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1 Introduction

The purpose of this paper is to study the consumption pattern of potentially addictive

substances in a dynamic model of rational addiction under uncertainty. Stigler and Becker

(1977) and Becker and Murphy (1988) have forcefully argued that addiction can be modeled

as the outcome of rational behavior of forward looking individuals with stable preferences.

The basic hypothesis of the rational addiction model is that individuals are aware of both

costs and bene�ts of addictive consumption. Individuals choose an optimal consumption path

considering all current and future consequences of additive behavior. This theory di�ers from

earlier approaches that attributed addictive behavior to either myopic or irrational behavior.

One of the main drawbacks in most of the previous studies is the assumption that individ-

uals have perfect foresight and hence operate in an environment without uncertainty. There

are a number of reasons why uncertainty matters when dealing with addictive consumption

and its consequences. The perfect foresight framework o�ers no scope for the regret observed

among many addicts. Individuals are never fooled or get hooked into addiction. Orphanides

and Zervos (1995) argue that uncertainty and learning through experimentation need to be

incorporated into the rational addiction framework in order to account for \involuntary"

addiction. In their framework, addiction results from a time-consistent expect-utility max-

imizing plan. Addiction is unintentional and results from experimentation with addictive

goods that are known to provide a certain instantaneous pleasure and only probabilistic

future harm.

While the analysis of Orphanides and Zervos (1995) provides some new insights into

theory of consumption of addictive substances, it is subject to a number of simpli�cations.

The empirical evidence suggests that individuals typically consume a bundle of di�erent

addictive substances. For example, individuals who are smoking are also more likely to

consume larger amounts of alcohol and/or engage in binge drinking. This suggests that

there is a close relationship between the consumption of multiple addictive substances.

It is important to understand the substitution patterns between di�erent addictive goods

in order to design meaningful public policies. For example, a tax increase on one addictive

good may just lead to an increase in consumption of a close substitute, leaving the overall



consumption level of addictive and harmful substances almost unchanged. Alternatively, if

two addictive goods are complements, then a policy aimed at reducing consumption of one

substance may have positive spill-over e�ects since it also leads to a decrease of consumption

of the second substance.

It is also important to understand the substitution patterns between multiple addictive

goods that di�er in their degree of harmfulness. For example, an individual may start ex-

perimenting with less dangerous substances and learn valuable information about his overall

addictive tendencies. After learning that he does not seem to have addictive tendencies by

consuming the less dangerous good, he may switch to more harmful substances. Therefore

a policy which discourages the use of less harmful addictive substances may have large pos-

itive e�ects because it also prevents learning. As a result, consumption of the more harmful

substances will decrease in the long run.

Adding multiple addictive goods to the rational addiction framework increases the com-

putational complexity of the model. Even a simple dynamic model has four continuous state

variables which is inherently hard to solve. One of the main problems encountered in the

computational analysis is the approximation of the value function. Approximation methods

are increasingly important in numerical dynamic programming since they allow researchers

to solve models with large state spaces. In this paper, we focus on a new approximation

method which has been recently developed by Coppejans (2000) in the context of nonpara-

metric regression estimation.

The basic idea of this approach is to represent a function of several variables as superpo-

sitions of functions of one variable. These one-dimensional functions are approximated by

B-splines, which have nice computational properties. This method allows us to parameterize

the value function by a one-dimensional object which alleviates the curse of dimensionality

typically encountered in these type of problems.

The rest of the paper is organized as follows. Section 2 presents a dynamic model of

rational addiction under uncertainty. Section 3 discusses new techniques that can be used

to approximate value functions. Section 4 presents the results of the computational experi-

ments. Section 5 outlines some future work for this study.
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2 Dynamic Model

2.1 The Extended Orphanides-Zervos Model

Let yt denote income of an individual and ct consumption of a numeraire good at date t.

De�ne a1t and a2t as the consumption of potentially addictive goods like alcohol and tobacco.

The stock of addictive consumption, sit, evolves according to the following law of motion:

sit+1 = �i sit + ait i = 1; 2: (2.1)

We assume that consumers rank alternatives according to the following utility function:

Ut = u(ct; a1t; a2t) + �t � v(a1t; a2t; s1t; s2t); (2.2)

where � is equal to 1 if the individual has addictive tendencies or zero otherwise.

Following Orphanides and Zervos (1995), �t is a random variable that is equal to one with

probability �(s1t; s2t) and zero otherwise. Its inclusion introduces a probabilistic occurrence

of harmful side e�ects into the model. We assume that ��t is observed at the end of each

period. Individuals maximize intertemporal utility,

E

 
1X
t=0

�
t [u(ct; a1t; a2t) + �t � v(a1t; a2t; s1t; s2t)]

!
; (2.3)

subject to a sequence of budget constraints,

ct +
2X

i=1

pit ait = yt: (2.4)

An implicit assumption of this speci�cation is that individuals do not save. This is a plausible

assumption for young individuals who are likely to engage in experimentation with addictive

substances.

When � is unknown, it is assumed that individuals have beliefs given by Pt = probf� = 0g.
Given an initial prior, P0, we assume that individuals optimally update their beliefs about

� using Bayes' Rule. Hence beliefs evolve according to

Pt+1 =

8><
>:

Pt

Pt+(1�Pt)(1��(s1t;s2t))
; if �t � = 0;

0; if �t � > 0:
(2.5)

Furthermore, we assume that there is income uncertainty in the model. Individuals have

rational expectations and income transitions are characterized by the transition probability

p(yt+1 jyt).
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2.2 Optimal Decision Rules

Since we abstract from saving decisions, we can simplify the decision problem of the indi-

viduals by substituting the budget constraint into the utility function. De�ne

w(yt; a1t; a2t) = u((yt �
2X

i=1

pitait); a1t; a2t); (2.6)

and

�t = �t(Pt; s1t; s2t) = �(s1t; s2t) (1 � Pt): (2.7)

Substituting the laws of motion of the stocks into the value function, we can express the

dynamic programming problem faced by the individuals as follows:

V (y; s1; s2; P ) = max
a1;a2

w(y; a1; a2) + �v(a1; a2; s1; s2) (2.8)

+ �

Z h
� V (y0; a1 + �1s1; a2 + �2s2; 0)

+(1��) V (y0; a1 + �1s1; a2 + �2s2; P=(1 ��))
i
p(y0jy) dy:

2.3 A Parameterization of the Model

Since we can only solve the model above numerically, we need to parameterize the utility

functions and the transition probabilities. We assume that the �rst component of the utility

function is given by

u(ct; a1t; a2t) = log(ct) + � log(at); (2.9)

where

at =
h
a
�1
1t + �2 a

�1
2t

i1=�1
: (2.10)

Note that this speci�cation assumes that the numeraire good, ct, and the aggregator, at, are

substitutes. The speci�cation of the aggregation function allows us to treat the two addictive

substances as either complements or substitutes, depending on the choice of the substitution

elasticity �1.

The second component of the utility function is given by

v(a1t; a2t; s1t; s2t) = s

1;1
1t (
2;1 + 
3;1a1t) + s


1;2
2t (
2;2 + 
3;2a2t): (2.11)
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We assume that the probability distribution, �(s1t; s2t), is exponential,

�(s1t; s2t) = 1 � exp(��1s1t � �2s2t): (2.12)

Finally, the transition density for income is a �nite state Markov Chain model that is an

approximation to some log-normal regression model.

3 Computation

Smooth approximation methods estimate the value function, Vt(�), by a smooth function

of the state variables, x, rather than by calculating the value function on �nite grid of

points.1 The basic idea is to parameterize the value function and choose the parameter

vector such that the approximation is as close as possible to the correct value function.

More formally, consider the standard problem of solving a dynamic problem using backward

recursion. Suppose we already have computed a smoothed version of the value function in

t+ 1, which we denote by Vt+1(x). Hence we can compute estimates of Vt(x) for any �nite

grid fx1; :::; xNg using backward recursion. The main idea of smooth approximation is to

estimate Vt(x) only on a small grid and use a clever imputation algorithm to impute the

values for Vt(x) which are not in the grid.

Another way of interpreting smooth approximation is to think of it as an estimation

problem. The vector fVt(x1); :::; Vt(xN)g can then be interpreted as the data. The problem is

to estimate the unknown function Vt(x) by projecting it on class of nicely behaved functions.

The \error" in the estimation is the approximation error. Once we have estimated the value

function, we can use our estimates to predict the value function outside our sample (e.g. the

grid). Following this analogy, we need to pick a class of functions Vt(xj�) which e�ectively

parameterize the value function. We then estimate � using our data fVt(x1); :::; Vt(xN )g and
standard optimization algorithms.

The main problem encountered in this approach is to chose a nicely behaved class of

functions, and hence an approximation method, that satis�es a number of properties. First,

the approximated value function should be close to the true value function on the set of grid

points, i.e. the approximation error should be small. Second, the approximation algorithm

1The �rst part of this section follows Rust (1995) and Judd (1998).
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must be computationally e�cient and robust. Finally, parameterization should be \tight",

allowing us to approximate high dimensional functions.

Unfortunately, approximating multi-dimensional functions is di�cult because of the well

known curse of dimensionality. For example, let x 2 X � <d with X = [aj; bj]
d, �1 < aj <

bj < 1, j = 1; : : : ; d. For some given � > 0, we will typically have to approximate Vt(�) at
around O(1=�d=2) number of points, assuming that V (�) is twice continuously di�erentiable,

in order for the approximation error to be no greater than �, supx2X jVt(x) � Vt(xj�)j � �.

An example of Vt(xj�) in this case is a quadratic tensor-product B-spline.2 Observe that

1=�2=d grows exponentially in terms of d. Hence the computational time required to solve

moderately high dimensional problems can be quite burdensome.

To overcome this type of problem, Coppejans (2000) has proposed the following estimator

for Vt(�)
2d+1X
k=1

gk (�1;k�k(x1) + � � �+ �d;k�k(xd)) ;

where gk and �k are estimated by univariate cubic B-splines, �k is restricted to be non-

decreasing, and �j;k > 0 is a scalar with
Pd

j=1 �j = 1. In Coppejans (2000), this estimator is

shown to work well at estimating high-dimensional problems. Most important, under suitable

assumptions, we only need O(1=�1=2) number of evaluating points to get an approximation

error of �. The key is that, unlike above, 1=�1=2 no longer depends on d.

2Denote uniformly placed knots on the interior of [aj; bj] as f�l;jg, l = 1; : : : ; Lj . In the construction of

the univariate B-spline, additional knots are also placed at aj and bj; for example, a quadratic (third order)

B-spline has three additional knots at each endpoint, and a cubic (fourth order) B-spline has four additional

knots. A basis for the univariate B-spline of rth order, fBl;j;r(xj)g
Lj+3

l=1 , is de�ned recursively as in de Boor

(1978),

Bl;j;r(xj) =
xj � �l;j

�l+r�1;j � �l;j

Bl;j;r�1(xj) +
�l+r;j � xj

�l+r;j � �l+1;j

Bl+1;j;r�1(xj); if r � 2;

Bl;j;1 =

�
1; if xj 2 [�l;j ; �l+1;j)

0; if otherwise:

Given any x 2 X, a basis for the tensor-product B-spline of order r is (e.g. see Schumaker, 1981)

k1+r�1X
m1=k1

� � �

kd+r�1X
md=kd

Bm1;1;r(x1) � � �Bmd;d;r(xd)

where kj is the smallest integer, l + 1, such that xj � �l;j . The tensor-product B-spline coe�cients are

calculated by least squares minimization.
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To further speed up compilation, we propose a variant of the above estimator,

P(x) +
l<2d+1X
k=1

gk (�1;k�k(x1) + � � �+ �d;k�k(xd)) ; (3.1)

where P(x) is a quadratic polynomial of total order, and gk and �k are estimated by quadratic

B-splines.3 The estimator in (3.1) will be referred to as the reduced B-spline. We still require

that �k is monotonic, which is easily imposed in this case by requiring that the analogous

B-spline coe�cients are monotonic.

4 Experiment

The goal of this section is to show that the estimator proposed in the last section works

reasonably well. For simplicity, we will treat income, y, as static, �xing its value at one. We

will begin with an example similar to that in Orphanides and Zervos (1995), where there is

just one addictive good (d = 2). Let � = 0:5, � = 0:9, p = 1, and

u(c; a) = log(c) + log(a);

v(a; s) =
p
s(�100 + 99a);

�(s) = 1 � exp(0:1s):

In the case d = 2, the dynamic programming problem can be solved relatively quickly

using standard methods; however, this is not the case when d = 3, as in our second example

where we look at two potentially addictive drugs. Extending the above case, let �1 = �2 = 0:5,

p1 = p2 = 1,

u(c; a) = log(c) + log(a);

a =
�
a
0:35
1 + a

0:35
2

�1=0:35
;

v(a; s) =
p
s1(�100 + 99a1) +

p
s2(�100 + 99a2);

�(s) = 1� exp(0:1s1 + 0:1s2):

These models will be called, respectively, Model 1 and Model 2. We will solve the

models by the two methods discussed in the previous section: the tensor-product B-spline

3For example, suppose d = 2. Then the basis for the quadratic polynomial of total oder is

1; x1; x2; x1x2; x
2
1; x

2
2; x1x

2
2; x

2
1; x2; x

2
1x

2
2.
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and the reduced B-spline. For both models, the stock variable takes values in [0; 2] and the

probability takes values in [0; 1]. The action space has been discretized with a bin width of

0.025 between adjacent points.

For the �rst method, the state space has been discretized so that the width between

adjacent points is 0.025, implying that N is 1,326 and 67,626, respectively, when d = 2 and

d = 3. The number of interior knots used for the stock and probability are, respectively, ten

and �ve. For the second method, the width is 0.2 between adjacent points, which corresponds

to an N of 66 and 726, respectively. The number of interior knots for each B-spline is set

to �ve, and the number of superposition terms, l, used in each model are one and two,

respectively.

For the �rst model, the tensor-product B-spline took about �ve minutes to compute,

while the reduced B-spline took only a minute.4 In the second model, the tensor-product

B-spline took over �ve days to compute, while the other method took about two hours. Note

that in the second model, not only has the dimension increased, but the number of actions

(control variables) has doubled, which further increases the compilation time.

It is easiest to compare the results visually, and as a result, some plots of the policy

function are provided in Figures 1-3. Overall, the reduced B-spline compares favorably.

That is it estimates the general shapes and patterns of the policy function satisfactory. Note

that it is not surprising that the tensor-product B-spline does a better job of approximation.

In general, the cost of methods that circumvent the curse of dimensionality is that they will

not be as accurate; the bene�t is that they are much quicker to compute. Of course more

experiments will be needed before general conclusion about the performance of the reduced

B-spline can be made.

5 Future Work

The results in the last section show that methods like the reduced B-spline can work at solving

these types of dynamic programming problems. However, the following model, because of

its parsimonious parameterization, looks even more promising. Lorentz (1966) showed that

4The programs are written in Fortran and run on a Sun Ultra 2 workstation.
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any continuous function, f(�), can be represented as

f(x1; : : : ; xd) =
2d+1X
k=1

g (�1�k(x1) + � � ��d�k(xd)) : (5.1)

One of the fascinating features about this form is that the �k's are �xed; that is they do not

depend on f(�). Also note that the g(�) function is the same across k = 1; � � � ; 2d+1. Given

this, we propose �rst estimating the �k's by using the methods used in Lorentz's proofs.

What is especially nice about this is that the estimates can be re-used for di�erent value

functions with the same number of state variables, d. Then g(�) can be approximated by a

quadratic B-splines. Given that we have chosen k knots, there will only be k+3 parameters

involved in estimating functions of the form on the right hand side of (5.1). This should

make estimation and function evaluation very fast. This will be especially important when

we solve the model using empirical data.
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Model 1
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Figure 1. The lines, in descending order of thickness, are conditioned on probabilities of addictiveness, P ,

of 1.0, 0.8, 0.6, 0.4, 0.2, and 0.0. The vertical axis represents a and the horizontal axis represents s. The top

plot is the tensor-product B-spline, and the bottom plot is the reduced B-spline.



Model 2: s2 = 0
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Figure 2. The lines, in descending order of thickness, are conditioned on probabilities of addictiveness, P ,

of 1.0, 0.8, 0.6, 0.4, 0.2, and 0.0. The vertical axis represents a1 and the horizontal axis represents s1. The

top plot is the tensor-product B-spline, and the bottom plot is the reduced B-spline.



Model 2: s2 = 1
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Figure 3. The lines, in descending order of thickness, are conditioned on probabilities of addictiveness, P ,

of 1.0, 0.8, 0.6, 0.4, 0.2, and 0.0. The vertical axis represents a1 and the horizontal axis represents s1. The

top plot is the tensor-product B-spline, and the bottom plot is the reduced B-spline.


