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Abstract. The application of bootstrap methods to regression models helps approximate the
distribution of the coefficients and the distribution of the prediction errors. In this paper, we
are concerned with the application of the bootstrap techniques to determine prediction
intervals on econometric models when the regressors are known. We investigate problems
associated with its application: determination of the number of replications, choice of the
method to calculate the least squares estimator (pseudo-inverse or inverse) and sorting
algorithm of the statistic of interest. These investigations stemmed from the need to predict
costs in the automotive industry in the earliest phases of the development of a new vehicle.
Generally, the sample size is small and the error term of the model has not necessarily a
Gaussian distribution. Consequently, the use of bootstrap techniques strongly improved
prediction intervals by reflecting the original distribution of the data. Two examples (car
engine and fuel tank) illustrate the application of such techniques.
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INTRODUCTION

Econometrics is extensively used for obtaining predictions in industrial applications today.
The determination of confidence intervals of coefficients and prediction intervals depends on
the assumptions inherent in the estimation methods and, in particular, assumptions on the
distribution of the error term of the regression model.  If these are no longer satisfied, standard
prediction intervals are no longer usable.
The bootstrap proposed by Efron (1979) allows the approximation of an unknown distribution
by an empirical distribution obtained by a resampling process.  The application of bootstrap
methods to regression models helps approximate the distribution of the coefficients
(Freedman, 1981) and the distribution of the prediction errors when the regressors are data
(Stine, 1985) or random variables (McCullough, 1996).
We are concerned here with the application of the bootstrap techniques to determine
prediction intervals on econometric models when the regressors are known.  These
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investigations stemmed from the need to predict costs in the automotive industry in the
earliest phases of the development of a new vehicle.  The general anticipated determination of
the costs is part of the supply strategy of automotive manufacturers.  As a rule, it aids the
design of a new vehicle around a target price, and in particular, to make comparisons between
various technical alternatives.
Among the different approaches available for making cost forecasts, the use of the
econometric model is ideal in the early steps of an automotive project because it requires no
detailed information.  However, it raises difficulties connected with the small size of the data
samples and the unknown distribution of the error terms of the regression models.  In this
context, bootstrap allows the use of an econometric approach for predictive purposes.
The first section briefly reviews the bootstrap principle on regression models.  Section 2 goes
on to address problems associated with its application: determination of the number of
replications, choice of the method to calculate the least squares estimator (pseudo-inverse or
inverse) and sorting algorithm of the statistic of interest.  The next section deals with cost
estimation in the preliminary project stage in the automotive industry and several applications
of bootstrap (Section 3).  Thus after estimating the cost of an engine, which only depends on a
continuous variable, we present an econometric model of the cost of a fuel tank, involving a
binary variable.  The conclusion provides a summary of the results obtained and suggests a
number of investigative channels.

1. BOOTSTRAP TECHNIQUES ON REGRESSION MODELS

Bootstrap is a resampling technique based on random sorts with retrieval in the data forming a
sample.  Used to approximate the unknown distribution of a statistic by its empirical
distribution, bootstrap methods are employed to improve the accuracy of statistical
estimations.  Detailed presentations of this approach are proposed in particular by Hall (1992)
and Efron and Tibshyrani (1993).
The use of bootstrap on regression models was initially broached by Freedman (1981).  Jeong
and Maddala (1993), Vinod (1993) and Veall (1998) offer syntheses of many developments
and applications of bootstrap techniques in econometrics which subsequently appeared.
Horowitz (1997) addressed the theoretical and numerical performance of bootstrap in
econometrics. We shall briefly recall the principle of this resampling method and its
application to regression models in Annex 1.

1.1 Bootstrap methods on regression models

The multiple linear regression model is denoted:

Y X u= +β (1)

where Y  is a vector (n,1), X  a matrix (n,p), β  the vector of the coefficients to be estimated
(p,1) and u  the vector of random errors (n,1).  A rank of observations i ( i n= 1,..., ) of matrix
X , corresponding to a line, is denoted X i  (1,p).

The parameter estimator β  obtained by the ordinary least squares (OLS) method is expressed

as ! ( )β = −X X X YT T1  and the residuals as ! !u Y X= − β .
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For the rest of the discussion, we have adopted an approach in terms of bootstrap of residuals
rather than an approach in terms of bootstrap by pairs, because we are not faced with the
problem of heteroscedasticity (Flachaire, 1998).

The theoretical bootstrap model is as follows:

Y X u* *!= +β (2)

 where u*  is a random term obtained from the residuals !u  of the initial regression.  At each
iteration b (b=1,…,B), a sample { } n

iiy 1
*

= , of size (n,1), is created from the bootstrap model (2).
Since the OLS residuals are smaller than the errors they estimate, the random term of the
theoretical bootstrap model is constructed from the following transform residuals which have
the same norm as the error terms ui :
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 The theoretical bootstrap model is hence expressed as:
 

 n1,...,=i   , )(*~ˆ)(* buXby iii += β (3)
 
where )(~* bui  is resampled from ~ui .

Let us consider the random variable z j , defined as z
sj
j j

j

=
−!

( ! )

β β

β
, the standard confidence

interval of β j  derives from the assumption according to which z j  is distributed according to a
Student's distribution with n-p degrees of freedom.  Thus for a confidence level (1 2− α ), this
confidence interval takes the following form:

[ ]! ( ! ) ! ( ! )( ), ( ),β β β βα αj j n p j j n ps t s t− ⋅ − ⋅− − −1  ,  (4)

where t  are the percentile values (α ) and (1−α ) of the Student's distribution with n-p
degrees of freedom.

 The bootstrap confidence intervals are constructed from two percentile and percentile-t
approaches.  The first method, based exclusively on bootstrap estimations, is the simplest one
for obtaining confidence intervals.  For a level (1 2− α ), the percentile confidence interval for
parameter β j  is given by:
 

 [ ]! ( ) , ! (( ) )* *β α β αj jB B  1− (5)
 

 where ! ( )*β αj B  is the αB -th value (respectively ! (( ) )*β αj B1−  the ( )1−α B-th value) of the
ordered list of the B bootstrap replications.  The threshold values are hence selected so that
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α % of the replications provide smaller (larger) !*β j  than the lower (upper) bound of the
percentile confidence interval.

The percentile-t bootstrap procedure consists in estimating the distribution function of z j

directly from the data.  This amounts to constructing a statistical table from the empirical
distribution function of the B bootstrap replications z j

* .  This table is named the bootstrap

table.  The z j
*  are defined as:

z
sj

j j

j

*
*

* *

! !

( ! )
=

−β β

β
(6)

Let !
*Fz j
 be the empirical distribution function of z j

* , the fractile containing α %, ! ( )*Fz j

−1 α , is

estimated by the value ! ( )t α  such that # { }z b t Bj
* ( )( ) ! /≤ =α α .

Finally, the percentile-t confidence interval for β j  is written:

[ ]! ( ! ) ! ! ( ! ) !( ) ( )β β β βα α
j j j js t s t− ⋅ − ⋅−1  , (7)

Thus the percentile-t confidence interval is the bootstrap analogy of the standard confidence
interval.

1.2 Bootstrap prediction intervals

After Stine (1985) and Breiman (1992), our working framework led us to use bootstrap to
construct prediction intervals on regression models with fixed regressors, whose values are
known (unconditional prediction).  Note however that the construction of bootstrap prediction
intervals on models with stochastic regressors is proposed by McCullough (1996).

For a new rank f of observations of explanatory variables X f , the prediction of cost !y f  is

calculated from the regression model: ! !y Xf f= β .
Like the confidence intervals of the regression coefficients, the standard prediction interval
derives from the assumption of Normality of the errors.  Hence for a confidence level
(1 2− α ), this standard prediction interval is written:

[ ]! !( ), ( ),y s t y s tf f n p f f n p− ⋅ − ⋅− − −1 α α ,  (8)

The use of bootstrap to determine the prediction intervals requires analysis of the prediction
error distribution.  Thus to preserve the same data generation process (DGP) for the
estimations of the coefficients and predictions, the bootstrap prediction intervals are obtained
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with the bootstrap procedure for residuals.  Similarly to the construction of the confidence
intervals, two main methods are available for constructing the bootstrap prediction intervals:
the percentile and percentile-t approach.

− Percentile prediction interval
 
 The percentile method consists in using the bootstrap approximation of the prediction error
distribution: e y yf f f= −! , to construct a prediction interval of y f .  The theoretical bootstrap

model corresponds to equation (3).  The bootstrap replications of the future value y f
* , for the

new rank of observations X f  are generated by the same model (3) :
 

 y X uf f f
* *! ~= +β (9)

 
 
 The error term ~*u f , like the ~*u , is determined from a sort with retrieval in the empirical
distribution of the transform residuals.
 For each of the B bootstrap replications, we calculate the bootstrap estimator ! ( )*β b , defined
by equation (4).  Thus the prediction and the bootstrap prediction error are written
respectively:
 

 ! ( ) ! ( )* *y b X bf f= β (10)

 e b y b y bf f f
* * *( ) ! ( ) ( )= −

 

 Using equation (9), we can rewrite the bootstrap prediction error as:
 
 e y y uf f f f

* * *! ! ~= − − (11)
 
 
 Hence the latter inherently depends on the initial OLS prediction !y f .
 
 The B bootstrap replications of the prediction error give the empirical distribution of e f

*  : G* .

The percentiles of this empirical distribution, denoted G* ( )− −1 1 α  and G* ( )−1 α , are then used
to construct a bootstrap prediction interval.
 A percentile prediction interval finally has the following form:
 

 [ ]! ( ); ! ( )* *y G y Gf f− − −− −1 11 α α (12)
 
− Percentile-t prediction interval

Similar to the confidence interval, the construction of the prediction interval, with the
percentile-t method, implies the calculation, for each bootstrap sample, of the bootstrap
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estimator of the standard deviation.  Thus to determine the percentile-t prediction intervals,
the bootstrap estimator of the prediction standard deviation is necessary, for each of the
replications.  This is written:

s s hf f
* * ( )= ⋅ +1 (13)

where s*  is the bootstrap estimator of the standard deviation of the error terms and
h X X X Xf f

T
f
T= −( ) 1 .

The percentile-t procedure consists in constructing the statistics z f
* , such that:

z
e
s

y y u
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f

f

f f f

f

*
*

*

* *

*

! ! ~
= =

− −
(14)

The bootstrap distribution of z f
*  defines the percentile-t bootstrap prediction interval.  The

percentiles z f ( )
*

1−α  et z f ( )
*

α , thus replace the critical values of the Student's distribution,
considered in the standard prediction interval (cf. equation 8).
A percentile-t prediction interval is hence written:

[ ]! ; !( )
*

( )
*y s z y s zf f f f f f− ⋅ − ⋅−1 α α (15)

Note that, as for the confidence intervals of the coefficients, the percentile (1-α ) of the
distribution of z f

*  defines the lower bound of the prediction interval and vice versa for
percentile (α ).
A symmetrical distribution of z f

*  hence implies the symmetry of the percentile-t prediction
interval.  In the opposite case, however, the asymmetry is retranscribed in the inverse manner
for the latter.  For example, if z f

*  has a longer, right shifting distribution tail, the percentiles

z f ( )
*

1−α  and z f ( )
*

α  are shifted towards the higher values of the bootstrap prediction errors, in
comparison with the corresponding percentiles of a symmetrical distribution.  Thus the
resulting percentile-t prediction interval is shifted leftward, asymmetrical about the predicted
OLS value.  Hence its construction implies a sort of "automatic bias correction" and makes it
possible, for a given confidence level, to accept lower predicted values than the symmetrical
standard prediction interval.

2. APPLICATION OF BOOTSTRAP TO REGRESSION MODELS

The developments we propose for the use of the bootstrap technique are accordingly an
extension of the work of Efron and Tibshirani (1993) and Booth and Sarkar (1998), Davidson
and McKinnon (1988) for the determination of the number of bootstrap replications.
Following McCullough and Vinod (1996), we addressed the choice of the method for
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calculating the OLS estimator by pseudo-inverse, as well as the sorting algorithm of the
statistic of interest.

2.1 Number of bootstrap B replications

Efron and Tibshyrani (1993) recommended a number of bootstrap replications of around 25 to
calculate the standard deviation of an estimator, and about a thousand for bootstrap
confidence intervals.  The construction of the bootstrap confidence interval (CI)1 involved the
fractiles (2.5%) and (97.5%) of the bootstrap empirical distribution of statistic z* .  We
accordingly posed the following question: above what number of bootstrap replications do the
estimations of fractiles of interest become invariant, according to the succession of random
sorts performed?  This amounts to analyzing the influence of B on these fractiles, to determine
the number of replications required.
Intuitively, it seems logical that the estimation of the fractiles by a distribution demands a
larger number of bootstrap samples than the calculation of the standard deviation of the
estimator, for example.  In fact, the latter depends on the tail of distribution, where few
samples appear.  The question boils down to determining the number of bootstrap replications
above which the value of the fractiles can be considered stable.

The procedure employed consists, for a certain number of values of B, in performing a set of
simulations (denoted k), aimed to judge the stability of the results, when the roots (starting
values) of the random number generator are different.  k = 100 simulations were made, which
seems reasonable, in light of our investigations.  The simulations were also made for the
following numbers of bootstrap replications: B = 20, 30, 100, 500, 1,000, 5,000 and 10,000.
Rather than analyzing the variability of each of the fractiles (2.5%) and (97.5%) of the
distribution separately, we consider the range of the interval between these fractiles, which we
name the "confidence interval of z* ".  Thus our work relies on the analysis of the variability
of the ranges of these CI, over 100 simulations, as a function of B.

In short, for each of the k simulations, k = 1 100,..., , the B bootstrap replications supply the
empirical distribution of z* , from which the fractiles of interest are extracted.  For a given
number of B replications, the simulations accordingly give 100 CI of z*  and their ranges.
Their variability is then analyzed.  The comparisons of the range distributions are made in
pairs, for rising values of B.  To do this, the characteristics of central values (mean, median)
and dispersion are calculated and three criteria are examined: equality of the medians2,
equality of the variances, and thecoefficient of variation (CV).  The first two criteria are the
subject of statistical tests, respectively the Wilcoxon non-parametric test of equality of
medians, and the Fisher tests of equality of variances of two independent samples.  The
variation in CV as a function of the number of replications is the subject of the analysis of the
third criterion.  The application and interpretation of this procedure is presented on the
example of the engine cost estimation model.

                                                
1 The process, presented for the construction of the bootstrap CI, applies identically to the

construction of the bootstrap prediction interval.
2 We have used the median as a central value indicator because, unlike the mean, it is unaffected by

variations in the extreme values of the distribution.
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2.2 Calculation of the estimator of the regression parameters

The calculation of the OLS parameters is usually performed (equation 2) through the inversion
of  the ( X XT ) matrix. This could raise some numerical problems when the X matrix is ill-
conditioned (Belsley, Kuh et Welsch, 1980). The calculation of the OLS estimator is therefore
more accurate when it derives from the singular value decomposition of the X matrix :

   X    U    D    V T

(n,p)     (n,p)  (p,p)  (p,p)

=
(17)

D is the singular values matrix of X. U is the orthogonal matrix of the p eigenvectors
associated to the p non-zero eigenvalues of ( XX T ) and V is the orthogonal matrix of the
eigenvectors of ( X XT ). Denoting X +   =   V  D   U+ T  the pseudo-inverse matrix of X, the
OLS estimator is written as :

!β   =   X  y+ (18)
and its variance-covariance matrix is :

!( ! )V β   =   s   V  D   V2 -2 T

The projection matrix is given by :
T

n
TT

n   -  U  U  =  IX)X-X(XI (19)

We have compared the two methods of calculation of the regression parameters (equations 2
and 18). After a first set of tests with Matlab (cf Juan, 1999), both methods have been directly
programmed in Fortran. The most accurate algorithm for the inversion of the positive defined
matrix ( X XT ) is based on a cholesky decomposition (Seak, 1972). An analysis of the
numerical results of this algorithm is given by Lantz (1983). We have used the algorithm of
Golub et Reinsch (Forsythe and al., 1977) for the computation of the pseudo-inverse matrix
X+.
 Multicollinearity has less consequences on the matrix conditionning when the data are scaled
or centered and scaled (Belsley and al., 1980 – Belsley, 1984 – Erkel-Rousse, 1995). We have
assessed these consequences for several dimensions of X (n=10,…,50, p=2,…,10). For each
of them, we have generated 1000 matrices X such as TX 1  has a uniform distribution (0,1) and
the following j vectors are built as ν+= −

T
j

T
j XX 1  ; ν has a uniform distribution (0, 0.001).

We have measured the computation errors through the sum of the absolute values of the
differences between +XX  or 1))(( −XXXX TT and the identity matrix. Table 1 summarizes
these errors of computation for several values of  (n,p)3. This leads to choose the pseudo-
inverse method with scaled data for the estimation of the OLS parameters. Nevertheless, a
matrix inversion could be used with centered and scaled data when p is small.

                                                
3 L’ensemble des résultats est disponible auprès des auteurs.
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Table 1 – Computation error on the matrix product +XX  and 1))(( −XXXX TT

Dimension
of X

+XX
data scaled to 1

1))(( −XXXX TT

data scaled to 1

1))(( −XXXX TT

data centered and scaled
(50,2) <10-10 <10-10 <10-10

(50,4) <10-10 0.61× 10-6 0.11× 10-6

(50,8) <10-10 0.54× 10-5 0.59× 10-6

(50,10) <10-10 0.50× 10-4 0.50× 10-5

Subsequently, we have compared the computation time of residual bootstrap for these last two
calculation methods (using the sorting algorithm described below). As previously, one
thousand data samples have been generated for several values of (n,p). For each sample, the
residual bootstrap technique associated to the percentile method have been applied with 1000
replications. Table 2 provides the computation time on a micro-computer (Pentium II, 300
Mhz). The running time is divided by approximately 2 when the pseudo-inverse calculation is
performed.

Table 2 – Computation time for residual bootstrap associated to percentile method with 1000
replications.

Dimension
of X

+X
data scaled to 1

1)( −XX T

data centered and scaled
(10,2) 0.0103 0.0208
(50,4) 0.0518 0.0972
(90,6) 0.1001 0.1823
Unit : second

2.3 Sorting algorithm of the replications

The most two famous sorting algorithms are the sort by comparison of all the elements and the
partition sort. This last method runs faster on large samples because it needs approximately
Blog2B comparisons to sort the B replications as the first one requires approximately B2/2
operations.
The modified sorting algorithm that we propose is only looking for the determination of  the α
and 1-α percentiles. Thus, in the sort step, we are just working with (αB +1) bootstrap
replications and not with all the (B) replications as in the classic algorithm. Two main steps
can be distinguished.
First, we build a vector, denoted S1 ,  which contains the first  (αB +1) statistics ! ( )*θ b 4,
sorted in a growing order. Therefore, S1(1) and S1(αB +1) stand, respectively, for the smallest
and the biggest values of the first  (αB +1) bootstrap statistics. Then, S1 is copied in an other
vector, denoted S2, with the same dimension.

                                                
4 These are the value of the bootstrap statistics coming from  the first  b=1,…, (α B + 1)  iterations.
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Second, each (B−(αB +1)) remaining statistics is compared with the elements of S1. The S1
vector is used to look for the smallest elements of the B replications as follow. For each
bootstrap iteration b , b = B + 1,...,Bα , ! ( )*θ b  is compared with the largest value S1. If it is
greater or equal to this value, we go to the comparison with S2. Otherwise, ! ( )*θ b  is compared
to each element of S1. If it lower or equal to the k-th element of S1, S1(k) is replaced by
! ( )*θ b  and for each index greater than k, the elements are moved forward the next upper one.

Finally, the S1 vector contains the (αB +1) smallest values of the  B statistics. Subsequently,
S1(α B) is the α  percentile of the ! ( )*θ b .

On a similar way, each (B−(αB +1)) remaining statistics is compared with the elements of S2.
The S2 vector is used to look for the biggest elements of the B replications. Therefore, S2 (1)
stands for the ( )1−α  percentile of the bootstrap distribution. Note that we need to sort
(αB +1) replications rather than (αB ) to extract the ( )1−α  percentile because this is the first
element of  the  S2 vector of dimension (αB +1).

In this improved version of the sorting algorithm, we must distinguish the two steps in order
to determine the number of  comparisons. In the first step, the number of comparisons is equal

to 
α αB( B +1

2
)

. In the second step, the number of operations has a lower bound when each

statiscis is always lower than S2(1) and is also always greater than S1(αB +1) and has an upper
bound when it is compared to the (αB +1) elements of S1 and S2. It is therefore contained
between  [ ]B B− + ×( )α 1 2  and [ ]B B B− + × + ×( ) ( )α α1 1 2 .

The total number of comparisons of this algorithm is between [ ]( ) ( )α αB B B+ × − +1 1  and
( ) ( )αB B+ × −1 1  ; it is of order B 2  which is the same as for the classic algorithm. However,
for B=5 000 and α = 0 025, , the number of  operations is of order 12 millions with the classic
algorithm and it is bouded by  20 000 and 600 000 with this improved version. This divides, at
least, the number of operations by 20.

3. APPLICATIONS TO THE AUTOMOTIVE SECTOR

The automotive market is very competitive and the reduction of the costs is part of the supply
strategy of automotive manufacturers.  So, in the developped countries, the car markets are
saturated and, nowadays there is a price competition between the car companies. F. Verboven
(1996)  analyzes the european car market in terms of oligopolistic competition. In the new
industrialized countries where the sales are growing up, the purchasing power of the
households is smaller and the automotive companies have to overcome their costs.
The cost estimation is carried out from the earliest phases of  the development of a new
vehicle to its production. In the first steps of a project (i.e. 36 months before manufacturing),
it aids the design of a new vehicle around a target price, and in particular, to make
comparisons between various technical alternatives (Juan, 1999). Thus, the cost prediction is
an important target for the companies. Among the different approaches available for making
cost forecasts, the use of the econometric model is ideal in the early steps of an automotive
project because it requires no detailed information which is not available at this time.
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However, it raises difficulties connected with the small size of the data samples and the
unknown distribution of the error terms of the regression models.  In this context, bootstrap
allows the use of an econometric approach for predictive purposes by approximating this
unknown distribution by the empirical one. We illustrate the use of bootstrap on such
econometric model through two examples. Before, we present the costs that we study and the
data that we use.

3.1 The data and general form of the models

The car consists of several thousand parts and accessories, forming sub-sets (or functions) like
the engine, body, steering mechanism, etc.  For a given vehicle model, different versions exist
in terms of attachments, drive systems, etc.  Thus to make cost forecasts for all the vehicles of
the model concerned, cost estimation models are constructed for the sub-sets.  The entity of
which the cost is modeled hence usually corresponds to a sub-set of assembled parts.  It is also
important to clarify the perimeter of the costs analyzed.  Our work addresses the production
cost, called the manufacturing cost not including depreciation (PRF).  This cost, which
represents the expenditures by the company during the production phase of the good, is
composed of purchases (of materials and outside produced parts) and a conversion value.  The
PRF accounts for about 60% of the total cost of a vehicle (which includes the costs of
guarantee, logistics, etc).  Note that the PRF not including depreciation does not include
capital amortization.

The specificity of the cost models demands clarifying the industrial production context.
Firstly, the costs of the different components of the database are standardized for an average
manufacturing volume, representing the "usual" production conditions for the product family.
We thereby discard effects of scale, by working on unit manufacturing costs.  Secondly, the
state of the art is considered as given.  In fact, technological changes are chiefly reflected by
new, more efficient machines.  However, the cost parameter investigated does not include
capital amortization.  Thus the analytical framework leads us to specify cost models for a
standardized production volume and a given state of the productive system.  Moreover, our
modeling needs lead us to use "cross-section" data of the cost of each of the components of
the database at a given time.  Hence the estimations are made in a static framework and do not
include factors connected with technical progress.

Cost is thus explained by the pertinent technical characteristics of the product, at a given time
of the technology, for purposes of cost prediction for new products.  Our approach is therefore
different from the one used in the application of bootstrap techniques on production boundary
models (Simar, 1992).  In the latter case, in fact, the problem is to assess the efficiency of a
production unit with respect to an effective boundary, using bootstrap.  Finally, note that while
no "a priori" is set, concerning the form of the relation linking the cost with the descriptors,
the linear or multiplicative forms are usually adopted.

3.2 Engine cost estimation model

The example covers the perimeter of the engine, with its electrical components.  Roughly
speaking, the engine is composed of the cylinder block, the mobile linkage (crankshaft,
flywheel, etc), parts for the distribution (cam shaft, valves, etc) and the cylinder head
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(including its cover).  The electrical equipment includes the starter, ignition coil, spark plugs,
generator, etc.

With the final assembly of the vehicle, the engine represents a function concerning which
manufacture is usually an internal function of the company.  Hence the cost data are PRF not
including amortization.  The engine also represents a non-negligible portion (about 20%) of
the PRF of a vehicle.

A number of different engine families exist, chiefly distinguished by the carburation method
(gasoline or diesel), the injection system (direct, monopoint, etc) and the volumetric
displacement.  The study is concerned with engines with a displacement larger than
1,700 cm3, forming a uniform working sample of 15 engines.  In the technical perimeter of the
engine, the presence of additional components (support, pipes, etc) are imposed by accessories
like power steering and air conditioning.  These may or may not be present on the engine,
depending on the duty rendered by the vehicle on which they are to be mounted.

In the econometric equation, the cost is a function of the volumetric displacement of the
engine. Thus, the regression includes an explanatory variable and an intercept. The model is
estimated by the ordinary least squares (OLS) method. The value of R2 is 0.97 and the
estimated coefficients5 of the regression are significantly different from zero, for a first type
risk of 5%. From the White test F(2,12)=0.66, we do not reject homoscedasticity.

The transform residuals of the regression ~u , from which the samples in the residuals
bootstrap procedure are formed, are shown in Figure 1. The tail of distribution is longer
towards the right, reflecting the presence of high positive residuals.  In fact, the residual
corresponding to a 1,783 cm3 engine, which we denote !u6 , the "extreme" residual, has the
highest value of all the residuals.  This engine, as well as the second in the sample, are
equipped with air conditioning and correspond to the highest residuals of the regression.

Figure 1 Density core estimator of transform residuals
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5 For reasons of confidentiality, the values of the estimated parameters are not given.
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The procedure for determining the number of bootstrap replications needed is then applied (cf.
section 2.1).  The results presented concern the example of the displacement coefficient z1

* .

− Number of B replications
 
 Table 3 Tests of CI ranges of z1

*

 
 B  Median

of ranges
 Wilcoxon
test

 P-marg.  Standard
deviation
of ranges

 Fisher
test

 P-marg.

 20  3.910    0.973   
 30  4.307  3.676  0.000  0.889  1.197  0.372
 100  4.224  0.864  0.388  0.520  2.924  0.000
 500  4.273  1.130  0.258  0.203  6.565  0.000
 1 000  4.304  0.458  0.647  0.150  1.830  0.003
 5 000  4.301  0.030  0.976  0.067  5.019  0.000
 10 000  4.317  1.604  0.109  0.051  1.727  0.007
 
 The results of the Wilcoxon tests for the equality of the medians and the Fisher tests for the
equality of the variances of the ranges of the confidence intervals of z1

*  do not positively
establish a value of B from which we can accept the assumption of equality of the medians
and the variances of the CI (cf table 3).
 The change in percentage standard deviation as a function of the number of replications is
shown in Figure 2.  The CV declines sharply for low values of B, and then slackens
progressively.  Thus from B = 5,000, it is then stabilized.  This third criterion finally enables
us to select the number of bootstrap replications B = 5,000, from which the CI ranges of z1

*

(and hence the fractiles (2.5%) and (97.5%) of the distribution) can be considered stable.
Similarly, B = 5 000 replications are selected to construct the bootstrap prediction intervals.
 
 Figure 2 Percentage standard deviation of CI ranges of z1

*
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− Cost prediction
 
 The fitting of the regression is now used to predict the PRF of a new engine, with
displacement of 1,900 cm3.
 
 Table 4 OLS predictions and standard and bootstrap prediction intervals
 
 Engine  OLS  Standard prediction interval
 displacement
in cm3

 predicti
on

 2.5%  97.5%  Range  Form6

 1900  9133.42  8160.67  10106.20  1945.53  1.00
 
 Engine  Percentile prediction interval  Percentile-t prediction interval
 Displa
cement
in cm3

 2.5%  97.5%  Range  Form  2.5%  97.5%  Range  Form

 1900  8419.66  10179.57  1759.91  1.47  8370.00  10271.97  1901.96  1.49
 Units: French francs
 
 
 For the bootstrap prediction intervals, we show two construction methods: percentile and
percentile-t.  The percentile intervals possess a much smaller range than the percentile-t or
standard intervals.  Thus the percentile method yields too "optimistic" (too small) intervals
and does not appear relevant for this type of investigation.  In fact, the prediction error is not a
pivot statistic and the bootstrap inference may prove wrong in this case.  Note that the
bootstrap prediction intervals are shifted towards the higher cost values (form higher than 1)
compared with the standard intervals.
 
 
− Marking the "extreme" residual in bootstrap replications for prediction
 
 To explain the asymmetry of the bootstrap prediction intervals, we analyze the impact of the
sorting of the extreme residual !u6  in the bootstrap DGP, on the bootstrap prediction error
distribution.  To do this, we examine, for each of the replications, the residual ~*u f  of the
theoretical bootstrap model of the prediction (cf. equation 13) and check whether or not it
corresponds to the residual !u6 .  Table 3 shows the means and standard deviations of z f

*  for
these two alternatives (the bootstrap statistic of the normed prediction error), for the five
thousand replications.
 

                                                

 6 
lowy
yupp

form
f

f

−
−

=
ˆ

ˆ
, where upp and low correspond effectively to the lower and upper bounds of the

boostrap prediction interval, where !yf is the OLS prediciton.

 (forme = form; sup = upper; inf = lower)
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 Table 5 Characteristics of z f

*

 
 Engine  z f

*  ~ !*u uf ≠≠≠≠ 6  ~ !*u uf ==== 6
 Total

  Mean  0.144  -2.472  -0.022
 1900 cm3  Standard

deviation
 0.896  0.745  1.092

  Batch
quantity

 4682  318  5000

 
 
 For the cost prediction of a 1,900 cm³ engine, Figure 3 shows the distribution of the bootstrap
prediction error, distinguishing the case in which the extreme residual is sorted.
 
 Figure 3 Distribution of statistic z f

* , for a 1,900 cm3 engine
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 The bootstrap distribution of the normed prediction error z f

*  appears to be strongly asymmetrical
towards the negative values.  Moreover, we observe (Figure 3) that they asymmetry is due to the
sorting of the extreme residual !u6 , in the theoretical bootstrap prediction model.  In fact, since
e y y uf f f f

* * *! ! ~= − − , if ~ !*u uf = 6  (high positive value), the bootstrap prediction error is strongly
negative, and this is found it the histogram.  Thus the resulting prediction interval is shifted towards
the higher values of cost, since the fractile (2.5%) of the distribution determines the upper bound of
the interval, and vice versa for the fractile (97.5%).  Note that this process is repeated for the
distribution of the statistic z f

*  of other predictions (cf Juan, 1999).
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3.3 Fuel tank cost estimation model

The technical perimeter of the product investigated is the fuel tank equipped with the fuel
gauge and the suction pump.  The tank is made of plastic, by a blowing process.  It is part of a
larger subassembly of the vehicle: the fuel circuit.

The equipped tank is an example of the function of the vehicle, of which the design and
manufacture are completely externalized and the domain of equipment suppliers.  Hence the
tank is entirely an "outside produced part".  The cost of the tank, to the automobile
manufacturer, is the purchase price.  This includes the supplier's profit margin.  Yet it can be
considered constant, by reference to terms of sale corresponding to constant volumes, whether
for the automotive manufacturer or for the suppliers, whose products make up our sample.

It is also important to distinguish diesel tanks from gasoline tanks.  The discrimination is
technically explained by the presence of a built-in pump in the suction system, on gasoline
tanks, which is not mounted on diesel tanks.  Gasoline is also much more volatile than diesel,
and pollution control standards impose a permeability limit on the tank.  These desiderata
explain the specific anti-evaporation treatment.  Note that the cost of the fluorination process
primarily depends on the depollution standard, and marginally on the capacity of the tank.
Thus gasoline tanks display an extra cost compared with their diesel counterparts.  This extra
cost is also variable.  In fact, the architecture and design criteria may entail a double well (one
for gauging and one for suction) depending on the vehicle.

In the econometric model, the fuel tank cost  is a function of  a capacity variable and a dummy
variable which is zero if the tank contains diesel and one if it contains gasoline. The
regression is estimated by OLS. The value of R2 is 0.95 and the estimated parameters of the
capacity and fuel variables are significant, for a first type risk of 5. From the White test
F(3,11)=1.29, we do not reject homoscedasticity.

  We also performed a Fisher test, to assess the validity of an overall model, compared with
two distinct regressions, on each type of tank (gasoline and diesel).  This is equivalent to
testing the equality constraint of the capacity coefficient, for the two sub-samples
F(1,11)=0.54 which is lower than the critical value at 5%.  Thus the test does not allow us to
discard the zero hypothesis of a single regression for gasoline and diesel tanks.

Figure 4 shows the kernel density estimator of the transform residuals ~u , without any
distinction of the type of tank. The tail of distribution is much longer towards the right,
reflecting the presence of high positive residuals.  In fact, the residuals corresponding to
observations Nos. 2 and 8 (gasoline tanks) display high values.  After analysis, it turns out that
contrary to the other gasoline tanks, these are equipped with a double well, imposed by the
architectural requirements of the vehicle.  These residuals are called "extreme" residuals.
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Figure 4 Kernel density estimator of transform residuals
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− Bootstrap procedures for classic and stratified residuals
 
 After having presented the regression model and analyzed the residuals, it is necessary to
examine the process of construction of the bootstrap samples, which, in the presence of a
dummy variable in the regression, displays certain specificities.  In fact, the bootstrap
procedure for "classic" residuals, as presented in section 1.2, does not respect the structure of
the initial sample.  In the bootstrap DGP, the residuals (gasoline or diesel) are randomly
assigned to the capacity of a diesel tank, for example.  Intuitively, this procedure does not
seem satisfactory since the approach underlying the bootstrap consists in generating artificial
samples as similar as possible to the initial sample.  This means that in the presence of one (or
more) explanatory variables of the qualitative type in the model, we propose an adapted
version, called the "bootstrap procedure for stratified residuals".
 
 The construction of the bootstrap sample is discussed in detail below.
 
 Let ~u  be the dimension vector n = 15, the transform residuals of the regression.  This vector
is split into two sub-samples: ~u1  of size n1 8= , composed of residuals associated with
gasoline tanks, and ~u2 , of size n2 7= , of the 7 residuals associated with the diesel tanks.  We
perform respectively 8 (7) random sorts with retrieval in ~u1  ( ~u2 ) to create ~*u1  ( ~*u2 ).  The
concatenation of the two vectors ~*u1  and ~*u2  then forms the vector of the bootstrap residuals
resampled "by strata": ~*u  with dimension n = 15. The rest of the procedure is identical to the
bootstrap procedure for standard residuals, with the bootstrap residuals vector ~*u  of
dimension n = 15. The two residual (classic and stratified) bootstrap procedures are applied
and compared during the construction of bootstrap prediction intervals.
 
− Cost prediction
 
 The cost predictions and their intervals are calculated for diesel and gasoline tanks, with
capacity of 60 liters (Tables 6, 7 and 8).
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 Table 6 OLS predictions and standard prediction intervals
 
 Tank  OLS  Standard prediction interval
  prediction  2.5%  97.5%  Range  Form
 60 l Diesel  260.24  182.74  337.74  157.00  1.00
 60 l Gasoline  507.50  430.37  584.63  154.26  1.00

 Units: French francs
 
 
 Table 7 Bootstrap prediction intervals of classic residuals
 
 Tank  Percentile prediction interval  Percentile-t prediction interval
  2.5%  97.5%  Range  Form  2.5%  97.5%  Range  Form
 60 l Diesel  203.20  342.22  139.02  1.44  203.33  354.27  150.94  1.65
 60 l Gasoline  449.90  588.30  138.40  1.40  451.73  599.26  147.53  1.64

 Units: French francs
 
 
 Table 8 Bootstrap prediction intervals of stratified residuals
 
 Tank  Percentile prediction interval  Percentile-t prediction interval
  2.5%  97.5%  Range  Form  2.5%  97.5%  Range  Form
 60 l Diesel  220.52  308.91  88.39  1.22  215.33  312.98  97.65  1.17
 60 l Gasoline  441.50  594.94  153.44  1.32  446.19  619.38  173.19  1.82

 Units: French francs
 
 
 The prediction intervals obtained with the bootstrap procedure for classic residuals are similar,
in terms of range, to the standard intervals.  Their forms are asymmetrical towards the higher
costs, in the same way for gasoline and diesel tanks.  Hence this procedure, which randomly
reassigns the residuals, retranscribes the asymmetry of their distribution equally on the two
types of tank.  In fact, this asymmetry, caused by the gasoline tanks, should not be transferred
to the diesel tanks.  The bootstrap procedure for stratified residuals supplies prediction
intervals with smaller ranges (about 100 FF) for diesel tanks and wider ranges (175 FF) for
gasoline tanks.  These intervals are also symmetrical for diesel tanks and strongly
asymmetrical towards the right for gasoline tanks.
 
 
− Marking of "extreme" residuals in bootstrap replications for prediction
 
 The impact of the extreme residual sort on the distribution of the bootstrap prediction error is
analyzed, by checking whether for each replication, the residual ~*u f  of the theoretical
bootstrap model of the prediction corresponds to !u2  or !u8 .  Table 9 shows, as a function of
~*u f , the means and standard deviations of the bootstrap statistic of the normed prediction
error, for five thousand bootstrap replications.
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 Table 9 Characteristics of z f
*  for a 60 liter tank

 
  60 liter

tank
 

 z f
*

 
~ ( !

! )

*u u
ou u

f ≠ 2

8  
 
~ ( !

! )

*u u
ou u

f = 2

8  

 Total

   Mean  0.256  -1.984  -0.028
 Bootstrap  Diesel  Standard

deviation
 0.793  0.761  1.086

 of   Batch
quantity

 4365  635  5000

 classic   Mean  0.265  -2.062  -0.033
 residuals  Gasoline  Standard

deviation
 0.790  0.895  1.119

   Batch
quantity

 4360  640  5000

   Mean  0.010  0.002  0.008
 Bootstrap  Diesel  Standard

deviation
 0.733  0.772  0.743

 of   Batch
quantity

 3723  1277  5000

 stratified   Mean  0.603  -1.974  -0.035
 residuals  Gasoline  Standard

deviation
 0.685  0.897  1.337

   Batch
quantity

 3763  1237  5000

 
 
 Figure 5 shows the empirical bootstrap distribution of the prediction error for a 60 liter
gasoline tank, when the bootstrap procedure for residuals is stratified. The bootstrap
distribution of the normed prediction error z f

*  appears to be highly asymmetrical towards the
negative values.  This asymmetry is due to the sorting of extreme residuals !u2  or !u8 , in the
theoretical bootstrap prediction model (cf. Figure 5).  In fact, since e y y uf f f f

* * *! ! ~= − − , if
~ ! !*u u  uf = 2 8 ou  (high positive values), the bootstrap prediction error is strongly negative.  This

process is reproduced for the distribution of the statistic z f
*  of other predictions (cf Juan,

1999).
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 Figure 5 Distribution of statistic z f
* , for a 60 liter gasoline tank (bootstrap of stratified

residuals)
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 CONCLUSION

The use of bootstrap on regression models allows to approximate the unknown distribution of
the error of prediction by its empirical distribution. With a small size of the data samples and
an unknown distribution of the error terms of the regression models, the bootstrap techniques
are very useful for an econometric approach.
The determination of the number of replications is based on the coefficient of variation of the
width of the condidence interval. The use of  a pseudo-inverse matrix rather a traditional
matrix inverse gives more accurate estimations of the regression parameters when the data are
ill-conditioned. Moreover, this method runs faster as it does not require data centering. A
modified sorting algorithm allows to quickly sort the statistics obtained from the bootstrap
replications. Only distribution tails are sorted and each element of the series is compared to
the retained percentiles.
The first example developed illustrates the use of bootstrap techniques on the simplified
model of a regression with a single explanatory variable, when the size of the sample is small.
The analysis of the bootstrap prediction intervals shows that bootstrap serves to retranscribe
the asymmetry of the distribution of the residuals in the prediction intervals.  In fact, the latter
are shifted towards the higher costs in comparison with the standard intervals, thereby
allowing higher values for the cost prediction of a new engine. In this context, the use of
bootstrap techniques accordingly allows a better retranscription of the information contained
in the initial sample for the cost prediction intervals of a new product.
The second example served to describe an application of adjusted bootstrap techniques, in the
case of modeling in the presence of a dummy variable.  This method helps to construct
symmetrical prediction intervals for diesel tanks and asymmetrical towards the higher cost
values for gasoline tanks.  This results from the asymmetry, both in the distribution of the
prediction error and that of the extra cost connected with the gasoline tank. Thus the use of the
bootstrap procedure of stratified residuals, when the information is available, makes it
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possible to take account, in the confidence and prediction intervals, of potential additional
costs for gasoline tanks, imposed by the vehicle's architectural criteria.
Further developments on the use of bootstrap techniques are investigated. They concern the
estimation of possible non-linear cost functions which have to be distinghuised from
asymmetric relashionships.
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Annex 1 - Bootstrap principle and application to the regression model

A.1 Principle

According to the bootstrap principle, by repeating the resampling several times in the initial
data, one can construct the empirical bootstrap distribution function of a statistic of interest.
This satisfactorily approximates the true distribution of the statistic, which is itself unknown.
The process of constructing the empirical bootstrap distribution function of an estimator is
described in detail below.

Consider a sample i.i.d. { }yi i

n

=1
, of a random variable y of unknown distribution F.  Let us try

to determine the distribution !( )θ F  of an estimator !θ  of a parameter θ  of F.  The aim is
hence to construct a statistical table7 of approximate values of !( )θ F .  To do this, we have n
observations of the sample, hence of the empirical distribution function !Fn .

In theory, it is possible to construct a table of !( ! )θ Fn : T, conditional at { }yi i

n

=1
, by calculating

!θ  on each of the n-samples taken with retrieval in { }yi i

n

=1
.  However, nn such samples exist

and this procedure can only be implemented if n is very small.  In practice, we shall take B
samples (b B= 1,..., ), named bootstrap samples, to construct a table extracted from T.  On
each of the bootstrap samples, we calculate the value !*θ (b)  of the statistic !θ .  The bootstrap
table of !*θ  is hence a sub-table T, conditional on the data sample.  This concept of
dependence on data is important for understanding the bootstrap process.  The bootstrap table
only in fact applies for the initial sample.  For a new sample, it is therefore necessary to
construct a new bootstrap table, specific to this sample.

According to the theory of Glivenko-Cantelli (G-C), for a sample of random variables i.i.d. of
unknown distribution F, if the size of the sample n tends towards infinity, the empirical
distribution function of the sample uniformly converges almost definitely towards distribution
F.  Thus the bootstrap table of !*θ , conditional to { }yi i

n

=1
, supplies a good approximation of

the distribution !( )θ F .

A.2 Bootstrap methods on regression models

The multiple linear regression model is denoted:

Y X u= +β (A-1)

                                                
7 « Statistical table » means an empirical version (on B bootstrap replications) of the sampling

distribution of !θ .
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where Y  is a vector (n,1), X  a matrix (n,p), β  the vector of the coefficients to be estimated
(p,1) and u  the vector of random errors (n,1).  A rank of observations i ( i n= 1,..., ) of the
matrix X , corresponding to a line, is denoted X i  (1,p).  The parameters estimated by the

ordinary least squares (OLS) method !β  and the residuals !u  are defined as:
! ( )β = −X X X YT T1  and ! !u Y X= − β .

− Bootstrap of residuals

The theoretical bootstrap model is as follows:

Y X u* *!= +β (A-2)

where !β  is the OLS estimator and u*  is a random term taken from the residuals !u  of the
initial regression, whereof we describe the construction below.

The application of the bootstrap procedure consists in repeating the following steps B times:

1) At each iteration b (b=1,…,B), a sample { }yi i

n*
=1

, of size (n,1), is created from the bootstrap

model (A-2).  We accordingly have a new pair (Y X* , ) on which we can make an estimation
of the regression parameters.  Since the OLS residuals are smaller than the errors they
estimate, a transform is necessary to establish the random term of the theoretical bootstrap
model.  Hence following Freedman (1981), this is constructed with the following transform
residuals ( !ui  is divided by a factor proportional to the root of its variance)  which are of the
same norm as the error terms ui :

 ~ !

( )
!

( )
u

u
h n

u
hi

i

i

s

ss

n

=
−

−
−=

∑1
1

11

 
 The theoretical bootstrap model is hence the following:
 

 y b X u bi i i
* ( ) ! ~*( )= +β  ,   i = 1,...,n (A-3)

 
 where ~ ( )*u bi  is resampled from ~ui .  The new dependent bootstrapped variables y bi

* ( )  are

hence constructed from calculated values !yi  and from ~ ( )*u bi  : yi b yi ui b*( ) ! ~ *( )= + .

 
1) The OLS estimation procedure is applied to the regression model (A-3) to obtain the
bootstrap estimator.  For the b-th sample, this is written:

! ( ) ( ) ( )* *β b X X X Y bT T= −1 (A-4)
Steps 1) and 2) are repeated B times (b=1,…,B).  The empirical bootstrap distribution
functions of !*β  and the statistics obtained from !*β  are then constructed.
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In applying a bootstrap procedure on residuals, the explanatory variables X are considered as
fixed.  Hence this procedure is valid if the X are really fixed and if the errors satisfy the classic
assumptions of OLS8.  In consequence, it is not correct if the latter are heteroscedastic.  By
applying the residuals bootstrap procedure to construct the theoretical bootstrap model,
different error terms are associated with different explanatory variables.  Thus the bootstrap
residual resampling procedure is unable to respect this relation.  In such cases, the theoretical
bootstrap model is constructed by a different procedure, called "bootstrap by pairs".

− Bootstrap by pairs

This second bootstrap approach to regression models consists in directly resampling in the
original data, from pairs ( y Xi i, ).  Note however that the simultaneous resorting of ( y Xi i, )
introduces a correlation between the regressors and the errors of the bootstrap data generation
process.  Hence bootstrap by pairs, in this simple form9, does not satisfy the hypothesis of
exogeneity of the regressors in the bootstrap DGP.

The application of the bootstrap by pairs procedure consists in repeating the following steps B
times:

1) At each iteration b (b=1,…,B), the vector Y*  and the matrix of explanatory variables X *

are constructed, by making n random sorts with retrieval10 of pairs ( y Xi i, ), in the original
sample.  Hence if the error term ui  associated with X i  has a large variance, the relation is
preserved in the bootstrap sample.
 
 
2) An OLS estimation of the coefficients of the bootstrap regression model is then performed:

! ( ) ( ( ) ( )) ( ) ( )* * * * *β b X b X b X b Y bT T= −1 (A-5)

Unlike the residuals bootstrap procedure, note that the matrix of explanatory variables X b* ( )
is different at each iteration b.
The B replications !*β  accordingly supply the empirical bootstrap distribution function.

Thus the B independent replications bootstrap, obtained by the bootstrap procedures discussed
above, supply a random sample of ! *β  which is used to estimate the bootstrap distribution of
!β .  This allows the construction of the bootstrap confidence intervals and the parameters of

the regression model.

                                                
8 The errors have a zero mathematical likelihood, are homoscedastic and non-autocorrelated.
9 The wild bootstrap is an appropriate method in the presence of heteroscedacticity, which satisfies

the hypothesis of exogeneity of regressors.
10 Note that Friedman (1981) considers bootstrap samples of size m different from n.
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A.3 Construction of bootstrap confidence intervals

Let us briefly recall the form of the standard confidence intervals of the regression
coefficients, which depend on the hypothesis of Normality of the error terms, before
presenting the bootstrap confidence intervals, which depend exclusively on the data.  The
developments are made for the element j of the vector of parameters: β .

Consider the random variable z j  defined as z
sj
j j

j

=
−!

( ! )

β β

β
, the standard confidence interval of

β j  derives from the assumption according to which z j  is distributed by a Student's
distribution with n-p degrees of freedom.  Thus for a confidence level (1 2− α ), the standard
confidence interval assumes the form:

[ ]! ( ! ) ! ( ! )( ), ( ),β β β βα αj j n p j j n ps t s t− ⋅ − ⋅− − −1  ,  (A-6)

where t  are the values of the percentiles (α ) and (1−α ) of the Student's distribution with n-
p degrees of freedom.

The bootstrap confidence intervals are now presented, through their two main methods of
construction: the percentile and percentile-t approaches.

− Percentile method
 
 This method, based exclusively on the bootstrap estimations, is the simplest for obtaining
confidence intervals.  The first step is to sort the estimations ! ( )*βj b  by increasing order, for

the b=1,…,B replications.  Let ! ( )*β j 1 be the smallest and ! ( )*β j B  the largest.
 For a level (1 2− α ), the percentile confidence interval for parameter β j  is accordingly given
by:
 

 [ ]! ( ) , ! (( ) )* *β α β αj jB B  1− (A-7)
 
 

 ! ( )*β αj B  represents the αB -th value (respectively ! (( ) )*β αj B1−  the ( )1−α B-th value) of the
ordered list of B bootstrap replications.  The threshold values are hence selected so that α %
of the replications have supplied !*β j  smaller (larger) than the lower (upper) bound of the
percentile confidence interval.
 
− Percentile-t method
 
 This second approach for constructing the confidence interval follows a procedure very
similar to the one used for the standard confidence interval of β j .  The percentile-t bootstrap
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procedure consists in estimating the distribution function of z j  directly from the data.  This
amounts to constructing a statistical table from the empirical distribution function of the B
bootstrap replications z j

* .  This table is named the bootstrap table.  The z j
*  are defined as:

z
sj

j j

j

*
*

* *

! !

( ! )
=

−β β

β
(A-8)

In comparison with the percentile method, an additional calculation is necessary in this
approach.  In fact, for each of the bootstrap replications, it is necessary to calculate the
estimated bootstrap standard deviation s j

* *( ! )β .

Let !
*Fz j
 be the empirical distribution function of z j

* , the fractile at α %, ! ( )*Fz j

−1 α , is estimated

by the value ! ( )t α  such that # { }z b t Bj
* ( )( ) ! /≤ =α α .

Finally; the percentile-t confidence interval for β j  is written:

[ ]! ( ! ) ! ! ( ! ) !( ) ( )β β β βα α
j j j js t s t− ⋅ − ⋅−1  , (A-9)

Thus the percentile-t confidence interval is the bootstrap analogue of the standard confidence
interval.

In short, the percentile-t confidence interval substitutes the threshold values of the bootstrap
table for the critical values of the Student's distribution used in the standard interval.  Note
that these threshold values may be very different.  This difference is commensurate with the
deviation of the error distribution (unknown) from the Normal distribution.  Moreover, we
find that the values of the percentiles (α ) and (1−α ) of the Student distribution, which are
inherently symmetrical, directly implies the symmetry of the standard confidence interval
about the estimation !β j .  By contrast, the values ! ( )t α  and !( )t 1−α  of the bootstrap table may be

asymmetrical and accordingly lead to asymmetrical confidence intervals about !β j .  This
consideration of a possible asymmetry is a major advantage of the bootstrap confidence
intervals.
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