101

Notes : 5000 observations of the simulated series are used to calculate the moments of IMRS.

Table 8 :Results of tests of the volatility bound restrictions8=1, §=0.2, 6=0.8, «=0.6

Yoy Oy Oz dev tratio

2 09780 0.0270 0.4663 -0.4393 -1.0024
2.5 0.9765 0.0360 0.5303 -0.4943 -1.0589
3 09769 0.0427 0.5131 -0.4704 -1.0232
3.5 0.9794 0.0473 0.4082 -0.3609 -0.8904
4 0.9965 0.0560 0.4787 -0.4227 -0.9306
4.5 0.9908 0.0660 0.2609 -0.1949 -0.4752

Notes : 5000 observations of the simulated series are used to calculate the moments of IMRS.

B.3 Changes in the proportion of habit stock

Tables 8,9, 10 diplay the results of the volatility bound test, for different values of v, and
0.
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Table 8 :Results of tests of the volatility bound restrictionsg=1, 6=0.2, §=0.8, a=0.4

Yoy, o Oy dev tratio

2 09690 0.0096 0.8636 -0.8540 -1.5097
4 09490 0.0190 1.7809 -1.7619 -2.3188
6 0.9390 0.0200 2.2432 -2.2232 -2.6039
8 0.9301 0.0365 2.6553 -2.6188 -2.7915
10 0.9413 0.0460 2.1368 -2.0908 -2.5126
12 0.9580 0.0630 1.3662 -1.3032 -1.9301

Notes : 5000 observations of the simulated series are used to calculate the moments of IMRS.

Table 9 :Results of tests of the volatility bound restrictions.8=1, §=0.2, §=0.8, a=0.6

Yoy, O Oz dev tratio

2 09825 0.0280 0.2904 -0.2624 -0.9038

3 09819 0.0390 0.3115 -0.2725 -0.8532

4 0.9914 0.0560 0.2801 -0.2241 -0.5261

5 1.0034 0.0780 0.7821 -0.7041 -1.6305

Notes : 5000 observations of the simulated series are used to calculate the moments of IMRS.

Table 10 :Results of tests of the volatility bound restrictions.g=1, §6=0.2, §=0.8, a=0.7

Yoy, Oy Oz dev tratio
1.5 0.9867 0.0440 0.1974 -0.1534 -1.4282
2 09910 0.0540 0.2672 -0.2132 -0.5123

Notes : 5000 observations of the simulated series are used to calculate the moments of IMRS.
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