Alternative Value-at-Risk Models for Options

Alfred Lehar
Department of
Business Administration

University of Vienna
Tel: ++43-1-4277 38077

Fax: +4+43-1-4277 38074
mail: alfred.lehar@univie.ac.at

January 10, 2000



Alternative Value-at-Risk Models for Options

Abstract

Risk management has become an important issue for banks and cor-
porations, not only because of regulation but also because of risk adjusted
performance measurement. Value-at-risk has become an industry standard
in risk measurement. The aim of this paper is to evaluate the performance
of different value-at-risk models and find out the driving factors of model
performance. While most previous studies focus on linear positions, this
paper investigates the suitability of alternative approaches for positions in
stock-options. Risk measurement for options is more complex, since move-
ments in the underlying risk factor (stock-prices) have a non-linear impact
on option prices and option prices themselves depend on volatility, which is
not directly observable on capital markets. Standard models based on the
Black-Scholes analysis and models, that build in the stochastic volatility
option pricing model by Hull and White are compared using transaction
data the Austrian stock market. It is found that, while the Hull-White
model is the only model that passes a proportion of failures test, it sub-
stantially underestimates losses in those cases, when the loss exceeds the
value-at-risk. Value-at-risk models work better for calls, options with a

shorter time to maturity and for at or out of the money options.

JEL classification: G28, G13.



1 Introduction!

Risk Management is a fast growing industry, spendings by financial firms on en-
terprise wide risk management were estimated to be 890 million USD in 1998 and
expected to reach 2.3 billion USD by 2003.2 From the perspective of an economist
the importance of risk management is not that obvious. If the Modigliani and
Miller (1958) theorem applies or all risks are tradable, a firm has no reason to
care about risk management. Froot and Stein (1998) show, that if neither of the
above conditions hold, risk management is of value to the firm and that the cur-
rent risk exposure will have a substantial impact on the firm’s future investment

3 A correct assessment of risk for different divisions within one firm

decisions.
will also allow the instalment of incentive compatible compensation schemes for

divisional managers, as Stoughton and Zechner (1999) point out.?

Risk management has also been a focal point of bank regulation, starting in
1993 when the Basle Committee on Banking Supervision released a proposal of
capital requirements for covering unexpected losses due to market risk. Under
current regulation® banks are allowed to use their own risk management model

to determine capital requirements. These ”internal models” are subject to sta-

T am very grateful for the helpful comments of Engelbert Dockner, Helmut Elsinger, Stefan
Pichler, Martin Scheicher, Giinter Strobl and Josef Zechner. Thanks to the Vienna Stock
Exchange for providing the necessary data. Support from the Austrian National Bank OeNB,
Proj Nr. 6052 is gratefully acknowledged.

2Rhode (1998)

3Ahn et al. (1999) model the hedging decision of an institution trying to minimize it’s

value-at-risk using options
“see also Merton and Perold (1993), Kimbal (1997), Kimbal (1998) or James (1996).
Ssee Dewatripont and Tirole (1994), page 56 ff

6Basle Committee on Banking Supervision (1996)



tistical evaluation and regular audits by bank supervisors.” An adequate risk
management model is therefore not only necessary to ensure value improving in-
vestment decisions and incentive compatible compensation mechanisms, but also

to fulfil regulatory requirements.

The most popular risk management figure is value at risk, defined as the
maximum loss, that will not be exceeded with a certain probability « during a
given holding period. While the measure is very intuitive in its interpretation,
it is not at all uniquely determined how to derive the value-at-risk for a given

portfolio.®

There is a broad literature on comparing value-at-risk models, but most of
them focus on portfolios containing linear securities like cash or stocks. Styblo-
Beder (1995) show the difference between value-at-risk forecasts on a given day,
for three selected portfolios. Hendricks (1996) compares different value-at-risk
models (MA, EWMA and historical simulation) on a test protfolio of linear posi-
tions in the foreign exchange market, Engel and Gizycki (1999) compare a great
variety of models using FX-exposures of Australian banks, de Raaij and Raunig
(1999) compare a value-at-risk model proposed by Hull and White (1998) to more
traditional models also using FX-exposures. Béhmer and Sperlich (1997) have
studied linear portfolios in German stocks, Aussenegg and Pichler (1997) have
compared different value-at-risk measures for bonds, and Jackson et al. (1997)
have compared different VaR models for bonds, equities, and foreign exchange
securities using trading book data of a large bank. Danielsson and de Vries (1997)

compare value-at-risk estimates for portfolios in stocks and index options.

"Marshall and Venkataraman (1997) try to evaluate alternative regulatory regimes from a
welfare perspective
8see Duffie and Pan (1997), Wilson (1998) or Jorion (1997) for surveys on value-at-risk

models.



Studying value-at-risk for options adds another level of complexity, because
option returns are non-linear in stock returns and because option prices are also
driven by changes in the volatility of the underlying stock, which is not directly
obserable. Several models have been proposed and implemented to measure
value-at-risk for options. A study by Marshall and Siegel (1997), who compare
value-at-risk figures from different software vendors for several classes of financial
instruments, shows that options have the highest implementation risk, measured

by the standard deviation of value-at-risk figures across the different vendors.

Management, regulators, and professional risk managers face a lot of choices
when implementing and testing a risk management framework for derivatives.
From the risk managers point of view, risk factors, the mapping method, an
appropriate pricing model and a distribution of risk factor returns have to be
specified. This paper compares different value-at-risk models for stock options,
trying to analyse the driving forces behind a well functioning value-at-risk model.

Specifically the following issues are addressed:

The choice of the appropriate risk factors: Models of a single risk factor
(that is the underlying stock-price) are compared to models that also include

volatility risk as a separate risk factor.

Alternative pricing models: Results from the Black-Scholes model are set in
relation to value-at-risk figures based on the Hull and White (1987) option

pricing model.

Different Mapping methods: Models using a linear mapping are set in rela-

tion to models using full valuation.

In addition to the points above, the issue of testing model performance is

considered. From the regulator’s and management’s perspective, it is important



to test, whether the value-at-risk figures stemming from the risk management
model are representative for the risk in the trading books. For the institutions’
management this is necessary to allocate capital properly in order to ensure prop-
erly working incentive schemes, the regulator is concerned that enough capital
is held by financial institutions to ensure the safety and soundness of the bank-
ing sector. Testing a value-at-risk model is however not straightforward. The
problem is that the ”true risk” of the portfolio is not observable. Alternative
testing procedures are presented, each of them highlighting a different aspect.
The alternative value-at-risk specifications are evaluated using intra-day data on
Austrian stock options. The Austrian market is small but representative for a lot
of European markets. While most previous studies on the performance of alter-
native value-at-risk model focused large markets with high turnover, this paper
may also give some insights on the applicability of this concept on markets with

low capitalisation and turnover.

The rest of the paper is organised as follows: Section 2 defines a framework
for value-at-risk models, section 3 summarises the sample, section 4 describes
the examined value-at-risk models, the results are presented in section 5 and in

section 6 for the partitioned sample, section 7 concludes.

2 A general value-at-risk framework

Let us consider a security with today’s price v; € R. The profit or loss until time
t+1 is given by Kv/t = U441 — v;. The value-at-risk for a given confidence level

(1 — &) can then be obtained by solving
P,,(Av < —VaR) = a (1)

To solve the above equation knowledge of the distribution of price changes is

necessary. Since is not always straightforward to specify the distribution for one



security and since in the case of more securities the joint distribution of price
changes is required, most risk management models try to simplify computation
by introducing a set of risk factors, that are capable of explaining changes in
securities’ values. The specification of a value-at-risk framework can be seen as

a five step procedure:

Choice of the risk factors: For computational convenience it is often assumed,
that changes in securities prices can be explained by changes in some risk
factors, e.g. the change in value for each bond is explained by movements
in interest rates. Some additional notation is required: Let f; € R' denote
the values of the 1 risk factors at time t, and Kft = ]/”;:1 — f; the vector of

changes in risk factors from time t until t+1.

Choice of a pricing model: When reducing the uncertainty in the economy
to a set of risk factors, a pricing model is necessary to explain security
prices for the different states of nature, defined by realisations of the risk
factors. To formalise this approach, assume that there exists a pricing

model R' — R : f ~ p(f) with the property that

vy = p(ft) (2)

that is explaining the price of the security v; by current values of the un-

derlying risk factors.

Choice of a mapping method: The mapping method tries to explain changes
in a security’s value Kv/t by changes of the underlying risk factors th
There are two possible approaches in attacking this problem. The first
one, full valuation, uses no additional assumptions but requires extensive
computational effort. It follows directly from the specification of the pricing

model. The change in the security’s price is

Av, = o — v = p(fi + AF) — p(f) (3)



Since most pricing models are complicated functions, the distribution of

Zv/t can only be determined by means of a Monte-Carlo simulation.

To reduce computational effort, simpler mapping methods have been pro-
posed and are used in practice. Constructing a Taylor series expansion of

equation 3 around the current values of the risk factors f; yields:

Av, & p(fi + Afir1) —pi(fe) = (@;(JJ})) (Afip1) +O(2) (4)

When assuming a linear relationship between changes in the underlying and
changes in the derivative security’s price, the mapping of a security is given
by the vector of partial derivatives of the asset’s price with respect to the
risk factors times the changes of the risk factors. This is often referred to

as the delta-approach.

To capture non-linear relationships between factor and security price changes,
it is common practice to include the second order term of the Taylor se-
ries expansion, which is referred to as the Delta-Gamma approach.® This

extends equation 4 to:

Av, % p(fs + Aferr) = pi(fi) =

— (B (3Fe + 5 |Gy (PHED) G| + o)

where (%) is the [ x [ matrix of second derivatives of p with respect

to the individual risk factors.

Distributional assumptions for factor returns: To compute the value-at-

risk a distribution of the risk factors has to be specified. The most common

9See Estrella (1995) for an interesting discussion on convergence issues of the Taylor series

in the case of the Black-Scholes option pricing formula.



assumption is to let the factors be jointly normally distributed.!® For com-
putational convenience the means are often assumed to be zero.!! Together
with a linear mapping, the normal distributed factor returns allow ana-
lytical computation of the value-at-risk, which explains the assumption’s

popularity.

Another very popular setup is to draw realisations of risk factor changes
from past, observed factor changes. This historical simulation approach
has two main advantages: it allows fat tails and all other characteristic
features of financial time series and it is very easy to communicate to senior
management. The main disadvantage is, that it relies on past data, which

might not be good in describing future risk factor changes.

Value-at-risk computation: Depending on the distribution of Kft and on the
mapping method, it is possible in some cases to calculate the value-at-risk

analytically, but in general numerical methods have to be used.

The assumption of normally distributed risk factors and delta-mapping al-
lows a very simple computation of value-at-risk. Let y be the vector of par-
tial derivatives from equation 4, and assume the risk factors to be jointly
normal with zero mean and some covariance matrix ;. Then the value-at-

risk is given by:
Py (th y < —VaR) =« (6)
or, when considering, that - because of the distributional assumptions -

th y is normally distributed with zero mean and a variance given by y” 3.y,

VaR can be computed directly:

VaR = —® 7 (a)/yT sy (7)

10This approach is also used by RiscMetrics?™

Reuters Ltd. (1996)

, see Morgan Guaranty Trust Company and

H1Gee Kupiec (1999) for a discussion of the bias arising from this assumption.



where ®7'(.) is the inverse of the distribution function of the standard

normal distribution.

3 Sample

The sample consists of transaction data from options on the most active stock
on the Austrian Options and Futures Exchange (OTOB) during the observation
period: Creditanstalt (CA), Austria’s largest bank in the sample period. The
sample ranges from January 2"¢ 1992 until May 14" 1996 or 1,084 trading days
and contains 236,047 trades. Due to different opening hours of the options and
the stock-exchange and lack of turnover, I eliminated 67,079 trades, where the
corresponding trade in the underlying stock was more than an hour ago. Exclud-
ing trades on options with a maturity of less than three days and those trades
violating arbitrage bounds, left me with 156,953 trades in 807 different contracts,
consisting of 110,905 trades of calls and 46,049 of puts respectively. There were 5
trades on the least liquid day, Nov. 17" 1994, and 759 trades on the most active
day, July 21%¢ 1992.

To compute implied volatilities and option-prices I collected daily data on
ATS - VIBOR interest rates with maturities of one day, and one, three, and
six months respectively. All dividends are assumed to be known and are taken
into account. Volatility estimates are also corrected for dividends and capital

measures.

To test the validity of value-at-risk models, realised losses have to be compared
to losses predicted by the risk management model. For each traded option on a
given day I pick the last trade and calculate the over night profit or loss until the

first trade on the next day when holding a short position!? in that specific option.

12The short position is chosen because of its exposure to Gamma risk. Assuming a linear
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Table 1: Models examined in this paper

Model Option Risk Mapping Risk factor | Value-at-risk
pricing model | factors disribution | computation

Delta Black 1 linear normal analytic

Stock-price-sim. Black 1 full valuation normal numeric

Stock-volatility Black 2 full valuation normal nurneric

simulation

Hull-White Hull-White 2 full valuation normal numeric

This results in 10,151 over night profit/loss observations during the sample period.
There were 9.36 profit/loss observations per day on average with a maximum of
42 and a minimum of 2. These over night profits or losses are compared to the

different value-at-risk measures.

4 Methodology

As we saw in section 2, the main determinants of a value-at-risk model are the
option pricing model, the choice of the risk factors, the mapping, and the distri-
butional assumptions. Table 1 gives an overview of the models examined in this
paper, which will be described in detail in sections 4.1 and 4.2. All value-at-risk

figures are computed for a 99% confidence level and a one day holding period.

The distribution of the risk factors is in all cases normal and its variance
will be one of the driving forces of the value-at-risk model. Several possibilities
of time-series based models have been proposed to estimate this variance. Four
different models have been considered for this paper: a simple moving average

model with a rolling time window of 30 days, an exponential moving average

relation of option and stock prices, as it is often done in practice, overestimates losses for long

positions, but will underestimate losses for short positions.

11



(EWMA), a GARCH model, and a stochastic volatility model by Taylor (1986)'3.
Additionally option implied volatilities estimated using a method proposed by
Lamoureux and Lastrapes (1993) have been evaluated. It was found, that the
simple moving average model and the implied volatilities were dominated by the
others, but there could not be found a clear ranking for the remaining three.
This is consistent with the findings of Lehar et al. (1998), who analyse volatility
predictions for five Austrian stocks. Since no clear ranking could be established,
the choice of the volatility model is for this sample of second order compared to
the other issues. The results in the rest of the paper are based on the EWMA

model, since it is used by many practitioners.

4.1 Value-at-risk models based on the Black-Scholes frame-

work

Since all options in our sample are American style, the suitability of the Black-
Scholes option pricing model may be an important determinant of the perfor-
mance of a value-at-risk model. As an alternative I also considered the binomial
model, offering the possibility for early exercise. Even with a high level of nu-
merical precision there was no major improvement relative to the Black-Scholes

model.

4.1.1 Delta normal

The simplest value-at-risk model is important as a benchmark to compare the
other models to. The Delta normal model assumes a linear dependence of stock
returns and option price changes. The model fits the five step procedure intro-

duced in chapter 2 in the following way:

13see Diebold and Lopez (1995) or Palm (1996) for a survey on volatility models

12



e Only one risk factor f, that is the price of the stock, is considered in this

model, thus [ = 1.
e The model of Black (1975) is used as pricing model p(f).

e A linear mapping is used as defined in equation 4. The first derivative of
the option’s price with respect to the underlying stock is the option’s delta

AY.

e The returns on the risk factor are assumed to be conditionally normal dis-
tributed with zero mean and some volatility 0{ , which is estimated using

an exponentially weighted moving average (EWMA)™.

Af, ~ N(0,0) (8)

e From equation 1 value-at-risk is then given by
Py (ZﬁAf < —VaR) =« (9)
or, when taking advantage of the disributional assumption
VaRy = |of 707 (a))| (10)

with f; Stock Price at time t
0{ Volatility prediction at time t for the period up to t+1
Af Delta of Option o at time t
1 — a confidence level

®(.)  distribution function of the standard normal distribution

14The variance forecast h; for day t+1 at day t is given by

hy = (1= X)) XNr? = A+ (1= Nrf,

=0
with: r; compound return on day t, i.e. ry =In(f:/fi—1) and A decay factor (X is set equal to

0.94 here)

13



Figure 1: Density function of possible profits/losses for a call option, when stock

price changes are assumed to be normal distributed.
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While this approach is simple to implement, it neglects the fact that option
prices are non-linear functions of the stock price. Figure 1 shows the profit/loss
distribution of an at the money call, with four days to maturity and an implied
volatility of 20% p.a., where stock prices are assumed to be normally distributed
with zero mean and a standard deviation of 20% p.a. Since losses are limited
when holding a long position in an option, the distribution is far from a nor-
mal distribution. Depending on the moneyness, the time to maturity, and the

volatility, the error of the delta-approach is more or less severe.

14



4.1.2 Stock-Price Monte Carlo

A lot of approximations have been proposed to solve the problem of non-linearity
using a second order Taylor series expansion.!> Two main problems arise, first
that the Taylor series is often not able to capture all non-linearities well enough,
especially for the relatively large movements in the stock price, that occur in a
risk management setting. Second, the normal distribution of portfolio returns,
that makes the delta approach computationally efficient and easy to implement, is
lost. Pritsker (1997) compares three approximations with respect to accuracy and
computational time to a full-valuation approach as it is done in this paper. His
main finding is, that in 25% of all cases even the best among the approximations,
a Monte Carlo simulation using the second order Taylor series, underestimated

the true value-at-risk by an average of 10%.

Assuming, that there was no limit on computational time, the full valuation
approach implemented in this paper considers all non-linear relationships. Stay-
ing within the Black-Scholes framework of constant volatility and stock price
movements as the only source of randomness, this approach implements a value-
at-risk calculation based on a Monte Carlo simulation.!® For each of the 5,000
simulation runs, the assumed process of the stock price within the Black-Scholes

framework
dS = pSdt + 0,SdW (11)

is simulated to compute new possible stock prices for the next trading day. For

each of these draws, option prices are computed using the Black-Scholes model

15Gee e.g. Jones and Schaefer (1999) or Fallon (1996). A very interesting approach for
a stochastic volatility model based on characteristic functions was proposed by El-Jahel et al.

(1999). See also Pichler and Selitsch (1999) for a comparison of various approximation methods

16See also Broadie and Glasserman (1998) for an interesting introduction on simulation meth-

ods for risk management of derivatives
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with the new stock price. The value-at-risk is then defined as the 1%-quantile
of the simulated distribution of changes in the option price. This approach is
consistent with the Black-Scholes model. The differences to the Delta approach

are:

e The mapping method is full valuation as in equation 3.
ZU/t=17{:\+/1 —vt%p(ft—i—Zﬁ) — p(ft) (12)

e Value-at-risk is then by

Py [(P(ft + Aft+1) - P(ft)) < —VGR] = (13)

Since p(.) is a non-linear function in the stock price, it is not possible to
compute the value at risk analytically, instead the distribution has to be

approximated using a Monte Carlo simulation.

4.1.3 Stock and Volatility Simulation

Even though the Black-Scholes model assumes constant volatility, this is not the
case for most financial time series. In the guidelines of the Basle Committee on
Banking Supervision (1996) banks are required to hold additional equity to cover
possible losses from Vega risk, that is risk of changing volatilities. Including Vega
risk cannot be done without violating the Black-Scholes framework, a simple,

heuristic approach to integrate volatility risk is presented here.

To quantify volatility risk, I first compute daily changes in the predictions of
the EWMA volatility model,

Ty =In (m—H) , (14)

Oy
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and second I calculate the sample standard deviation o, of these daily changes

Tos-'" This volatility of volatility is 0.10266 '8

The value-at-risk is computed via a Monte Carlo simulation, where the stock
price is assumed to follow a geometric Brownian motion, and changes in volatility
are simulated by draws from a normal distribution with zero mean and standard
deviation o,. The stock price and volatility movements are assumed to be uncor-
related. New option prices are computed using the Black-Scholes model with the
new stock price and the new volatility. The value-at-risk is then again defined as
the 1%-quantile of the simulated distribution of changes in the option price. This
approach is purely heuristic and is inconsistent with the Black-Scholes frame-
work. Nevertheless it is used by practitioners and it is an important benchmark
for the Hull-White model, which includes stochastic volatility in the dynamics of

the underlying and thus consistently integrates Vega risk.

To sum up, the model differs from the stock price simulation in the following

way:

e There are two risk factors, the stock price and changes in volatility. The

dimensionality of the risk factor space [ is therefore two.

e The stock price is assumed to follow the process specified in equation 11,
with some volatility parameter o;, changes in volatility are assumed to be
normally distributed with zero mean and standard deviation o,. Stock

prices and volatility changes are assumed to be uncorrelated.

17this measure of volatility risk is computed from the whole sample size. The value at risk
estimates based on this model thus also use information that was not available at that time.
All other value-at-risk models are out-of-sample and only use information that was known at

the time of the estimate.

18The same procedure applied to a GARCH(1,1) model yields 0.10528, for a 30 day moving
average the corresponding figure would be 0.09554
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4.2 Value-at-risk models based on the Hull-White model
4.2.1 The Hull-White option pricing model

Hull and White (1987) proposed an option pricing model where both the stock

price S and the variance V follow stochastic processes:

% = ¢dt + VVdz (15)

dV = (a +bV)dt + &VVdw (16)

Following the article by Corrado and Su (1998), who calibrate the model to
S&P 500 index options, the parameters are estimated each day by minimising
the sum of squared errors between observed and theoretical option prices. The

details on the parameter estimation can be found in appendix A.

To have a closer look at the difference between model and market prices,
thereby testing whether or not equation 2 holds, parameter estimates are used
to forecast each option’s price for the next day. These predicted model prices
are then compared to observed market prices.!® Table 2 lists the mean percent-
age absolute deviation for the Black-Scholes and the Hull White model. The

percentage absolute deviation for trade ¢ is defined by:

PADZ — |Cmodi_ kat| (17)
kat

where

cioqa Drice of the option in trade i using model mod

ci.iw observed market price of the option in trade ¢

and the mean PAD is then

1 n
MPAD = =" PAD; 18
- ; i (18)

9Gince no prediction is possible for the first day, the number of trades in table 2 is smaller

than in section 3.
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Table 2: Mean percentage absolute deviation for the Black-Scholes and the Hull
White model

puts and calls (156,854 obs.)
model MPAD | std.dev(PAD) | min(PAD) | max(PAD)
Black-Scholes | 0.240 0.931 00000171 73.580
Hull-White 0.166 1.186 4.24e-06 136.080
calls (110,813 obs.)
model MPAD | std.dev(PAD) | min(PAD) | max(PAD)
Black-Scholes | 0.232 0.197 0.0000171 3.043
Hull-White 0.150 0.616 4.24e-06 88.561
puts (46,041 obs.)
model MPAD | std.dev(PAD) | min(PAD) | max(PAD)
Black-Scholes | 0.259 1.054 0.000039 73.580
Hull-White 0.203 1.970 6.81e-06 136.080

where

n  number of trades in the sample (here 156854 for puts and calls)

In a study of the German market for interest options, Biihler et al. (1999)
find similar mean percentage absolute deviations and also smaller deviations for

calls than for puts.

From the risk manager’s perspective, the results are not satisfactory. We
can see, that the percentage absolute deviation is on average 24% for the Black-
Scholes model and 16% for the Hull-White model. While the Hull-White model
fits better on average, the standard deviation of pricing errors is much higher.
Overall the assumption of equation 2 that market prices can be explained by

model prices seems not to hold too well.

To find out what drives the poor fit of the option pricing models, the absolute

pricing errors are regressed on the time to maturity in years, the moneyness of

19



Table 3: Results from regression of absolute pricing errors on maturity, moneyness

and whether the option is a put or a call.

model ag ay s as R?
const. | maturity | moneyness call
Black-Scholes | 1.7684 12.1507 0.0934 -0.1722 | 0.1482
(161.61) | (164.21) | (0.93) | (-15.62)
Hull-White 1.4124 8.1180 10.5259 | -0.1312 | 0.0166
(37.04) | (-4.29) (38.95) (45.82)

t-statistics in brackets

the option?°, and a binary variable that is set to unity, if the option is a call and

to zero in the case of a put:
|PE;| = ag + a;Time to maturity + a;Moneyness + a3Call (19)

The results in table 3 show, that the pricing error increases with maturity and
moneyness and is smaller for calls than for puts. When building a value-at-risk
model, we should expect it to work better for calls, out of the money options,
and contracts with a short time to maturity. All these issues will be examined in

section 6.

4.2.2 Value-at-risk calculation using the Hull-White Monte Carlo model

A simulation is necessary to capture the whole distribution of possible option
prices at the next day. For each sample path out of 10,000 simulations, a sequence
of random numbers from a bivariate normal distribution with a correlation of p

and standard deviations of vV and ¢ are chosen to simulate the processes in

20The relation of the option’s strike price to the observed stock-price defines the mon-

stock-price - strike-price

strike-price and

eyness of the option. For calls this ratio is defined as m =

strike-price - stock-price

strike-price for pUtS‘

m =

20



equations 15 and 16 using an Euler scheme.?! New stock prices and volatility
levels are used to compute new option prices using the Hull-White model. Profits
and losses are sorted and the value-at-risk is determined by the 100** value in

this sorted list of losses.??

Since the parameters of the Hull-White model are estimated from all observed
trades on one day, it is very unlikely that the model price is equal to the observed
price of the option. Assuming that the bias, that is the difference between model
price and observed price for a given option, will stay constant, profits and losses
in the simulation are taken as the difference between the simulated option price

and today’s model price (instead of today’s market price).

The differences to the stock and volatility simulation model of section 4.1.3
are:

e The model of Hull and White (1987) is used as pricing model p(f).

e The risk factors are assumed to follow the dynamics of equation 15 and 16.

4.3 The Basle approach

The Basle Committee on Banking Supervision (1996) has proposed a standard
methodology for estimating the capital requirements of options, the so called
"Delta plus method”. Here the capital requirements for the Delta equivalent
are equal to 8% for general market risk?, plus a charge for Gamma risk for

unanticipated movements of the underlying of 8%, plus an additional charge for

2lgee e.g. Kloeden and Platen (1995)
22To get the 1% quantile of 10,000 observations, the 100**-highest loss has to be determined.

23the required 8% to cover specific risk are not considered here, since all value-at-risk models

focus only on market risk
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Volatility changes of 25%. When capital requirements are computed from internal
models, the value-at-risk figures must be computed for a ten day holding period
and then multiplied by a panic-factor (usually three, except the regulator found
an institution’s model to perform badly). To level the playing field for internal
models and the Basle method, the latter is rescaled to a one day measure without

panic factor. The minimum capital requirements are therefore:

Capital, = (S:A; - 0.08 + I'y(S; - 0.08)* + Aoy - 0.25) (20)

1
310

S;  Stock price at time t
A; Delta of the option an time t
Iy Gamma of the option an time t,
second partial derivative of option price with respect to the stock price
A; Vega of the option an time t,
partial derivative of option price with respect to the volatility
oy implied volatility of the option.
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5 Empirical results

Several aspects of performance are relevant for a financial institution when eval-
uating the performance of a risk management system. First of all, regulatory
requirements must be met, but the accuracy and the stability of the value-at-risk
approach will be important determinants of model performance. The problem,
with testing value-at-risk models is, that there is no clear benchmark, since the
true value-at-risk is not known. A variety of different comparisons of the models

is presented in the following sections, each of them highlighting a different aspect.

5.1 Proportion of Failures
5.1.1 Likelihood ratio test

The most important criterion of a risk management system is to fulfil the regu-
latory requirements. Under current regulation, banks report their value-at-risk
figures to the supervisor, who then observes, whether realised losses from trading
are above or below the value-at-risk reports. Since value-at-risk is the loss, that
will only be exceeded with probability ¢, under the assumption of independence
across time, such observations can be modelled as draws from a binomial random
variable, where the probability of realising a loss greater than the value-at-risk is
equal to a. The Basle Committee on Banking Supervision proposed a binomial
test to verify accuracy of internal models for capital requirements. Following
Kupiec (1995), I implemented the more powerful likelihood ratio test. The test
statistic is given by:

LR=—21In((1 - ") (")) +2 In ((1 . f)("_w) (f)“> (21)

n n

where o is the probability of failure under the null hypothesis, n is the sample

size and z is the number of failures in the sample. A failure is defined as an
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observation, where the realised loss exceeds the value-at-risk.

However, as Kupiec (1995) pointed out, even this test is of poor power when

4 The table below shows acceptance

used on small or medium size samples.?
regions for a sample of 255 observations (1 year) and 10,151, the observations in
the sample. All test statistics are evaluated at a 5% confidence level under the
assumption that values-at-risk are computed at the 99%-level, that is o* = 0.01.
The last two columns shows the probability of a type II error, that is falsely
accepting a wrong model, a very important issue for regulators. The numbers

show the probability of accepting a model as a 99% value-at-risk model («*=0.01),

when the true rate of failure « is equal to 0.011 and 0.015 respectively.2®

Number acceptance | Type II error rate | Type II error rate
of observations region (@=1.1%) (@=1.5%)
255 x <7 97.61% 90.83%
10151 83 <z <121 82,59% 0.48%

Due to the large sample size, results regarding the performance of different
value-at-risk methods from this test are by far more robust than results from the

typical sample size of the Basle test.

The results of the proportions of failure test are presented in table 4. Only
the Hull-White model would be accepted by regulators. All models based on
the Black-Scholes framework fail, because they underestimate risk.26 Within the
Black-Scholes class of models, the Delta-model performs worst, indicating that

the non-linearities are of importance. The standard method according to the

24gee also Jorion (1996)

25The true rate of failure may be different from the target level, because of model misspeci-
fication or a bank trying to lower its capital requirement by lowering its confidence level.

26Qther volatility models would not significantly increase the model’s performance. E.g. the
percentage rate of failures for the stock-price simulation approach varies from 2.58% (implied

volatilites) to 1.87% (GARCH). Similar ranges can be found for the other mapping models.
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Table 4: Proportion of failures and descriptive statistics

model value-at-risk failures
min. | max. | avg. | total | percent
Delta 0.44 | 243.56 | 10.14 347 3.42%
Stock-Price MC 0.66 | 348.47 | 12.48 | 222 | 2.19%
Stock and Vola MC | 1.59 | 296.56 | 13.21 145 | 1.43%
Hull-White MC 0.11 | 219.78 | 15.71 103 1.01%
Basle 0.25 9.26 | 3.72 (1,733 | 17.07%

Basle committee, when properly rescaled, significantly underestimates capital

requirements.?’

5.2 Distribution Test

The problem with the proportion of failures test is, that the information of a
predicted distribution of portfolio losses is reduced to a binary variable. Whether
the observed loss was close to the value-at-risk or far away is of no importance.
To overcome this problem Crnkovic and Drachman (1996) proposed a test based
on the distribution of returns, as they are predicted by the risk management

model. As outlined in equation 1 the value-at-risk can be obtained by solving
P, (Kv < —VaR) —a (22)
or equivalently

a=d,(—VaR) (23)

27The capital requirements of the Basle method will be higher, when the financial institution
has exposures in more than one market since it does not allow to take any diversification benefits

across markets into account.
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Figure 2: Histogram of the percentiles of the realized losses under the distribution
from the Hull-White model. The classes in the histogram have a width of 0.05

and are plotted against the density of the uniform distribution
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where ®,(z) is the cumulative distribution function of portfolio returns for given
distributional assumptions about the asset returns. Since realised returns ¢

should just be random draws from this distribution, the according percentiles

m=4(p) (24)
should be uniformly distributed over the unit interval.?®

Figure 2 shows the histogram of the percentiles 7 from equation 24 plotted
against the expected uniform distribution for the Hull-White model. The plots for
all models can be found in appendix B. All distributions differ from the uniform
distribution in two respects: fat tails and a higher number of observations in the

middle. The fat tails show that there are more large losses and gains observed

28This transformation was proposed by Rosenblatt (1952).
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Figure 3: Cumulative distribution function of the Hull-White model, plotted

against the uniform distribution.
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than predicted by the risk management model. This, together with the higher
mass in the middle of the histogram, shows that all models are not able to capture

the leptocurtic characteristic of security returns.

To determine the deviation from the uniform distribution, Crnkovic and
Drachman (1996) proposed a test based on the Kupier statistic, which measures
the deviation between two cumulative distribution functions.?® As an example,
figure 3 shows the cummulative distribution function of the Hull-White model.
Let D(z) be the cumulative distribution function of the observed percentiles, then
the Kupier statistic is given by:

K = maz (D(z) — z) + maz (z — D(z)) (25)

0<z<1 0<z<1

and the distribution of K for n observations is given by :

Pk >K)=G ([\/ﬁ+ 0.155 + %] K) (26)

gee also Lopez (1996)

30gee e.g. Press et al. (1992), page 627
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Table 5: Kupier statistic for the models under the null-hypothesis, that the dis-
tribution is uniform, (99.9% critical value is 0.02282 )

Model Kupier-Statistic
Delta 0.06551
Stock-Price MC 0.05605
Stock and Vola MC 0.13930
Hull-White MC 0.15887
where
G\ =2) (452X — 1) eV (27)
j=1

For a sample of 10,151 observations as it is used here in this paper, the critical
values are 0.017315, 0.0198288, and 0.02282 for a confidence level of 95%, 99%,
and 99,9% respectively. For the Kupier statistic to work, it is necessary to have
a large number of observations, a requirement that is satisfied with the sample

in this paper.

The test results in table 5 show that the null hypothesis of uniform distribution

is rejected at a level of more than 99,9% for all models.

An extension of the testing procedure above was proposed by Berkowitz
(1998). Let ®,'(.) be the inverse of the standard normal distribution. Then the
uniformly distributed percentiles 7 can be transformed into N(0,1) distributed
observations z = ®,'(w). This adds no new information, but it enables us to
use the likelihood-ratio testing framework. The analogue to the Kupier statistic

would be a test of mean zero and variance one. Let the log-likelihood function

be:
L(p,0%) = —Nin(2r) — Nin(c?) — Z (& = n)” (28)

202
Jj=1
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Table 6: Likelihood ratio test statistic for the models and p-values, under the

null hypothesis of zero mean and unit variance

Model LR-statistic | P-value
Delta 157.92 | 5.1E-35
Stock-Price MC 115.11 | 1.0E-25
Stock and Vola MC 378.15 | 7.7E-83
Hull-White MC 273.44 | 4.2E-60

where N is the number of observations (N=10,151 in our sample).

Then, given sample mean /i and sample standard deviation &, the appropriate

test statistic for testing 4 = 0 and o = 1 is given by:
LR =-2(L(0,1) — L(f,6%)) (29)

Under the null hypothesis, the test statistic is distributed x?(2), chi-squared, with

two degrees of freedom.

The results are presented in table 6. All models are rejected at a confidence

level far beyond 99,99%.

Both test procedures above, the Kupier statistic and the previous likelihood
ratio test focus on the fit of the whole distribution of returns. But management
and to regulators will care more about the fit in the left tail, that is the fit of
the distribution in those cases, when value-at-risk underestimates the losses. As
Berkowitz (1998) shows, the likelihood ratio test for a truncated normal provides
the adequate statistic. Let L’ be the log-likelihood function:

N

L'(n,0%) = =N In(2r) = N In(e”) = > [% ~in (Qa - M)]

=1 {"j <VaRj
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Table 7: Likelihood ratio test statistic for the models and p-values, under the

null hypothesis of zero mean and unit variance

Model LR’-statistic
Delta 5860.99
Stock-Price MC 3186.57
Stock and Vola MC 4013.51
Hull-White MC 3073.10

Then the appropriate test statistic for testing 4 = 0 and ¢ =1 is given by:
LR = -2 (L’(O, 1) — L' (g, 62)) (31)

Under the null hypothesis, the test statistic is again distributed x?(2), chi-

squared, with two degrees of freedom.

The results are presented in table 7. All models are rejected at a confidence

level numerically indistinguishable from one.

5.3 Mean Relative Bias

Following Hendricks (1996) I adopt this and the following five procedures to
compare the relation of the different value-at-risk estimates to each other. To
get the first measure, the mean relative bias, I average the value-at-risk figures
for each observation and compute the percentage difference between the value-at-
risk of each approach and the average risk measure. Table 8 reports the average,
minimum, and maximum of these relative biases across all observations in the
sample. This measure provides information on the relative size of a particular
value-at-risk measure compared to the average. Given N value-at-risk models,

let VaR;; be the value-at-risk computed by model ¢ for observation ¢, then the
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relative bias for this observation is given by:

VaRit — VaRt

RBit == ——
VaRt

(32)

where VaR;, = %Zf\i VaR;. Table 8 reports the average RB; over all t,
mtin(RBt) and mgz(RBt).

Table 8: Mean relative bias across value-at-risk models

model average min | max
Delta -0.138 | -0.939 | 0.505
Stock-Price MC 0.046 | -0.922 | 1.499
Stock and Vola MC 0.195 | -0.824 | 1.785
Hull-White MC 0.531 | -0.992 | 3.652
Basle -0.634 | -0.990 | 0.175

As can be seen in Table 8, the Delta and especially the Basle method are
generally downward biased, while the Hull-White model is upward biased. On
average the Basle model predicts value-at-risks that are only 37% of the average
across all models. Value-at-risk estimates also vary a lot across models, the Hull-
White model has the highest variability relative to the other models. For every
model at least one trade can be found, where it computes a value-at-risk figure
that is more than 80% below average. There are trades, where the Hull-White
Monte Carlo approach yields a value-at-risk measure that is more than 3.5 times

as high as the average of all models for that trade.

5.4 Multiple needed to attain desired coverage

This performance criterion shows the multiple that would be required for the
different risk measures to pass the regulator’s proportion of failures test, as shown

in section 5.1, at the least possible cost. The multiple is therefore chosen to
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produce 121 failures (the maximum amount tolerated by regulators) in the given

sample size.

When using the Basle method, a multiplier of more than 3.5 of the allocated
capital would be required to pass the standard test for internal models. The value-
at-risk figures of the Delta model, the simplest one of all models considered, must
be increased by 44% to pass the test, which is well below the Basle ” panic-factor”

if 300%.

5.5 Average and maximum multiple of tail event to risk

measure

When choosing a risk measure, it is interesting to know what happens if the
market moves more than predicted by the risk management system. Dividing
the loss in such a tail event, where the loss exceeds the value-at-risk, through
the value-at-risk gives the multiple for a given failure, indicating the degree of
loss-underestimation, conditional on a failure. Average and maximum multiples

across failures are presented in table 10.

Even though the Hull White model performs well on behalf of the proportion

of failures test in section 5.1, it substantially underestimates risk in the case of

Table 9: Multiple needed to attain desired coverage

multiple needed
Delta 1.442
Stock-Price MC 1.210
Stock and Vola MC 1.051
Hull-White MC 0.952
Basle 3.551
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a tail event. For one put option, the realised loss was more than twelve times
higher than the value-at-risk prediction from the Hull-White model. This put
has a time to maturity of 35 days, a strike price of 500, and was traded at two

consecutive trading days as follows:

date Dec. 15. 1995 (fr) | Dec. 18. 1995 (mo)
time 10:54:58 9:49:52
stockprice 542 529
implied volatility 28.18% 28.13%
price of the option 4.00 5.90
value-at-risk (Hull-White) 0.149

The option is deep out of the money and the 2,5% drop in the stock price
results in a 47% increase of the option’s price. The implied volatility stayed
constant, showing that Vega risk is not driving the loss. The implied parameters
of the Hull-White model on that day (Dec. 15) show a high positive correlation
between stock price changes and volatility changes. This positive correlation
is the main reason for the Hull-White model’s bad performance on that day.
Within the Monte Carlo simulation those runs covering declines in the stock
price, and thereby increasing the option’s price, also show declining volatility,
bringing the price back down again. The latter effect is also increased as the

option’s Vega grows as the stock price approaches the strike. Thus, because of

the high positive correlation between stock price and volatility changes, the Monte

Table 10: Average and maximum multiple of tail event to risk measure

model average multiple | maximum multiple
Delta 1.523 5.980
Stock-Price MC 1.518 5.531
Stock and Vola MC 1.432 3.972
Hull-White MC 1.871 12.770
Basle 2.001 13.484
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Figure 4: Density functions of Delta-Normal and Hull-White estimated losses for

OTM Put on Dec. 15
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Carlo simulation will not include the observed scenario and the value-at-risk is
underestimated. Figure 4 shows the density functions of the loss-distribution as
calculated from the delta-normal and the Hull-White model respectively. For the
reasons outlined above, the distribution is very narrow and centred around zero

so that the realised loss is far beyond the 1%-quantile.

For the much simpler Delta model, which on average yields much lower value-
at-risk estimates, the worst loss is only a little bit less than six times as high

as the value-at-risk. Thus when evaluating a value-at-risk model it is not only
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important to test for the percentage of failures, but also to have a closer look
at the losses in the case of a failure. While a financial institution may have
enough equity capital to survive a loss that exceeds the value-at-risk by a given
amount, it is very unlikely, that an institution’s capital is 12 times higher than

its value-at-risk measure.
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6 Results from the partitioned sample

In table 3 we saw, that the out-of-sample pricing errors for both option pricing
models increase with time to maturity and moneyness. Pricing errors are also
smaller for calls than for puts. To get some idea, what value-at-risk models work
better for a certain set of securities and if pricing errors have some impact on
the performance of a value-at-risk model, the sample is partitioned according to
a number of different criteria. The only test in this section is the proportion of
failures test. Even though this test suffers from low statistical power, it is the
test used by regulators to assess the performance of a financial institution’s risk

management.

6.1 Puts vs. calls

Table 11: Proportion of failures: puts vs. calls

Calls (6,516 obs.) | Puts (3,635 obs.)

failures | percent | failures | percent
Delta 199 3.05% 148 4.07%
Stock-Price MC 118 | 1.81% 104 | 2.86%
Stock and Vola MC *72 1 1.10% 73| 2.01%
Hull-White MC 40 0.61% 63 1.73%
Basle 1,112 | 17.07% 621 | 17.08%

The sample consists of 6,516 observations for calls and 3,635 for puts. Table
11 shows, that all risk-measurement models have a lower proportion of failures
for calls than for puts. This effect may be due to significant lower turnover and
therefore wider bid-ask spreads in puts, as some market participants indicated.
All models, that would not be rejected by the likelihood ratio test are marked
by a star. For calls the acceptance region is between 51 and 81 and for puts it

is between 26 and 48 failures, respectively. It is interesting to see, that while the
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Hull White model would be accepted, if tested on the whole sample, it would be
rejected for calls, because it is too conservative and rejected for puts because it
underestimates the value-at-risk. No model is able to pass the regulator’s test for
put options in this sample, but the Hull White model is closest. These findings
are consistent with the results from section 4.2.1, where it was found, that pricing

errors are larger for puts than for calls.

6.2 Time to maturity

Table 12: Proportion of failures: subsamples based on time to maturity

> 1 month (5272 obs.) | < 1 month (4879 obs.)

failures percent | failures percent
Delta 243 4.61% 104 2.13%
Stock-Price MC 175 3.32% * 47 0.96%
Stock and Vola MC 93 1.76% * 52 1.07%
Hull-White MC 81 1.54% 22 0.45%
Basle 1,046 19.84% 687 14.08%

Options in table 12 are grouped into options with a time to maturity of
less then a month (4879 observations) and options with a longer maturity (5272
observations). The models pass the likelyhood ratio test, when they have between
36 and 63 and between 40 and 67 errors, respectively. No model is able to pass
the test for options with maturities of more than one month, because they all
underestimate the value-at-risk. Again, the Hull White model, which passes the
test for the whole sample fails on both partitions of the sample, on the longer
options, because the value-at-risk is too low, and on the shorter options, because
the value-at-risk is too high. These findings are again consistent with the results

from section 4.2.1.
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6.3 Moneyness

The relation of the option’s strike price to the observed stock-price defines the

stock-price - strike-price
strike-price

moneyness of the option. For calls this ratio is defined as m =

strike-price - stock-price
strike-price

and for puts: m =

Table 13: Proportion of failures: subsamples based on Moneyness

OTM (3367 obs.) | ATM (4813 obs.) | ITM (1971 obs.)

failures in % | failures in % | failures in %
Delta 131 3.89% 135 2.79% 81| 4.17%
Stock-Price MC 65 1.93% 86 1.78% 71| 3.66%
Stock and Vola MC. 12 | 0.36% *56 | 1.16% 77 3.97%
Hull-White MC * 24 0.71% * 47 0.97% 32| 1.65%
Basle 528 | 15.68% 707 | 14.60% 498 | 25.66%

The options are divided into out of the money options (OTM) with a money-
ness of less than -0.03, at the money (ATM) options with —0.03 < m < 0.03 and
in the money (ITM) options with a moneyness greater than 0.03. The respective
acceptance regions are between 12 and 28 for ITM options, 36 and 62 for ATM
options and between 24 and 46 for OTM options. The results are given in Table
13. All models perform worse for in the money options than for at and out of
the money options. No model passes the test for all categories of moneyness, but

the Hull-White model is very close.
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7 Conclusion

This paper evaluates the performance of different value-at-risk models for options
using standard methods based on the Black-Scholes analysis and applied by most
financial institutions and the more sophisticated Hull-White model for pricing

options under stochastic volatility. The main findings of this study are:

Pricing models do not fit perfectly: In section 4.2.1 it was found, that there
are large differences among pricing models. Since pricing models are nec-
essary to predict option price movements when risk factors change, model
selection is important. On average the Hull-White model fits much bet-
ter, but the pricing errors vary more for specific options than with the
Black-Scholes model. Both Option pricing and value-at-risk models work
better with calls than with puts and with options having a shorter time to

maturity.

Delta is not enough: The non-linear payoff-structure of options is important
for risk management. Approximations with a linear relationship (the Delta
approach) is significantly worse than the full-valuation approach, taking

into account all non-linear relationships of option prices and risk factors.

Choose the risk factors properly: Adding volatility risk as a separate risk

factor improves value-at-risk estimates significantly.

Testing value-at-risk models requires different perspectives: Regulators
use the proportions of failure test, where the Hull White model would be the
only accepted model. Using distribution tests however, all models would
be rejected at a significance level almost equal to unity. In the interest of
regulators and risk managers alike, other tests should be performed as well.

Even though accepted by regulators, in the case of a failure, the complex
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Hull-White model would underestimate losses substantially. The results
from the partitioned sample also show, that almost all models work better
for calls than for puts, for options with a shorter time to maturity and for

at or out of the money options.

40



References

D-H Ahn, J. Boudoukh, M. Richardson, and R.F. Whitelaw. Optimal risk man-
agement using options. Journal of Finance, 54(1):359-375, 1999.

W. Aussenegg and Stefan Pichler. Empirical evaluation of simple models to
calculate value-at-risk of fixed income instruments. AWG Working Paper #22,
1997.

Basle Committee on Banking Supervision. The supervisory treatment of market
risks, 1993.

Basle Committee on Banking Supervision. Amendment to the capital accord to
incorporate market risks. http://www.bis.org/publ/bcbs24.pdf, 1996.

J. Berkowitz. Evaluating the forecasts of risk models. mimeo, 1998.

F. Black. Fact and fantasy in the use of options. Financial Analysts Journal 31,
pages 36-41,61-72, 1975.

E. Béhmer and S. Sperlich. Risikomessung mit VaR fiir Portfolios: Diskussion und
empirischer Vergleich verschiedener Berechnungsmethoden. Working paper,
Humboldt University, Berlin, 1997.

M. Broadie and P. Glasserman. Simulation for option pricing and risk man-
agement. In C. Alexander, editor, Risk Management and Analysis, Vol. 1:
Measuring and Modelling Financial Risk., pages 173-207. Wiley, 1998.

W. Biihler, M. Uhrig-Homburg, U. Walter, and T. Weber. Comparison of models
for valuing interest-rate options. Journal of Finance, 54(1):269-305, 1999.

C. Corrado and T. Su. An empirical test of the hull-white option pricing model.
Journal of Futures Markets, 18:363-378, 1998.

C. Crnkovic and J. Drachman. A universal tool to discriminate among risk
measurement techniques. Risk, 9(9):138-143, 1996.

J. Danielsson and C.G. de Vries. Value-at-risk and extreme returns. mimeo, 1997.

G. de Raaij and B. Raunig. A comparison of value at risk approaches and their
implication for regulators. Austrian National Bank working paper, 1999.

M. Dewatripont and J. Tirole. The Pridential Regulation of Banks. MIT Press,
1994.

F. Diebold and J. Lopez. Volatility models. Federal Reserve Bank of New York
Research Paper #9522, 1995.

41



D. Duffie and J. Pan. An overview of value at risk. Journal of Derivatives 4,
pages 7-49, 1997.

L. El-Jahel, W. Perraudin, and P. Sellin. Value at risk for derivatives. Journal
of Derivatives, pages 7-26, 1999.

J. Engel and M. Gizycki. Conservatism, accuracy and efficiency: comparing
value-at-risk models. mimeo, 1999.

A. Estrella. Taylor, black and scholes: Series approximations and risk manage-
ment pitfalls. Presented at the Research Conference on Risk Measurement and
Systemic Risk, Federal Reserve Board, Nov. 16, 1995.

W. Fallon. Calculating value-at-risk. Wharton Financial Institutions Center
working paper 96-49, 1996.

K.A. Froot and J.C. Stein. Risk management, capital budgeting, and capital
structure policy for financial institutions: an integrated approach. Journal of
Financial Economics, 47:55-82, 1998.

D. Hendricks. Evaluation of value-at-risk models using historical data. Federal
Reserve Bank of New York, Economic Policy review, 1996.

J. Hull and A. White. The pricing of options on assets with stochastic volatility.
Journal of Finance, 42:281-300, 1987.

J. Hull and A. White. An analysis of the bias in option pricing caused by a
stochastic volatility. In Advances in Futures and Options Research, volume 3.
Greenwich CT: JAI Press, 1988.

J. Hull and A. White. Value at risk when daily changes in market variables are
not normally distributed. Journal of Derivatives, pages 9-19, 1998.

P. Jackson, D.J. Maude, and W. Perraudin. Bank capital and value at risk.
Journal of Derivatives, pages 73-89, 1997.

C. James. Raroc based capital budgeting and performance evaluation: A case
study of bank capital allocation. Wharton Financial Institutions Center, Work-
wng Paper 96-40, 1996.

M.B. Jones and S.M. Schaefer. Non-linear value-at-risk. Furopean Financial
Review, forthcoming, 1999.

P. Jorion. Risk?: Measuring the risk in value at risk. Financial Analysts Journal,
pages 47-56, 1996.

P. Jorion. Value at Risk : the new benchmark for controlling market risk. Irwin,
1997.

42



R.C. Kimbal. Innovations in performance measurement in banking. New England
Economic Review, pages 23-38, 1997.

R.C. Kimbal. Economic profit and performance measurement in banking. New
England Economic Review, pages 35-53, 1998.

P.E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equa-
tions. Springer, 1995.

P.H. Kupiec. Techniques for verifying the accuracy of risk measurement models.
Journal of Derivatives, pages 73-84, 1995.

P.H. Kupiec. Risk capital and var. mimeo, 1999.

C. Lamoureux and W. Lastrapes. Forecasting stock return variances: Towards an
understanding of stochastic implicit volatilities. Review of Financial Studies,
6:293-326, 1993.

A. Lehar, G. Strobl, and M. Scheicher. Implied vs. stochastic volatility, evidence
from a small stock exchange. mimeo, 1998.

J.A. Lopez. Regulatory evaluation of value-at-risk models. Working paper 96-51,
Wharton Financial Institutions Center, 1996.

C. Marshall and M. Siegel. Value at risk: Implementing a risk measurement
standard. Journal of Derivatives, pages 91-111, 1997.

D. Marshall and S. Venkataraman. Bank capital standards for market risk: A
welfare analysis. mimeo, 1997.

R.C. Merton and A.F. Perold. Theory of risk capital in financial firms. Journal
of Applied Corporate Finance, 5:16-32, 1993.

F. Modigliani and M. Miller. The cost of capital, corporation finance and he
theory of investment. American Economic Review, 48:261-297, 1958.

Morgan Guaranty Trust Company and Reuters Ltd. RiskMetrics-Technical Docu-
ment, 4. edition, 1996. http://www.riskmetrics.com/text/research/techdocs/.

F. Palm. Garch models of volatility. In C.S. Maddala and C.R. Rao, editors,
Handbook of Statistics, volume 14, pages 209-239. 1996.

S. Pichler and K. Selitsch. A comparison of analytical VaR methodologies for
portfolios that include options. Working Paper, Technische Universitt Wien,
1999.

43



W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipies in C: the art of scientific computing. Cambridge University Press,
second edition, 1992.

M. Pritsker. Evaluating value at risk methodologies: Accuracy versus computa-
tional time. Journal of Financial Services Research, 12:201-242, 1997.

W. Rhode. Old dogs, new tricks. Risk, 1998.

M. Rosenblatt. Remarks on a multivariate transformation. Annals of Mathemat-
ical Statistics, 23:470-472, 1952.

N. Stoughton and J. Zechner. Optimal capital allocation using RAROC and
EVA. mimeo, 1999.

T. Styblo-Beder. Var. seductive but dangerous. Financial Analysts Journal, pages
12-24, 1995.

S.J. Taylor. Modeling Financial Time Series. Wiley, 1986.

T.C. Wilson. Value at risk. In C. Alexander, editor, Risk Management and Anal-
ysis, Vol. 1: Measuring and Modelling Financial Risk., pages 61-124. Wiley,
1998.

44



A Estimation of Hull-White paprameters and
out of sample fit (aggregate basis)

To make the parameter estimation computationally feasible, option prices are ap-
proximated using a Taylor series expansion as in Hull and White (1988), thereby
assuming the volatility to be at its long run mean reversion level V = —a/b. The
option prices of the Hull-White model (Cyw ) can then be approximated by:

Crw = Cps + Q1€ + Q26 + Q3p°€” (33)

where Cpg denotes the corresponding Black-Scholes price, V' represents the in-
stantaneous return Variance, &£ is the volatility of volatility, p represents the
correlation between stock returns and variance changes, b is the coefficient of
mean reversion and ¢); to ()4 are defined as follows:

Q = —%V(l + 565)532*236;/

Q, = ﬁ‘/(e% —4e’ + 26 + 3)%

Qs = —%V(e‘s(2 —8)—(2+ 5))5% + bf?V(e"@ —6) -2+ 5))% +
2;72 V2146 — )25 ag;?n + b4173 VA1 46— 65)25%

Following Corrado and Su (1998), I estimate the required parameters each day
by minimizing the sum of squared errors between observed and theoretical prices,
that is

> — 2 4
man, (Cons — Cnw) (34)

A.1 Fit of the Hull-White vs. the Black-Scholes model

Figure 5 shows the out of sample fit of the Hull-White model compared to the
fit of the Black-Scholes model when using a single implied volatility, estimated
by the method of Lamoureux and Lastrapes (1993)3!, for a given day. The sums
of the squared pricing errors are computed using the previous day’s parameter

31 Analogous to the estimation of the Hull-White model the method proposed by Lamoureux
and Lastrapes (1993) seeks to minimize the sum of squared errors between observed and Black-
Scholes model prices by finding one implied volatility for each day.
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Figure 5: Out of sample performance of the Hull-White model and the Black-
Scholes model.
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Black-Scholes — Hull-White

estimates. Here it is interesting to see, that generally the Hull-White model
is superior to the Black-Scholes model, which also can be seen by computing
the average sum of squared errors for the two models - 20,892.50 and 4,026.59
respectively. However there are days, where the performance of the Hull White
model is extraordinarily bad.

B Distribution test results

This section shows the histograms of the percentiles of the realized losses under
the distribution from the value-at-risk models. The classes in the histogram have
a width of 0.05 and are plotted against the density of the uniform distribution.
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