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Abstract: In this paper we propose an approach to modelling non-linear conditionally
heteroscedastic time series characterised by asymmetries in both the conditional mean and
variance. This is achieved by combining a TAR model for the conditional mean with a
Changing Parameters Volatility (CPV) model for the conditional variance. Empirical results
are given for the daily returns of the S&P 500, NASDAQ composite and FTSE 100 stock
market indexes.
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1. Introduction

Due to the presence of asymmetric effects in the mean and in the time varying conditional
variance, the complex behaviour of financial time series can be hardly captured by linear
models. Hence, the last two decades have been characterised by a growing interest in the
application of non linear time series modelling techniques to the analysis of financial data.

In order to simultaneously capture different aspects of non-linear time series behaviour,
Tong (1990) first proposed to combine the use of a non-linear model for the conditional mean
with a non linear model for the conditional variance. This idea was successively adopted in
different frameworks by various authors (see Li and Li, 1996, Liu, Li and Li 1997, Lundbergh
and Teräsvirta, 1998).

In this paper we propose an alternative modelling procedure in order to allow for
asymmetry in both the conditional mean and variance. For modelling asymmetry we combine
a threshold autoregressive strructure (TAR, Tong 1978) for the conditional mean with a
Changing Parameters Volatility model for the conditional variance (CPV, Storti 1999). This
class of models can be considered as a state-space generalisation of the CHARMA models
proposed by Tsay (1987). With respect to conventional GARCH (Bollerslev, 1986) type
models, the CPV model has two main advantages. First, interaction terms can be included in
the conditional variance equation allowing to account for asymmetric effects. Second, it can
incorporate time-varying parameters in the volatility model.

The performances of the proposed model in estimating the conditional variances of three
different stock market indexes (S&P500, NASDAQ, FTSE) are assessed by means of a
comparison with the results obtained estimating some different conditional heteroscedastic
structures. In particular, we consider the classic GARCH model and two alternative
specifications, the TARCH (Rabemananjara and Zakoian, 1993) and EGARCH (Nelson,
1991) models, which allow to capture asymmetric effects in the conditional variance.

The paper is organised as follows: section 2 illustrates the theoretical background
underlying our proposal; the results of the empirical analysis are shown in section 3 where
some final comments are also given.



2. Theoretical background and modelling procedure

2.1. Threshold models for the conditional mean

The Threshold AutoRegressive (TAR) models were first presented by Tong (1978) and
further developed and applied in Tong and Lim (1980) and Tong (1983) (a more thorough
discussion can be found in Tong,1990). A TAR model can be regarded as a piecewise linear
autoregressive structure, which allows to obtain the decomposition of a complex stochastic
system into smaller subsystems, based on the values assumed by a threshold variable,
compared with  a set of predetermined values, the threshold values.
Let {Yt} be a time series, a TAR model for Yt is given by:
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where {ut} is i.i.d. with zero mean and finite variance, the threshold values, {w0, w1, ,..,wl},

are such that w0<w1<...<wl, w0= -∞ and wl= +∞ with Rj = (wj-1,wj], d is a positive integer.

If we choose as threshold variable a past realisation of Yt, {Yt-d}, the time series {Yt} follows a
Self Exciting Threshold (SETAR) model.
To investigate the appropriateness of a threshold non-linear model instead of a simpler linear
model, we perform the Tsay test for detecting threshold non-linearity. This testing procedure
was presented in Tsay (1989) and successively refined and generalised by Tsay (1998).
Assuming that the autoregressive order p and the delay d are known, we first perform an
arranged regression based on the increasing order of the threshold variable and then use the
predictive residuals calculated by recursive least squares to evaluate the test statistic. Under
the null hypothesis of a linear model, the Tsay test is asymptotically distributed as a chi-
squared random variable with (p+1) d.f..
In order to identify the model we follow the iterative procedure described in Tsay (1998).
Given the identification of the threshold variable, often suggested by the nature of the specific
problem, the results of the non-linearity test can be used to first select a set of possible delays
{ hdd ,...,1 }. For each combination of p, d and m, where m is the number of possible regimes

(usually in the range of 2 or 3), we then use a grid search method and the AIC (Akaike
Information Criterion) to select the threshold values and identify the final model.
Finally the model parameters in each regime can be estimated by the conditional least squares
method.

2.2 A state space approach to the analysis of non-linear CH time series

Let tu be an univariate series of prediction errors such that )|(u 1t-
t u ~ )h,0(N 2

t  and

0), uCov(u t-dt = , 0d ≠∀ . Also assume that tu has finite moments up to the fourth order. A

Changing Parameters Volatility (CPV) model (Storti, 1999) of order (r,s), with r and s
integers, is defined as
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where te  is a Gaussian white noise observation error ),0(N~e 2
et σ , 

t
q  (n×1), with n=r+s,

is a Gaussian serially uncorrelated system error, ),(~ Q0q
t

N , and tx  (n×1) is an n-

dimensional state vector with state variables given by the stochastically varying parameters

t,ia (i=1,...,r) and t,jb  (j=1,...,s). The observation matrix is

],...,|,...,[ 11 sttrttt hhuu −−−−=C

while A  is an (n×n) transition matrix of unknown coefficients. The specification of the
model is completed by the usual assumptions

 0qE =)zt e( , }z,t{∀

),(~ 00 Pmx N  with [ ]  0xqE 0 =′)(t  and  0x E =)0 te( , t∀

Under the above assumptions the model is conditionally Gaussian and the Kalman filter can
be used to obtain a MMSE estimate of the state vector. The conditional variance is recursively
estimated as
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where )|( 1−= t
tVar uxP 1-t|t . The conditional variance equation (3) can be also written as
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with )t(j,ip  being the element of place (i,j) in 1-t|tP . Compared to conventional approaches,

the CPV model has two main advantages. First, it allows for time varying parameters in the
conditional variance specification (4). Second, interaction terms between past innovations and
volatilities are easily included in the model. The choice 0A =  yields a more parsimonious
random coefficient version of the CPV model that we will call the constrained CPV model or,
abbreviated, CPV-C. In a CPV-C model the conditional variance parameters are constant but
the interaction terms are still present. It can be shown (Storti, 1999) that, if 0A =  and the
covariance matrix Q  is diagonal, the resulting CPV-C model will have the same conditional
variance as a Generalized Autoregressive Conditionally Heteroskedastic (GARCH) model
(Bollerslev, 1986) of the same order. Similarly, for s=0 the model is a random coefficient



autoregressive model of order r. A generalization of model (2) which allows for simultaneous
modelling of conditional mean and variance is given by the regression CPV model

tttttt euy ++=+= xCMM
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where ty  is an observed time series, tM  is a vector (1×g) of endogenous or exogenous

regressors and β  a vector (g×1) of unknown parameters. The model parameters A , Q , 2
eσ

and β  can be estimated maximizing a Gaussian log-likelihood function expressed in the
classical prediction error decomposition form. The formulation of model (5) is quite general
and the regression term included into the observation equation can incorporate an ARMA
type structure with exogenous explanatory variables. Also, replacing the constant parameter
vector β  by a time variable vector β t, we can easily accommodate for some common non-
linear structures such as Threshold Autoregressive models.
Under the assumption of conditional normality, the log-likelihood function of a regression
CPV model can be written as
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can be estimated by maximising the Gaussian log-likelihood (6) using a version of the EM
algorithm tailored for state space models by Wu et al. (1996). Alternatively scoring or quasi-
Newton methods could also be used (see Watson and Engle, 1983, for a discussion on the
application of the method of scoring in the context of state space models).
Finally, it is worth noting that, when forecasting from a CPV model, the conditional variance

2
th  affects the estimate of the conditional mean )|u(E 1t

t
−u  in two different ways. First, 2

th

enters the state updating equation, second, the estimated )|( 1−t
tE ux  does not necessarily

have to be equal to zero.

3. Asymmetric effects in the CPV model

If the model order is such that s>0, asymmetric effects are introduced into the CPV-C
conditional variance specification by means of the interaction terms between past shocks and
volatilities. It follows that, in CPV-C type models, the effect of a past shock on the present



volatility derives from the sum of two components. Of these, the first, as in GARCH models,
is given by a linear functions of the past squared shock with no regard for its sign. Differently,
the second adds a further contribution to the value of the conditional variance depending on
the sign of the shock. This term is, in module, proportional to the magnitude of the shock
rescaled by past conditional standard deviations. In order to clarify this point, we consider, as
an example, the simple CPV-C(1,1) model with conditional variance equation given by

1t1t1
2
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2

1t10
2
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where 2
e0 σν = , 111 Q ,=α , 221 Q ,=β  and 211 Q2 ,=δ . As it is evident from equation (7), the

asymmetry in the relation between the conditional variance and past residuals comes from the

cross-term 1t1t1 hu −−δ . In particular, for 1δ <0, a positive penalty term will be added to 2
th  if

1tu − <0 while a positive quantity will be subtracted from 2
th  if 1tu − >0. A similar reasoning

applies to the case in which 1δ >0.
This suggests a simple testing procedure for verifying the presence of asymmetric effects in
the relationship between conditional variance and past shocks by testing for 1δ  significantly

different from 0. The presence of leverage effects can be tested by the hypothesis that 1δ <0.
Fig. 1 shows the simulated news impact curve for a particular CPV-C (1,1) model
incorporating leverage effects.

Fig. 1 Simulated news impact curve for a CPV-C(1,1) model with parameters 0ν =0.05 1α =0.15, 1β =0.65 and

1δ =-0.34.

Also, an attractive feature of the model is that, when 1tu −  and 1δ <0, the magnitude of the

penalty term added to the conditional variance will not depend only on the magnitude of the
shock itself but it will be weighted, or, more properly, rescaled, by the conditional standard



deviation at time (t-1). So the greater will be the uncertainty associated with the negative

shock 1tu − , and the greater will be the impact of 1tu −  on 2
th .

The same argument applies to higher order models even if, in high dimensional structures,
care should be taken in the identification of the relevant lags of interaction in order to avoid to
incur the so called curse of dimensionality.

3. Empirical results

In this section we present the results of an application of the proposed modelling approach to
the analysis of some stock market indexes. In particular we consider the daily U.S. NASDAQ
Composite, the U.S. Standard and Poor's 500 and the U.K. FTSE 100. The sample covers the
period from 2 January 1996 to 16 November 1999. Returns are calculated as logarithmic first
differences, )(log tt XR ∇= . The plots of the original data and returns are shown in Fig. 2.

Even if the algorithm for the maximisation of the likelihood function is able to naturally deal
with the simultaneous estimation of the conditional mean and variance model parameters, in
order to guarantee full comparability of the performances of the models considered in
estimating the conditional variance of the series, we revert to a two stage modelling
procedure.
First, in order to investigate the presence of a threshold type non-linear structure in the data
we have performed Tsay's test for non-linearity. The results obtained for different values of
the delay parameter are shown in Tab. 1. The test leads to reject the null hypothesis of
linearity for all of the series considered. Theoretical and empirical evidence suggest that the
behaviour of stock market returns is influenced by what has happened in the previous days.
Therefore we choose as possible threshold variables lagged values of the returns. This leads to
the identification of a SETAR model for the conditional mean. The test also indicates, as the
best choice for the delay d, the one which corresponds to the highest value of the test statistic.
For all the series we have chosen the autoregressive order p to lie in the range [1, 5], and we
have considered m=2,3 as the possible number of regimes. For each combination of d, p and s
we have chosen the SETAR model that gives the minimum AIC.

Tab.1: Tsay's  threshold non-linearity test
� � � � � �

SP500 ���� ������ �	��
� ����
� ������ ���	��

���� � � � � �

FTSE ���� ����� 
���� 
���� �	��	� ������

���� � � � � �

Nasdaq ���� ��	�� ����� ����� ������ �����

���� � � � � �



Fig. 2: From top to bottom: original data (left) and logarithmic first differences (right) of S & P 500, NASDAQ
and FTSE 100.

The final models identified, after refining the thresholds and the orders, are a SETAR(3,5)
with delay d=4 and w=0.001044 for the S&P 500, a SETAR(2,1) with d=4 and w=0.000315
for the FTSE 100, and a SETAR (2,2) with d=4 and w=0.00 for the NASDAQ series.
The least squares estimate of the models parameters and the corresponding standard errors (in
parentheses) are shown in Tab. 2. In order to assess the fitting accuracy of the SETAR models
we calculate some widely used loss functions (Tab.3).



Tab. 2 Least squares estimates and standard error of SETAR models

Regime a0 a1 a2 a3 a4 a5

SP500 I 0.00186
(0.00048)

-0.10279
(0.04038)

-0.10947
(0.03888)

-0.06195
(0.39965)

II -0.00144
(0.00084)

0.10173
(0.05027)

0.15097
(0.05303)

0.18264
(0.07397)

-0.08585
(0.04483)

FTSE I 0.00122
(0.00051)

-0.16896
(0.04565)

II 0.0008
(0.0004)

0.17209
(0.04342)

Nasdaq I 0.00190
(0.04392)

-0.09016
(0.00073)

II 0.07558
(0.04742)

0.12456
(0.04742)

Tab.3: Values of different loss functions for the estimation of the conditional mean
RMSE MAE MAPE (×10-6) THEIL (×10-6)

S&P500 0.010778740 0.0080519 8.4626584 5.3523706

FTSE 0.010289465 0.0077406 1.5182596 0.99863828

Nasdaq 0.014082002 0.0103381 6.1528462 3.8766286

For each series we have then performed an ARCH-LM test (Engle, 1982) on the residuals of
the threshold model estimated for the conditional mean. The results of the test and the
analysis of the autocorrelation functions of the squared residuals suggest the presence of
autoregressive conditional heteroskedasticity in the data. In order to detect any  possible
asymmetry in the conditional variance component, we look at the cross correlation between
the squared standardized residuals and lagged standardized residuals (Fig. 3). These cross
correlations should be zero if asymmetric effects are not present and be negative in presence
of asymmetry. The estimated correlations show evidence in favour of the hypothesis of
asymmetry for the S&P 500 and NASDAQ series while, for the FTSE 100, the values of the
autocorrelation function lie inside the ± 2 s.e. confidence bands except for lag 5.
The next step is to identify and estimate a suitable CPV model for the conditional variance. In
particular, we consider the parsimonious CPV-C specification. The order of the model to be
fitted has been chosen to minimise the value of the Schwarz Criterion (SC). Tab. 4 reports the
values of the SC for different model specifications together with the AIC and log-likelihood
values. The search has been restricted within the intervals 1 ≤ r ≤ 2 and 0 ≤ s ≤ 2. For all the
series a CPV-C (1,1) model is identified.



Fig 3: From top to bottom, cross-correlations between 2
tu  and itu −  for S&P 500, NASDAQ and FTSE100.



Tab.4: AIC, SC and log-likelihood values for different CPV models
Orders AIC SC LL

SP500 1     0 -6.2352830 -6.2252595 3038.5828
1     1 -6.3338302 -6.3137833 3088.5753
1     2 -6.3250968 -6.2899861 3084.1596
2     0 -6.2800987 -6.2600354 3059.2680
2     1 -6.2980138 -6.2629031 3070.9837
2     2 -6.3167281 -6.2615541 3084.0882

FTSE 1     0 -6.3331366 -6.3231214 3089.4041
1     1 -6.4353684 -6.4153379 3141.2421
1     2 -6.4465846 -6.4115026 3146.4867
2     0 -6.3572922 -6.3372453 3100.0013
2     1 -6.4224969 -6.3874149 3134.7560
2     2 -6.4521051 -6.3969763 3153.1752

Nasdaq 1     0 -5.7456715 -5.735648 2800.1420
1     1 -5.9307591 -5.910712 2892.2797
1     2 -5.9172976 -5.882187 2885.7653
2     0 -5.8292261 -5.809162 2839.9185
2     1 -5.9275484 -5.892437 2890.7523
2     2 -5.9244467 -5.869272 2893.2433

The maximum likelihood estimates and relative standard errors of the CPV-C model
parameters are shown in Tab. 5.

Tab. 5: ML parameter estimates and asymptotic s.e. (in parentheses)
2
eσ  Q11 Q12 Q22

SP500 0.0000163
(0.0000045)

 0.0436
(0.0202)

-0.0898
(0.0178)

0.8161
(0.0513)

FTSE 0.00001433
(0.0000042)

0.1116
(0.0312)

-0.0739
(0.0196)

0.7466
(0.0642)

Nasdaq 0.0000149
(0.0000086)

0.1281
(0.0294)

-0.0852
(0.0168)

0.7878
(0.0411)

The negative sign of the Q12 parameter confirms the presence of a leverage effect as suggested
by the cross-correlation analysis.
The results have been compared with those obtained using some different conditional
variance specification. Namely we have considered the classical GARCH(p,q) model
(Bollerslev, 1986), given by:
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the Exponential GARCH model (EGARCH, Nelson 1991), with conditional variance
specification given by:
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the TARCH model (Rabemananjara and Zakoian, 1993) which, as the EGARCH, includes
asymmetric effects in the conditional variance:
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with dt=1 if ut<0 and dt=0 otherwise.
The estimated parameters for the GARCH, E-GARCH and TARCH models fitted for the
conditional variance of each of the three series are given in tables 6, 7 and 8, respectively.

Tab. 6 Parameters estimates and standard error of GARCH models
α0 α1 α2 β1 β2

SP500 0.00003
(0.00001)

0.08702
(0.01303)

0.88459
(0.02019)

FTSE 0.00004
(0.00002)

0.00892
(0.025439)

0.03729
(0.02654)

0.95061
(0.01175)

Nasdaq 0.00006
(0.00002)

0.17887
(0.02410)

0.78627
(0.02952)

Tab. 7 Parameters estimates and standard error of EGARCH models
α0 γ1 γ2 λ1 λ2 β1

SP500 -0.42264
(0.09501)

-0.11529
(0.05934)

0.24769
(0.05503)

-0.21988
(0.042371)

0.11488
(0.04484)

0.96535
(0.00981)

FTSE -0.13008
(0.04337)

0.09291
(0.02534)

-0.04770
(0.01579)

0.99391
(0.00351)

Nasdaq -0.81521
(0.15429)

0.27703
(0.04095)

-0.12445
(0.0831)

0.93196
(0.01568)

Tab. 8 Parameters estimates and standard error of TGARCH models
α0 α1 α2 θ β1

SP500 -0.00005
(0.00001)

0.08463
(0.02673)

0.08399
(0.02866)

0.16555
(0.86356)

0.86356
(0.01798)

FTSE 0.00004
(0.00002)

0.06710
(0.01579)

0.95807
(0.01042)

Nasdaq -0.00001
(0.000002)

0.06712
(0.02720)

0.20333
(0.03427)

0.77876
(0.03343)

For each model, the performance in the estimation of the conditional variance has been
assessed on the basis of five different loss functions, namely:
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Bollerslev et al. (1994) point out that, in many cases, RMSE can be inappropriate, as a
measure of goodness of fit, since it penalizes conditional variance estimates which are
different from the realized squared residuals in a fully symmetrically fashion. Alternative loss
functions which penalize conditional variance estimates asymmetrically are the logarithmic
loss functions (LSEv and LAEv) and the Heteroscedasticity Adjusted MSE (HMSEv).
The results obtained have been reported in Table 9. The last two column give the values of the
maximised log-likelihood and the number of estimated parameters for each model1.

Tab.9: Values of different loss functions for the estimation of the conditional variance
RMSEv MAEv LSEv LAEv HMSEv LL NP

S&P500
CPV-C(1,1) 0.00025623 0.000119447 6.6631537 1.8223311 3.2258 3088.57 4
GARCH(1,1) 0.00026118 0.000123238 6.6482462 1.8229540 3.9526 3081.23 3
E-GARCH(2,1) 0.00025923 0.000119847 6.4474081 1.7788037 4.0150 3107.51 6
TARCH(2,1) 0.00026028 0.000121892 6.4796421 1.7875947 4.3201 3101.06 5
Nasdaq
CPV-C(1,1) 0.00040197 0.000190241 6.9320506 1.8262975 2.6794 2892.27 4
GARCH(1,1) 0.00041594 0.000202138 7.0631666 1.8505669 3.2411 2880.56 3
E-GARCH(1,1) 0.00040443 0.000193965 6.9526359 1.8276174 3.1444 2893.50 4
TARCH(1,1) 0.00041071 0.000198711 6.9526060 1.8284924 3.0980 2892.42 4
FTSE
CPV-C(1,1) 0.00017941 0.000105197 8.4181208 1.9044951 2.5588 3141.24 4
GARCH(2,1) 0.00017585 0.000104466 8.2114254 1.8518322 2.4131 3175.03 4
E-GARCH(1,1) 0.00017381 0.000103006 8.1523470 1.8429394 2.3494 3179.76 4
TARCH(1,1) 0.00017418 0.000102389 8.1419768 1.8405596 2.5915 3175.80 4

The performances of the CPV-C model results to be better for the series characterised by a
substantial asymmetric component (S&P500, NASDAQ) than for the FTSE100, for which the
cross-correlation analysis (Fig.2) does not show a so strong evidence in favour of the
hypothesis of asymmetry. In particular for the NASDAQ series the CPV-C performs better
than all the other models on the basis of all the loss functions used. For the S&P 500, again,

                                                          
1 Strictly, the maximised log-likelihood value of the CPV model is not comparable to those obtained for the other
models (GARCH, EGARCH, TARCH) since, while the likelihood function for each of the latter is defined on
the residuals of the model estimated for the conditional mean, the value reported for the CPV model refers to the
classical prediction error decomposition form of the likelihood which is defined on the series of the one step-
ahead prediction errors made in forecasting these residuals.



the minimum RMSEv, MAEv and HMSEv values are obtained for the CPV-C model while a
worse performance is achieved on the basis of the logarithmic loss functions LSEv and LAEv.

which exaggerate the interest in predicting when residuals are close to 0.
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