Abstract

In this work, we will focus on the Gibbs sampler and we will present how to combine
the important sampling within the Gibbs sampling, employing an augmenting function to
modify the target distribution of the sampler. The almost sure convergence of the estimates
under the new measure will be proved and it will be shown that with respect to new measure
the variance of the monte carlo integration can be reduced. More interestingly the change
of measure will induce a modification of the Markov chain and for a proper choice of the
important sampling function the new chain will show better mixing properties than the
original one. All these will be applied to two cases of interest, the first is the smoothing of
the unobservable conditional volatility in a stochastic volatility model and the second is the

smoothing of the unobservable state in a switching state space model.
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1. Introduction

The use of simulation methods is becoming widely applied in econometrics and finance in recent
years. Among the variety of methods proposed, Markov chain monte carlo and, in particular,
Gibbs sampling proved to be the most interesting and powerful one.

Markov chain monte carlo! is essentially monte carlo integration using Markov chain. Bayesians
and also frequentists need to integrate high dimensional probability distributions to make in-
ference about parameters of the model or to make prediction or to filter variables of interest.
In particular, Bayesians need to integrate over the posterior distribution of the model param-
eters and classics may need to integrate out unobservable variables in the computation of the
likelihood.

Monte carlo methods of integration relay upon samples from the objective distribution to
average over. Markov chain monte carlo draws those samples by running a properly constructed
Markov chain which has the distribution to sample from as the invariant distribution.

Initially, Markov chain was extremely attractive in Bayesian inference since that most prob-
lems of interest in that framework can be solved by properly simulating the posterior distribution,
and the MCMC proved to be a powerful tool in doing it.

Lately, no Bayesian application of monte carlo Markov chain methods are becoming increasly
popular; in the generality of cases they are based on the possibility of using MCMC to calculate
probabilities or expectations which otherwise cannot be computed analytically. Applications
of those techniques have been presented in the literature to likelihood maximization, by Geyer
and Thompson (1992), to simulated EM, by Shepard (1994), and to filtration in nonlinear state
space models, by Carter and Kohn (1994) and Dejong and Shepard (1995); a much longer list
can be found in Geyer (1996).

In many of the indicated applications straight methods, in particular Gibbs sampling, work
surprising well, however, as the complexity of the applications increases the performance in term
of speed and accuracy of those methods is likely to be affected.

In fact the presence of poor mixing of the chain which generates the samples, can be an

extra source to add on top of other sources of poor performance of monte carlo integration in

!'Markov Chian Monte Carlo will sometimes be refered as MCMC, here on.



the computation of expectation and probabilities. A large literature has developed refining and
improving the performance of monte carlo integration through variance reduction technique and
in particular through important sampling methods. However the use of the realizations from
a MCMC chain to perform monte carlo integration adds the problem of how to extend those
techniques to this new framework and how the problem of the dependence of the realizations
induced by the chain can affect the result of the computation.

In this work, we will focus on the Gibbs sampler and we will present how to combine the
important sampling within the Gibbs sampling, employing an augmenting function to modify
the target distribution of the sampler. Similar to the results of Geweke (1989) in the case of
independent monte carlo, the almost sure convergence of the estimates under the new measure
will be proved and it will be shown that with respect to new measure the variance of the
monte carlo integration can be reduced. More interestingly the change of measure will induce
a modification of the Markov chain and for a proper choice of the important sampling function
the new chain will show better mixing properties than the original one. We will specialize this
to the case of the data augmentation showing that the chain can be modified to obtain one
independent in its elements and the property of reversability of the data augmentation delivers
a criteria for choosing among augmenting functions.

All these will be applied to two cases of interest. First is the smoothing of the underlying
conditional variance in a stochastic volatility model; stochastic volatility models arise naturally
as discrete approximation of various diffusion processes in the continuous asset pricing literature
and recently this model has become a natural battleground for the application of different
MCMC techniques due to the intractability of the likelihood. Second is the smoothing of the
unobservable state in a switching state space model.

The work is organized as follows. In section 2 and 3 the ideas of monte carlo integration,
important sampling and Gibbs sampling are introduced. Section 4 introduces the idea of the
change of measure through a simple example. Section 5 presents in details how to perform the
change of measure and section 6 specializes it to the data augmentation. Finally in section 7

the properties of the methodology are investigated by means of two applications.



2. Monte carlo integration and important sampling

In many econometrics problem, it is not uncommon to work in presence of latent factors (or
missing observations) which have to be integrated out in the joint distribution of the observable
and unobservable variables. In the generality of cases, this step of marginalization relies upon
numerical integration of the joint density, given the dimension and the analytical intractability of
those integrals. Among the various methods, the monte carlo integration has been increasingly
used for its simplicity and for its accuracy compared with deterministic methods of integration in
the case of large dimensional integral, as often occurs in economic model when the unobservable
variables have dynamic (Geweke, 1995).

The precision of the monte carlo methods of integration depends upon the choice of the
proper weighting function, used to select and weight the points at which the function of interest
has to be evaluated. The weighting function is called the important sampling density, a term
due to Hammersly and Handscomb (1964). The necessity of a proper choice of the important
sampling function derives from the fact that the natural important sampling, given directly by
the specification of the problem, can be highly inefficient in term of variance of the numerical
evaluation of the integral of interest.

Suppose that we are trying to evaluate the following integral

1= [g@p(@)da (2.1)
where p () is the probability density of . Using a brute force approach, let {xl}f\il be an i.i.d.

sample from the pdf p (z), then the monte carlo estimator of I is

. 1 X
i=1
and by a SLLN it will converge almost surely to I if some regularity conditions are satisfied.

The asymptotic variance of the estimator v/ N (f -1 ) is given by

/[9 (x) — I p (x) da, (2.3)

in most cases the value of (2.3) can be sizable.



A way of reducing the variance of the monte carlo integral is to properly define a change of

measure through an important sampling function w (z) such that

I= /g(a:) p(2) w () dx (2.4)

and the important sampling estimator of the integral is given by

N .
Fe 3 gte) 22 (25)

where {z;} be an i.i.d. sample from the density w (z) . I is an unbiased estimator of I and it will

converge to it by a SLLN result. The asymptotic variance of the important sampling estimator

of I is )
/{g (x) p(2) —I] w(x)dx. (2.6)

w ()

The important sampling scheme has two advantages: first it can be helpful in cases in which
there are no simple methods for constructing draws from the distribution p and, more relevant,
it is possible that a proper choice of the weight function w will induce a reduction in the variance
of the estimator of the integral, i.e. (2.6) is smaller than (2.3).

The proper choice of the weight function is an open question which has to be evaluated on a
case by case bases. Geweke (1989) pointed out that under a set of regularity conditions the im-
portant sampling density which minimizes (2.6) has kernel density equal (i.e. it is proportional)
to |g (z) — I| p(x). From this finding, he derives the common rule of thumb which suggests that
the important sampling function should have thicker tails then the original density itself.

Sometimes the independent monte carlo method, just described, cannot be implemented
either for the difficulties in finding an important sampling function w with satisfactory properties
or for the incomplete knowledge of the form of the density p; in those cases a generalization of
the independent monte carlo, that has become known as Markov chain monte carlo, can be an

useful alternative.

3. The Gibbs Sampler

Markov chain monte carlo methods are simulation techniques that generate a sample from a

target distribution through the specification of a transition kernel of a Markov process which



has as invariant distribution the target distribution itself?.

Markov chain monte carlo methods have an history in mathematical physics dating back
to the algorithm of Metropolis et al. (1953). Such algorithm is now known with the name
of Metropolis-Hastings algorithm. It allows to simulate complex, nonstandard multivariate
distributions and it does not require the knowledge of the normalizing constant of the density
itself. In the Metropolis algorithm the chain is constructed so that the following value of the
chain is generated from a ’proposal’ density (called auxiliary density) and then accepted or
rejected according to the value of the target density at the new value respect with the present
one.

A particular version of Metropolis-Hastings algorithm?, originally suited for image recon-
struction, was proposed by Geman and Geman (1984). This algorithm, known as Gibbs sam-
pler, allows to draw a random vector from the joint distribution without its full knowledge but
knowing only the sequence of full conditional distributions. The subsequent elements of the
Markov chain are obtained by sampling elements of the random vector one at the time from
the full conditional distributions. This method proved to be of great potentiality in Bayesian
statistics and lately it proved to be very successful in the treatment of latent and unobservable
variables in the classical framework. Being the focus of the work, the construction of the Gibbs
algorithm will be described more carefully.

Consider a random vector, z € R, with density p(z) and consider a blocking scheme of the
vector (x(1), ..., T()) such that xy = (i1, ..., Tim(s)) and >-m(i) = m. The object is to make a
draw of x from p(z) but the function is not known or it is unfeasible to draw form it. Instead
the conditional distribution of the i block respect to the rest of the variables, p(x(,-)|x(,i)), is
available and it is easy to handle.

The sampler works in a sequential way as follows?:

1) Specify a starting value 2V of the chain and set ' = 2% and i = 1;

2 A comprehensive reference for MCMC methods is in Gilks, Richardson and Spiegelhalter (1996).
3Tt is possible to show that the Gibbs sampler can be interpreted as a special case of the Metropolis-Hastings

algorithm.
4Under-scores will mean blocks of the random vector, while upper-scores will indicate iterations of the sampler.



draw a:’("f)l from p(xé51|xfj) (j>1)),

draw J:E*)l from p(:c’(51|xzj)l (4 <) ,xfj) (4 >1)),

draw x’(';:)l from p(m’&:)llm’('j)l (J <k));

3) set i =i+ 1 and 2° = 271 and goto step 2.

The iteration of this algorithm thus provides a Markov chain whose transition probability
from x to T is given by

k

Kgs (x,7) = [[ p@Ew|Tg) (G <), =g (> 1) (3.1)
=1

It is easy to see that if 20 is drawn from p(x) then also 2% for i > 0 is a draw from p(x). If
instead x¥ is not a draw from p(z) then, as i — oo, and if some regularity conditions are satisfied
the distribution of 2’ converges to p.

More precisely, p is an invariant distribution to the chain generated by the transition kernel
Kgs and if the transition kernel is also p-irreducibility and aperiodic (Tierney 1994, Roberts
and Smith 1994) then for almost every initial conditions 2 the conditional distribution p(z*|x°)
converges to the p in the sense of the total variation norm® and p is the unique invariant
distribution. Roberts and Smith (1994) provide more primitive conditions on p which assure
the result; recently Athreya, Doss and Sethuraman (1996) have weakened those conditions and
proved that the probability measure with respect to which the irreducibility needs to hold, is
not restricted to be the invariant measure itself; this is useful in the case in which there is no
knowledge of the functional form of p.

So, the interesting and useful part of the Gibbs sampler scheme is that we do not need to
know p but it is enough that we are able to construct a blocking scheme and a sequence of

conditional distributions from which we can make the draws in sequence. After a sufficient long

®Definition of irreducibility, aperidicity are given in appendix 1; a good reference on the topics is Nummelin

(1984).



period of warming up which is function of the degree of dependence the blocks, the chain will
converge to its invariant distribution.

In operating the Gibbs sampler three aspects of its implementation are crucial: the blocking
scheme, the number of simulation paths and the length of the simulation path.

First, the choice of the blocking scheme is in part constrained by the knowledge of the
conditional distributions, but a proper choice of the blocking can be crucial for the performance
of the sampler; in fact if some components of the random vector are highly dependent, grouping
them together can increase the speed of convergence and reduce the dependence of the Markov
chain itself (Lui, Wong and Kong, 1994).

Second key factor is the choice between single or multiple simulation paths, given that it is
possible to use a unique long simulation or to restart the chain from different initial conditions.
The multiple paths are more cumbersome to perform, on the other hand the realizations of a
single path simulation can show dependence, while this is not the case for realization coming
from different paths if the initial conditions are chosen in an independent manner.

Finally, both in the single and the multiple paths sampler there is the problem of choosing
the length of the simulation and determining how long the warming-up phase has to be, before it
is possible to consider that the sampler has reached its invariant distribution. The length of the
simulation relates to the degree of precision desired in the computation of the object of interest,
while the length of the warming-up is related to the dependence on the initial condition.

In this work, the samplers are run in a single path way, given that this is common practice in
the literature and the problem of dependence of the chain is relevant in both ways of sampling:
in one case, in term of lasting of the initial condition and in the other in term of variance of the
estimates.

Again, the Gibbs sampler gives the possibility of solving situation in which we need to make
draws from a distribution of which we have limited knowledge or it is difficult to handle, but
whose conditional distributions are easy to work with. The fact that we can simulate from p,
does not mean that we can make an efficient draw from the target distribution, this consideration

opens the way to the combination of important sampling and Gibbs sampling.



4. A simple example

The combination of Gibbs sampling and monte carlo integration has proved to be a new ex-
tremely successful tool particularly in presence of rapid improvement of computer performance.
However the use of realization of the sampler to preform integration induces to see how the
usual variance reduction techniques can be extended to this setting and how the dependence of
the realizations of the chain can affect the precision of the computed integral.

Our aim is to show how the important sampling can be combined with the Gibbs sampler
to define a change of measure that improves the overall performance of the algorithm in various
respects.

First, a proper choice of the important sampling function could be used to reduce the variance
of the monte carlo integration for which the Gibbs sampler draws are made.

Second, the important sampling function can be constructed in such a way that the new
Markov chain under the new measure shows lower dependence with respect to the original
structure so allowing a faster mixing of the chain to its invariant distribution.

Finally, the modification of the Gibbs sampler chain can ease the job of running the sampler
itself if the conditional distribution of the modified model are less cumbersome.

To convoy the idea of the method proposed, a simply and analytically friendly example is

worked out. Consider a linear regression model

yi = o+ B + ¢4, i ~ NID(0,0?%)

2 is assumed known and a sample {y;, mz}z;l is given. The aim is to compute the

where o
posterior expectation of 3 given the sample. It is assumed a flat prior on the parameters. The

problem reduces to the computation of

[ [ 8pta.81y.2)dads (4.1)

where p(a, |y, z) is the join posterior of the parameters, which is known to be normal in this
case.
Assume that we just learned Gibbs sampler and we want to use it in performing the exercise,

even if much easier alternatives are available. The chain is constructed by sampling the two
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parameters sequentially from p(«|S3,y, ) and p(8|a,y, x) and the realizations of 3 are averaged,

as
. 1 X
B = N ; B;-
The simplicity of the example allows to work out the variance of the estimator. The depen-

dence in the chain is driven by the posterior correlation between « and 3 in the chain which

is

Pap = —?

()

where T is the sample mean of x and it is easy to see, using the results of Liu, Wong and Kong
(1994), that the correlation between realization of § at distance 7 in the chain is :0(2&3 So it
follows that the asymptotic variance of vV N(3 — 3) is given by

V@) = 3 () =3 <1+2§p25ﬁ) (42

T=—00 =1
2
= oy (i),
1-p2g

where a% is the contemporaneous variance of 3°.

Clearly, high posterior correlation of the parameters induces a large variance of the estimates
and a large posterior correlation is function of the ratio of the mean of x with respect to its
second moment. Note how the problem of slow mixing can occur in the simplest of the statistical
model. The just learned strategy of Gibbs sampling does not prove to be successful in the case
in which there is high dependence among the elements of the chain. An idea to improve the
performance would be to define a change of measure such that under the new measure the chain
shows lower dependence.

In fact it can be possible to modify (4.1) as

SNote that the close form of the variance of the estimates derives by the reversability property of the Gibbs
sampler in the case in which there are only two blocks in the chain. This property is not present if the number
of block is greater than two. A transition kernel K(z,y) with invariant distribution 7 is reversible if K(z,y) =

K(y,z).

11
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where f(«, Bly,x) is a proper function of «, § such that f - p is still a kernel density. So under
the modified measure, the new density will be proportional to f - p and the function of interest
will be 2

Before going on with the example, it is the case to note the difference between what just
proposed and the usual important sampling introduced in section (2). In that case, we have
a full knowledge of the p function and we define a density w such that we draw from it and
weight the realization by the ratio of the original density and w. Here instead we use a function
f to augment the original distribution so that the new density is defined as proportional to the
product of the original one and the augmenting one. It will be shown in the following section
how to draw from this new density.

Going back to the problem, it is possible to find a function f such that the new chain which
has as invariant distribution f - p has a lower dependence of the original one and such that the

variance of the estimates of 8 under the new measure

@®™

N
B N; Oézvﬁ ’ya ) (4.4)

is lower compared to (4.2). For the semplicity of the example it has been assumed that the
constant of integration is known and [ [ f - pdadf = 1.

Anticipating future arguments, the choice of the function f will be driven by two considera-
tion, first the possibility that under f the parameters present opposite correlation with respect
to the one under p and second that f has sufficient mass on the domain of p. In our example
the natural choice is given by a f proportional to a multivariate ¢ density with few degrees of
freedom and covariance between the parameters of opposite sign respect to p.

To conclude the example in the following picture, the variance of the estimates of the posterior
average of § through Gibbs sampler under the original measure, as in (4.2), and under the new

measure are plotted in Fig. (4.1) for different values of p, 3 ranging in (—0.95,0.95), in the case
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in which 8 = .5, @ = 1, F(2?) = 1 and in which the f function is a multivariate ¢ with five

degrees of freedom and equal variance and covariance of opposite sign respect to p.

Figure 4.1: Variance of 8 under the original and the new measure
The U-shaped curve is the variance under the original measure and it is greater than the
variance under the modified measure for value of the correlation of the coefficients greater than .5,
while for lower value the new measure suffer of the larger variance induced by the ¢ distribution.
The simplicity of the proposed example helps to show that running the chain under the original
measure can be an unsuccessful strategy if the elements of the chain are highly dependent and

this can end up in a large variance of estimates for which the draws are made.

5. Change of measure and the modification of Gibbs sampler

Given the result of the above example, let us try to design a general framework for performing

change of measure in MCMC. The problem is to evaluate the following integral

1=Eylg@) = [ g@pa)dr, (5.1)

in the case in which the distribution of interest p has an analytically intractable form and also it
is not feasible to sample directly, so a MCMC algorithm is called for. The problem of interest is
clearly a standard one in econometrics analysis which regularly arises in computing the likelihood
function in presence of latent variables or in filtering some unobservable variables. The point is

that instead of working under the measure p for the reasons previously highlighted, it could be
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“useful” to define a change of measure by an augmenting density function f such that
x)

g@). [l
o=

where the new measure is given by f (z) p (z) and the function f is the Radon-Nikodym derivative

I = Efp(

f(x)p(z)de, (5-2)

of the new measure with respect to the original one. Where the term ”useful” means that the
variance of the sample estimates (5.2) will be lower than the one of (5.1) and also that the chain
having p as invariant distribution can have worst mixing respect to the chain define under the
new measure.

Note that the new measure is the product of the augmenting and the original density and
so there are three things which have to be verified in performing the change of variable: first
that the function f(x)p(x) is itself a density function (or proportional to it), second that we
are able to make draws from the new invariant distribution modifying properly the transition
kernel of the chain and finally that the important sampling estimate of I actually converges to
the desired value.

If both f and p are densities, the necessity of assuring that f (z)p (z) is actually the kernel
of a density, mainly reduces to check the fact that the functions have a common support with
positive measure in which they are both strictly positive. It means that D = Dy N D, # (
where Dy = {z|f(x) > 0} and D, = {z|p(x) > 0}. However the presence of a common support
of f and p will not be sufficient to guarantee the convergence of the sample estimates under
the new measure to I so the requirement will be strengthened by assuming that D, C Djy.
This assumption is a regularity condition which is intended to ensure that the new measure has
positive mass on the same domain as the original one.

The change of measure induces also a modification of the target distribution from which it is
necessary to sample from and consequently it is necessary a modification of the transition kernel
generating the chain. Here it is proposed an algorithm which sample from the new measure

p(z) f(x); consider the same blocking structure as before and iterate the following algorithm:

1) Specify a starting value 2° of the chain and set 2/ = 2 and i = 1;

14



2)

draw xﬁr)l from p(xﬁr)lkc%j) (> 1))f(xél)|x%j) (j>1)),

draw 2! from p(a() () (G <), alyy (5> D) f(alyla(ht G <), ) (G>19),

draw sc’&r)l from p(xz;rﬂx’(f}g)) f (a;@)lpszf}c)),

3)set i =i+ 1 and 2* = 2" and goto step 2.

The densities in step (2) of the algorithm are actually kernels of densities and they are the
result of the product of two conditionals p(+|-) and f(+|-). It is possible that in a variety of cases
the product of the marginals has known form that can be sampled directly; but in general this
is not the case and other methods have to be applied. Here three methods are presented which
can be implemented in performing random drawing from the kernel densities in step (2).

The first one is a straight acceptance/rejection method based on finding an auxiliary function
h(-) and a constant M such that %f)(” < M < oo. The goodness of the methods is based
on the ability of the auxiliary function i to mimic p(-|-) f(:|-); operatively, the algorithm should

work as follows:

a) make a draw z(;) form h(z;));
b) draw u from a uniform distribution defined on the interval zero-one;

c) accept x(; if u is less then p(m(”|x<]\_j})1)(£if<)“‘m<_“), otherwise goto (a).

The choice of the function A becomes critical, however a sensible and easy choice for h is
given by f so that the acceptance probability reduces to 7.

Second alternative strategy, which can be implemented, is the adaptive/rejection method
proposed by Gilks and Wild (1994) for log-concave density function. The method is similar
to the acceptance/rejection one with the difference that the function h is properly constructed
using tangent method so to form a tight envelope of the original function. The method applies
to log-concave densities and if both p and f are log-concave, then their product is log-concave

too and the adaptive/rejection procedure can be applied to the new measure.
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The third method is given by combining the original Gibbs sampler with a Metropolis-
Hastings independent step, in which the transition probability of the block j does not depend on
its previous realization. This can be performed at each step of (2) by drawing from a transitional
kernel q(x%j)lla:(_j)) and then accept :L’Ej)l with probability « (a:’('j)l, xéj)\x(_j)> where
Pl e ) fad e paal) e ) 1}
play e i) f@lylecp)atecy) |

a (acé;r)l, xfj)|x(_j)) = min {

if the mzj)l element is accepted then the chain moves to draw the block (5 + 1) having in block
(7) the element x’('j)l, on the contrary having in (j) the element m’&j); so at each loop of the Gibbs
sampler, it is possible that some elements of z are updated while others are not. Again the
natural choice for the transition probability is to use f(-|-) so the acceptance probability reduces

to the ratio of the p at the new and old realization of the chain, i.e.
i+1 i e e )
o () wly () = min # Lo
PP =)
The iteration of steps (1-3) of the above algorithm generate a sample {z;} of a stochastic
process which has transition kernel from z to ¥ equal to
K x,x) =
fsf N) ) o (5.3)
[Iiiy cp@elzyy U <i), zy (G>0)f(@elzy (<i),zy (>1)
where ¢; = fp(sc(i)|x6r)1 (1<), $Z(.j) (5> z))f(x]|x’(j)1 (7 <1), $Z(.j) (j > 1))dx, if the draw
in step (2) are performed without using the Metropolis steps; in the presence of the Metropolis

step the transition kernel will be equal to

Krgsy (x,dx) =
[T {aG |2 (G <i), zg) (G>1)a (ff(i)w(i)\f(j) (J<i),zy (> i)) )d; (5.4)
+(1= [ a(@g) | )o@y w3y |-)dTi) 6, (d) }
where 6, is a Dieracht function to account the case in which the element of the chain does not
move.
It is clear from the above description, that the modification of the target density does not

imply an increase in the difficulties and computational time of running the sampler given that
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all described strategies are quickly implemented and easy to perform. In particular, if the
acceptance/rejection method or the Metropolis step are used with auxiliary function A(-) or
transition probability ¢(-) which can be routinely sampled, then the algorithm simply consists
in sampling from h(-) or ¢(-) and then the draw must be accepted or rejected in function of a
proper weighting as indicated above.

The prove that the two algorithms deliver the desired result, is given in the following corollary
in which it is shown that the transition kernels of the two algorithms have the new measure

f(z)p(z) as invariant distribution.

Proposition 1
If the transition kernel Kjgs (Z,2) and Kigsa (T, ) are respectively as in (5.3) and (5.4)

then f(x)p(z) is proportional to an invariant distribution of those transition kernels.

The proof of the proposition is straight and it is given in the appendix 1. The new measure
is an invariant distribution of the constructed chain, however it is clearly desirable that under
the new measure, the chain still converges to its invariant distribution and that the estimates
still satisfy an ergodic theorem. Various work in the literature provided conditions which assures
the ergodicity (Roberts and Smith 1994, Tierney 1994, Athreya, Doss and Sethuraman 1996) or
geometric ergodicity (Chan, 1993) of the Gibbs sampler and the same is true for the Metropolis-
Hastings algorithm (Mergersen and Tweedie, 1996).

Now we will show that if the augmenting function is sufficiently well behaving, the modifi-
cation of the chain will not prevent its convergence under mild regularity conditions. Given the
description of the algorithms and given a sample {xi}ijil, it is now possible to state the following

strong law of large number result

Proposition 2
a) If D, C Dy, E,|g| < oo and if {x;} is an pf—irreducible Markov chain with transition
kernels Kjgs or Krgsy then

N _g(=)
Zi=1 76y

Zf\il f(mll’g)

3

7=
and
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Q=

1 ENZ 1 as
1 L as
N i=1 f(xl) 9)

where ¢ = [ f(z)p(x)dz.

b) If the density p and f are lower semi continuous at zero, if [ f(x)dz; and [p(z)dz; Vi
are locally bounded and D, is a connected set with D, C Dy then K;gg is pf—irreducible and
aperiodic.

¢) If the chain with transition []_, q(@T@)|Ty (5 <), () (j > 1)) is pf—irreducible and the
probability Hle o (fi, Tl Ty (G <1), z¢) (5> z)) is positive for every z,x € D, then Krgsm

is pf—irreducible.

The proof of the proposition and the definitions are provided in the appendix 1. Three
things deserve to be noted. First, in point (a) there is the necessity of computing the constant
of integration of the new measure which is unknown due to the fact that it is constructed in a
multiplicative way. The conditions of point (b) are extremely weak, the lower semi continuity
is an extremely weak condition which is meant to assure probability mass around component
points and around points in the domain D, while connectedness rules out peculiar cases in which
the density has positive mass on two separate regions of the domain. In point (c), instead, the
irreducibility of the chain of interest follows from the irreducibility of the chain generated by
the transition probability ¢, but given that the transition ¢ is chosen this property can be easily
verified.

The conditions of proposition (2) are indeed completely operative only in the case in which
the functional form of p is known and this is not always true, but they give the idea that the
modification of the chain has generally no effect on the convergence property of the chain itself
if the augmenting function f is well behaving. However it is possible that the modified chain
has better properties than the original one in term of rate of convergence. This is one of the
main motivation of our work and we will show later in some examples that a proper choice of
the augmenting function can increase the speed to convergence of the sampler and in some cases
it will allow even an immediate convergence.

The result of proposition (2) shows that under the new measure the estimates will still satisfy

a strong law of large number, however the result does not provide a clear cut criteria to choose the
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function f. The lack of a criterion for choosing the augmenting function follows by the fact that
the Gibbs kernel is no reversible.” In the absence of reversability, known sufficient conditions
for central limit theorems are strong and difficult to establish from verifiable fundamentals. In
fact in the absence of reversability the estimates of the variance is possible under the uniform
ergodicity of the chian which is implied by the uniform boundedness below of the transition
kernel and this condition is extremelly hard to hold. Therefore there is not a know sufficient
condition for approximation of the variance term of the central limit theorem and this implies
that the variance cannot be used as criterion for the proper choice of f.

However two intuitive criteria have to be used as guideline. First element is given by the
fact that f has to have sufficient mass on the domain of interest, otherwise this will be reflected
in the variance of the estimates. Second consideration, the function f has to be tailored to the
function p to undo the correlation among the block of the chain; this general rules have to be

specialized on a case by case base.

6. Data Augmentation

In the previous section the idea of running the chain with respect to a modified measure has been
proposed but the section concludes without a clear criterion for discriminating among different
augmenting function f. A step further can be done in the case of the data augmentation as
called by Tanner and Wong (1987), which essentially refers to the case in which there are only
two blocks in the Gibbs chain.

The data augmentation is of some interest because on one side it allows to strength the
result of the previous section and, on the other side, it covers a variety of interesting models
recently proposed in the econometric literature such as the mixture models and the Partially
Non Gaussian State Space (PNGSS) models. This terminology has been introduced by Shepard
(1994) and it represents a class of nonlinear state space models which have the property that
conditional on the realization of a latent regime variable, the model is still linear and gaussian.
Various interesting specifications recently proposed belong to this class, such as: the dynamic

factor model with regime switching for measuring business cycle proposed by Diebold and Rude-

A revearsible version of the Gibbs chian has been proposed by Roberts (1995).
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busch (1994), the model with switching volatility by Kim (1994) and the one analyzed by Billio
and Monfort (1995). Section (7.2) provied some applications.

In the data augmentation the integral of interest in (5.1) reduces to the

/ g (1’(1), $<2>) p (1’(1), $<2>) dx(1ydz(g)

where z(1), () are the two blocks which will be sampled. Following the result of the previous

section, a change of measure through an augmenting function f (w(l), x(g)) is operated such that

1)755(2)
, T T(1), T dx\dx (o).
/f (1), :1:(2 ((1) (2))7’( 1) (2)> (1)0(2)

The interesting aspect of the data augmentation is that the general results of the previous
section assume a particular strength here. In fact it is possible to define a change of measure
such that under the new measure the random variables (1), z(9) are independent and so the
subsequent draws of the block of the chain are indeed independent; this is established in the

following;

Proposition 3
Let f(z(), @) = W where f1(z(1)), fa(7(2)) are two given densities then, respect
1 2
to the measure f(x(1),7(2))p(%(1), T(2)), the variable x(;), ¥(2) are independent, and the condi-

tional distribution are f(x(1)lz2))p(z)|T2) o< fi(2@)) and f(x(g)|rq))p(za)lTe) < fa(z(2))

p(z)lzq))
p(zylze)’

The prove is delivered in the appendix 1. The result proves that there is a feasible change of
measure such that under the new measure the element of the chain are indeed independent and
second it provide a way of simulating from the marginal of the new measure. In fact for one of
the two blocks, namely z(;), it consists only in sampling out of the selected function f; (:13(1)),
while for the second block it is necessary to simulate from fa(z(2)) mi:;g;g. This last step
can be performed both thought an acceptance/rejection and an adaptive/rejection methods, as
described in the previous section. If those methods cannot be implemented, it is possible to
use a Metropolis Hasting step but in this case the chain is not any more independent, even if

dependence introduced by a Metropolis step can be less sizable then the one generally generated

by the Gibbs chain.
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So it has been established a transformation of the original problem through a change of
measure, under which the elements of the chain are independent, so it has been possible to gain
more strength to the result of previous section. Few considerations are worthy.

The possibility of gaining again independence of the blocks or even of reducing the depen-
dence of the blocks would be crucial when the monte carlo integration is a step of a parameter
estimation. In fact critical element to prove consistency of the parameter estimates in presence
on monte carlo integration to evaluate the objective function is the uniform convergence of the
monte carlo estimates of the objective function respect the parameters of interest. But if the
monte carlo integration is performed averaging samples coming from a Gibbs sampler then those
draws show dependence and the degree of dependence is likely to be function of the same param-
eters which are supposed to be estimated. This fact can possibly preclude uniform convergence
and so the consistency of the estimates. So in that case the possibility of transforming the
integral in an integration respect independent draws can be extremely helpful.

Second, the independence of the blocks of the chain under the new measure brings backs
the problem into the framework of Geweke (1989) and his results still apply. The asymptotic
variance of VN (f -1 ) will be given by

) 9@ NN [ 2 p@)
o —Efp<<f($) I))— Jo@ — 17 s (6.1)

where z = (x(l),$(2)) , ¢ = [p(x) f(z)dx and given a sample {xz}il from the new measure

i

the variance can be estimated as

(6.2)

The estimate of the variance delivers also a ready to apply criteria for the proper choice and
parametrization of the function f; and fz, in fact the parametrization of the functions will be
choose such that (6.1) will be minimized. However, as Geweke pointed out, a full minimization
can be even more cumbersome of the original problem we are trying to solve; a more feasible

strategy would be to find a f; and fo such that variance of the monte carlo integral under the
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new measure is reduced compare to the one of v N (f -1 ) under the original measure that it

is given by

0 = By (go(x) ~ 1 +23 By (aolx) — 1) (go(x) — I)

=1
where 7 in g, means the distance of different realizations in the chain.®

However even if the choice of the optimal fi and f5 is important, we share the view of Gilks
and Roberts (1996) which regards rapid mixing as a higher ideal than small standard errors and
so the search for the optimal f; and fo can be not worthy, in particular now that under the new
measure the blocks of the chain are indeed independent.

Finally note is that this approach is in some sense similar to the recent work of Elliot et al.
(1996) on change of measure to solve nonlinear and non gaussian state space model. So it is
based on defining a new measure under which the model is iid and the filtering can be easily
performed and then the filtered result is again transformed into the original one. Here the idea
is somehow similar, given that we perform a change of measure to run the sampler in a more

efficient way.

7. Application

In the previous section, it has been proposed the idea that a proper reparametrization of the
Gibbs sampler chain can be worthy. The idea has been motivated in term of gaining better
mixing properties and in term of lower variance of the sample estimates. Here two applications
of the method are presented. The first one is the smoothing of the unobservable conditional
variance in a stochastic volatility model as an application of the general method of section (5).
While the second application is the smoothing of the latent variable in a Partially Non Gaussian

State Space model.

8The estimation of the variance under the original measure is possible due to the reversablity property of the

data augmentation, property which is not share in general by the Gibbs sampler.
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7.1. Stochastic volatility models

Here we aim to show an application of the change of measure in the smoothing of the underlying
variance in stochastic volatility models (SV here on). Stochastic volatility models arise naturally
as discrete approximation of various diffusion processes of interest in the continuous asset pricing
literature. But they found limited application mainly due to the difficulties in handling them
with respect to alternative ways of modelling the conditional volatility (see Ghysel, Harvey
and Renault (1995) for a survey). However basic GARCH models do not have some of the
interesting features which are present in the SV models such as better matching of the second
moment properties of data on returns, the higher degree of excess kurtosis and the possibility
of leverage effect.

Recently the issue of prediction and inference in these models has found large attention as
a natural application of Markov chain methods. The stochastic volatility models has become a
battleground for the application of different MCMC techniques; among the others Jacquier, Pol-
son and Rossi (1994) (JPR, here on), Kim and Shephard (1994) and Shephard (1994). Jacquier,
Polson and Rossi used a combination of Gibbs sampling and Metropolis independent chain to
perform Bayesian analysis on the parameters and the underling stochastic volatility. Kim and
Shephard argue that the multi steps algorithm of Jacquier, Polson and Rossi can be very slow for
some parametrization and they proposed a griddy Gibbs sampler which consists in approximat-
ing the non normal distribution of the disturbance in the measurement equation by a mixture
of normal which allows to perform the sampler in a single move®.
Let consider the same simple stochastic volatility model of JPR and Shephard, which is given

by

i P, (7.1)

Inh; = a+dbélnhi_1+ o,
<ut> ~ NID(0,15),

Ut

the sample is of dimension 7', hp indicates the whole vector of unobservable volatility and

9Mahieu and Schotman (1994) extended this approach by introducing more degree of freedom in the mixture

of normals where the parameters are estimated rather then fixed a priori.
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0 = {«,6,0,} are the parameters that are considered given for the purpose of the exercise. The
two innovations are assumed independent. Consider the problem of smoothing the unobservable
volatility given the observed innovation €7, so the problem consists in computing the following
integral

E(hrler, 0) = / hep(hrler, 0)dh. (7.2)

The difficulties arise by the fact that the density p(hr|er, ) is known only up to a constant

and there are no obvious methods to sample directly form it. In fact

p(hr,er|0)  pler|hr,0)p(hr|6)

hrler,0) = = 7.3
plhrler,0) = =00 T9) p(erl0) (73)
o plerlhr, O)p(hr|0)
T T 9
T ) S el > (Inht —a—6lnhi_1)
—3/2 . =1 =1

A solution proposed in the literature is to consider a Markov Chain method which draws
each element of hp one at the time (multi steps sampler) and so it constructs a sequence of
{h%“}é\; , where N is the number of iteration of the sampler. To implement this strategy, the
starting point is the conditional density of the individual element of the vector hz which, for
t=2,..,T —1,is given as

2 2
-3/2 _€_t _ (ln ht - ,LL)
p(ht|h(—t)) f‘:T, 9) X ht exp( 2ht) eXp( 20_2

) (7.4)

a(1=6)+6(Inht_1+Inh¢1) a?

J— 2 JE— v
where p = s and o“ = el

To draw from the above density kernel two alternative are feasible. The first one is to use a
transformation of variables and to work directly with the conditional distribution of H; = In(hy),
as , )

PUHH( .21, 6) x exp(— exp(~Hy))exp(— 10 (75)
where pu* = p — 502, and to sample H; either by acceptance/rejection or by the adaptive
rejection methods of Gilks and Wind (1992). Alternatively, it is possible to apply the JPR
algorithm consisting in introducing a Metropolis independence step into the multi move Gibbs

sampler. All these different methods of sampling will produce a multi steps sampler whose

iteration will generate a chain having as invariant the distribution of interest (7.3).
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Shephard and Kim, following the result of Lui, Kong and Wong (1994), argued that due to
the high correlation of the elements of A, it is likely that sampling the elements separately will
induce a slow mixing and it will affect the calculation of the smoothed value of h. To avoid
this they introduced the mixture approximation for the distribution of in(e?) which allows to
speed up the sampler by drawing all the elements of hr vector all at once. The drawbacks of
this method is twofold; on one side it is an approximation and it is likely that, as pointed out
by JPR, the mixture of normal is not a good proxy, in particular in term of tail behavior, and,
on the other side, the proposed method increases the dimension of the integral and it is clearly
necessary that all the states of the mixture are visited a sufficient number of time by the sampler
to assure a good performance of the algorithm.

However it is a fact that the high dependence of the blocks can jeopardize the performance
of the sampler. In the stochastic volatility, high dependence of the blocks is associated with
values of 6 close to unity and o, close to zero and in many applications of interest the estimated
values of the parameters end up in those regions.

To reach a better understanding of the effect of slow convergence, two experiments are
reported by running the multi steps sampler using an acceptance/rejection algorithm to draw
from the conditional distributions in (7.5) with a normal density as envelope density with mean
and variance set to maximize the acceptance probability!’. The first experiment reports the
average of 1000 independent sampler each with initial condition A% = 1 (7' = 100) and its aim
is to show the last of the initial conditions in the sampler. The second is based on a single multi
steps sampler and the realizations of the draw of hsy are used to compute its ACF function
(50.000 replication are used, after discarding the first 10.000). Figure (7.1) and (7.2) reports the
two set of experiments for two different parameters: 6 = .9, 0, = .2, a =0; 6 = .99, 0, = .1,

a=0.

" The algorithm is a modification of the one given by Geweke (1995) and by Kim, Shephard and Chib (1996), in
which different mean and variance of the normal envelope have been setted. Kim, Shephard and Chib motivated

their choice in term of gaining higher acceptance rate for tail observations.
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Figure 7.1.1: Average of 1000 independent sampler.
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Figure 7.1.2: Autocorrelation function.
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Figure 7.2.1: Average of 1000 independent sampler.
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1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376
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Figure 7.2.2: Autocorrelation function.

As pointed by Shephard and as it is clearly evident from the above figures, the dependence
in the sampler is large and persistent as the last of the initial conditions and the ACF function
show. This can affect the performance of the use of the sampler in various directions, among the
others, the standard deviation of the sample estimates and the applicability in the parameters
estimation.

Here the change of measure method proposed in section (5) is applied to the above example

as an other way of handling the problem of the dependence. Consider the expectation in (7.2)
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respect to Hp = In(hr), the expression under the change of measure can be written as

E(hrler,0) = %P(Hﬂ@, 0)f(Hr|0o)dH. (7.6)

In the choice of the augmenting function, it has been looked for a density with sufficient
mass on the domain of pand such that the conditional of the f would be useful in undoing the
dependence present in the conditional distributions under the original measure. For this reason,
a multivariate student ¢ with degree of freedom v has been chosen as augmenting function with
11

parameters 0y = (89, 03) as

H’TVHT)_T%l
Vo

J(Hrlvo,60) (1 + (7.7)

where V = L RR' and Ris a T x T matrix as
0

'm 0 oo i 0]

680 1 0 :
R=10 ~6 1 0

0 6 1 0

0 e 0 =6 1]

The nice property of the multivariate ¢ is that the conditional distribution f(H;|H(_¢),v0,00) is
univariate student ¢ with (7'+ vo — 1) degrees of freedom and mean equal to m; = %%O(Ht_i_l -+
H;_1) and variance s? = ﬁﬁ%ﬁ;ﬁ where g = H’TVHT — %(Ht —my)?. The fact that the
conditional mean of the function f is of the same form of the mean of the conditional density
under the original measure, is the reason why this specification has been chosen.

Under the new measure, the sampler will have invariant distribution p - f and it will be run

by drawing from the distribution of H; conditional H_;) on respect to the new measure,

p(Hi|H(_y),e7,0) f(Hi|H(_y), 00) o (78)
2 _x\2 Ty .
exp(—5 exp(—Hy)) exp(— Fb ) (1 4+ gy (Hy —ma) =2

The draws from the above distribution can be performed by a Metropolis independence step

using as auxiliary function a student ¢ distribution with degrees of freedom vy, fixed mean p,

and variance o4, as indicated in section (5).

"1 A good reference on multivariate ¢ is appendix B in Zellner (1971).
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To compare the property of the described change of measure, the experiments performed
before are repeated with the following parameters specification: in the first case §p = —.9,
oo = .2, v90 =5, vy =5, , = 0 and o4 = .5; in the second one 69 = —.99, o9 = .1, vg = 5,
vq =9, iy = 0 and o4 = .5. The parameters value has been chosen so to undo the dependence
present under the original measure between the elements of the chain and therefore the means
of the densities p(:|-) and f(:|-) have been settled equal in absolute value but opposite in sign.
The choice of the mean and variance of the transition distribution are be chosen so to have a
proper envelope of the product of the two conditional distributions in (7.8).

The result of the experiment are reported in the following figures (7.3) and (7.4).

HIST — —— MEAN500 ------ MEAN200

5 T —-—-MEAN100 —--—MEANS50 —-—-MEAN10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Time

Figure 7.3.1: Average of 1000 independent sampler.

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376
LAG ORDER

Figure 7.3.2: Autocorrelation function.
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Figure 7.4.1: Average of 1000 independent sampler.
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Figure 7.4.2: Autocorrelation function.

By comparing these results to those of figure 7.1 and 7.2, it is evident that the chain under the
new measure has much lower dependence and the initial condition lasts less. These properties
allow to compute the integral in (7.6) by running the chain in a multi step mode but with
higher precision and lower degree of dependence than the original one and without using any

approximation or increasing the dimension of the integral.
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7.2. Partially Non Gaussian State Space Model

This definition is due to Shephard (1994) and it refers to a class of state space models in which
it is possible to introduce nonlinearity ad non gaussianity, while still preserving some ease in the

analysis. The model can be represent as

yr = p(st) + A(se)ze + B(st)ey
2zt = v(st) + C(st)ze—1 + D(st)n,

(7.9)

where y is the observable variable of dimension m, z is an unobservable state (n x 1) and s
is a scalar Markov chain process defining the regime. The innovation ¢ and 7 are independent
standard gaussian. The interesting aspect of the model is that conditional on the realizations of
the regime variable, s, the model is still linear and gaussian while this is not true unconditional
of the regime.

Different specification recently proposed in the literature can be reconnected to the above
framework, among the others: the nonlinear dynamic factor model for measuring business cycle
of Diebold and Rudebusch (1994), the model of conditional switching variance of Kim (1994) or
the discrete analog of the continuous models for trading time deformation in finance by Ghysel,
Gourieroux and Jasiak (1996).

The difficulties in the estimation and filtering of this model is due to the fact that the joint
distribution of the states Z and the regimes S conditional on the observables is of unknown
form. In the literature, different estimation and filtration scheme have been proposed. Kim
(1994) introduced an approximation filter based on cutting the memory of the filter itself about
the past history of the regime after a fixed number of lags. Kim’s filter proved to work well in
models in which the state in time ¢ depends only on a finite number of past realization of the
regime. Billio and Monfort (1995) derived a filtering and smoothing algorithm based on finding
a sequence of important sampling functions which optimize the performance of the integration
of the likelihood respect to the unobservable at one and two steps ahead; however their method
proved to work only in the case in which the regime variable does not cause the state variable
in a Granger sense.

Despite the intractability of the joint density of the states and the regimes, it has to be

noted that the conditional distribution of the states w.r.t. the regime and the observable and
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the conditional of the regime w.r.t. the states and the observable have a much friendly form and
it is feasible to simulate them. So it is evident that another possible methods to approach the
problem of estimation and inference in this class of models is to use a Gibbs sampler, as it has
been suggested by Shephard (1994) and Carter and Kohn (1994). In fact the Gibbs sampler can
generate draws from the join distribution p (Zp, S7|Y7), which can be used in the computation
of the likelihood and in the smoothing of the state. The sampler consists in performing sequential
draws from p (Z7|St, Yr) and p (Z7|St, YT).

First, the density of the states conditional on the regimes and the observable is given by

T-1

p (Zr|Yr, St) = p (20|, S7) [] P (2¢|Y7, St 22041) (7.10)
t=1

where the capital letter means all the history up to time ¢. The density p (2r|Yr, ST) is given by
running the Kalman filter up to time 7', while p (2:|Yr, St, 2:+1) can be worked out by running the
filter backward; so all the densities in (7.10) are normals and can be routinely sampled. However
the backward filter implies the computation of the inverse matrix of the forecast variance of the
states which can be computationally problematic if the draws are repeated extensively; Dejong
and Shephard (1994) proposed a simulation smoother which allows to sample from (7.10) without
using matrix inversion. The simulation smoother of Dejong and Shephard will be used in the
example proposed.

The second step consists in simulating from the density of the regime conditional to the
states and the observables, p (S7|Yr, Z7). In general, this is not an easy task but in the case in
which s; is a scalar Markov chain the algorithm described by Carter and Kohn (1994) allows to
sample directly all the vector Sy from the conditional p (St|Yr, Z7)'2.

So given the structure of the model, the sampler is a data augmentation one based on drawing
sequentially the regime vector from p (S7|Yr, Z7) and the state vector from p (Z7|Yr, St) .

Note that here we confine ourself to work in the case of qualitative regime which is also the
case considered in all applications of the PNGSS models previously indicated; however this does
not mean that the framework is not applicable to more general specification; but in those cases
the sampling of the state S will not be possible in a single move, as the algorithm of Carter and

Kohn allows, and the sampler would not reduce to a data augmentation scheme.

12This algorithm is described in appendix 2.
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Having obtained random samples from p (Z7, S7|Y7) , these samples can be used to compute
the smoothed expectation of the states or the realization can be used in the expectation step of
the Simulated EM algorithm in the estimation of the parameters as indicated by Shephard and

Carter and Kohn. Suppose that the aim is to compute the smoothed value of the state

= / / wp (Z, Syl Ye) dZdS (7.11)

= /E(Zt!ST,YT)p (St|Yr)dS

then the realizations {Z., S%}i]il of the sampler can be used to estimate (7.11) either by the

empirical estimator
- 1 ;

or, more efficiently, by the Rao-Blackwell form
g = ZE(ZAYT,S%)- (7.13)

Following the consideration in the previous section, the chain generated by sampling sequen-
tially the states and the regimes vector will show dependence. As stressed in various occasion
the dependence is not desirable and it can induce large variance of the estimates. Following the
result of section (6), it is possible to define a change of measure such that under it the state and

the regime variable are indeed independent. So consider an augmenting function of the type

f1(Zr|YT) f2 (ST|YT)
p(Zr|St,Yr)

where the function f; and fy are properly chosen.. Appling the above change of measure into

(7.11), it follows that

[ (Zr,St|Yr) =

’ST7YT
Y, Y,
cur = [ SEEE o (Srvi) p (SrlYr) dS

the sample from f5 (S7|Y7) p (S7|Yr) can be drawn by a Metropolis independent step given that

f2 (ST|YT) D (ST\7T,YT)

Stl|Y- St|Y-
f2 (St|YT) p (ST|YT) p(7T|YT,ST)

where Z is any given history and the independent step can be performed by using as auxil-

iary function the p (ST|7T7YT> itself. In this case the ¢ iteration of the algorithm consists in
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simulating S% from p (ST]7T,YT) and then accepting the draw with probability

f2(55~|YT)
p(Zr|Yr,Sk.)

fa(Styr)
p(ZrYr,55 ")

oSk, S&1) = min( 1).
The iteration of the Metropolis step will generate a sample {S%}fil of regime vector from which

the smoothed realizations are computed as

~ Zt|YTaST)
2T = Z F2 (SEIYr) (7.14)

it is likely that the estimated 2y will show lower variance and the draws of St lower dependence
than the one in (7.12) and (7.13).
The above methodologies are present in the following contest; consider the univariate speci-

fication of the model in (7.10)

Y = W+ az+og

2 = visg+cz—1+ (do +disg)ny

where ¢;, 1, are independent standard normal innovations and s; is a zero-one two state markov
process with transition probability P(s; = 0|s;—1 = 0) = p and P(s; = 1|s;—1 = 1) = q. The
parametrization is the following. The transition probabilities are p = .9 and g = .7, so there is
a high persistent state and a low persistent state. In the observation equation y = .5, a = .7
and ¢ = .3; while in the state equation v; = .4, ¢ = .8, dy = .6 and dy =

Given the parameters the smoothed value of the state is computed as above, however at this
stage the augmenting function f has assumed constant aiming to highlight only the gain coming
from a lower dependence of the chain if the sampler is run following the result of proposition
3. All the three possible methodologies has been performed as indicated in (7.12), (7.13) and in
(7.14); as a benchmark also the smoothed value through the Kim’s filter has been performed.

The result of the experiment over a sample of 100 observations are reported in the following
tables. In table 1.1 the average RMSE of the three estimators over the generated samples are
reported together with the RMSE of the Kim’s filtered value

in the case in which the sampler has run for 5000 replication after other 2000 of warming up.

Note that for the Metropolis independence step the acceptance rate has been around 60 per cent.
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RMSE

ZuT 0.702
Zp 0.506
Zyr 0.355

Kim’s filter | 0.389

Table 7.1: Root Mean Squared Error

Gibbs | Metropolis

t=25 | 0.179 0.143

t =50 | 0.265 0.202

t="75 | 0.133 0.115
=100 | 0.183 0.152

Table 7.2: Asymptotic Variance

While table 1.2 reports the estimates of the asymptotic variance of syp for ¢t = 25,50, 75,100
over the realization of the sampler in the case of the plain Gibbs sampler and in the case of the
Metropolis algorithm

The proposed method clearly outperform the Gibbs one both in term of RMSE and in term
of lower dependence in the simulated variables; however the result follows just by the use of a

Metropolis step and more improvement are possible designing a proper auxiliary function f.

8. Conclusions

In this work the idea of change of measure in performing Markov chain monte carlo integration
is investigated. In particular the focus has been posed on the Gibbs sampler and how the change
of measure modifies the algorithm to simulate from the target density.

In the Markov chain monte carlo the change of measure has a twofold importance. On one
side, as in the independent monte carlo, the change of measure can induce a lower contempo-
raneous variance of the estimates if there is a proper choice of the augmenting function. On

the other side, the modification of the target density can improve the mixing properties of the
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Markov chain with respect to the chain under the original measure.

The idea has been specialized to two cases of interest, the stochastic volatility and the
nonlinear state space model, which illustrate the possible gain in working under the change of
measure. However, even if the proposed methods have shown to have comparative advantage
compared of working under the original measure, the problem of the choice of the augmenting

function is still an open one and the function f has to be tailored on a case by case basis.
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9. Appendix 1

Proof of proposition 1.
To short the notation define h(xz) = LE2E 0 (1) = g(-[)a (-|) and #(|-) = (1= (-]-)a(:|-)dZ;).
Consider first the case of Kjgg and without lose of generality set £ = 3. The proof follows by

the fact that h(z) = p(xi‘x“i))c{(xi‘x(*"’))h(a:(_i)) where h(z(_;) is the marginal of the subvector

T (- In fact
| Kigs (z, %) h(x)dx =
ST 2pGEelTg) (G <i), zg) (G>D))f@e)lEg (G <i),zg (G>i)h(x)de =

p(E(3)|T(—3)) f(T3)lT(—3))
c3

I p(E(2)|T(1),2(3)) f (@ () |T(1),7(3)) I pEyle) > f(@a)lzy) 5>1)

Cc2 C1

J M@l J > Ddrayh(ee)lee)deeh(ze)dee =

p(E(3)|T(—3)) f(T3)lT(—3))
c3

I p(E2)|T1),m(3) f(T2)|Ta),23)) Ih
c2

(Tylzy 7> 2)h(z2)|T3))d(2)

h(m(g))dw(g,) =

p(x(3)|x(73)i§(x(3)\x(fs)) I h(f( p(ez)lr—3)) f(z@)lr_s)) h(

1) T(2)2(3)) (2 (3))dz () = & T(-g)) = h(T)
In the case of Krgsar the prove will be given for k = 2 to avoid excess of notation; the kernel

is
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| Krgsm (x,2) h(x)de =

ST {par @, gy G < )2y G > )+ r(aal) (G < 1)) (G > 1)) ()} hla)de =
= [ pm(T1,21|22)pyp (Z2,22|21 ) R(x)de + [ r(x1|z2)r(22]21)0s (dT2) 64 (dT1) h(x)d

[ r(xi|z2)par (T, xalx1)h(2)by (dZ1) dx + [ par(Z1, x1|xe)r(22|@1)05 (dZ2) h(x)de =

= [pum(x1, Z1lx2) (T, |x2)par (T2, x2|T1) h(x2)dx + r(T1|Z2)r(T2|Z1)h(T)+

Jr(xi|z2)par (a2, Tolxr)h(T, |x1)h(z1)b0 (dT1) dx+

oy, T1|xe)r(z2]Z1) h(T, |x2) h(22) b4 (dT2) do =

= h(Z) [ pam(x1, T1|xe)pa (e, T2|T1)de + r(Z1|T2)r(Z2|T1) R (Z)+

W) [r(Z1]|x2)pa (T2, To|z1)de + W(Z) [ pa(z1, T1|z2)r(Ze|T1)de = h(T)

The fourth equality holds for the reversability property of each of the single metropolis steps
pyv (1, T1|x2)h(Z,|2) = par(Z1, x1|x2)h(z, |22), while the last equality derive by the definition

of r. A

Before proof of proposition 2, some definitions are needed.

A kernel K is m-irreducible if, for all z € D = {z : w(z) > 0}, 7(A) > 0 implies that for
some t > 1 P(xy € Alzg =x) > 0.

An m-cycle for an irreducible chain with transition kernel K is a collection of disjoint sets
{Ev, En, ..., Epp—1} such that Pr(z, Ej) =1 for j = (i 4+ 1) mod(m) and all = € E;. The period d
is the largest m for which an m-cycle exists. The chain is aperiodic if d = 1.

A function f: R"™ — R is lower semicontinuos at 0 if, for all x with h(x) > 0, there exists an

open neighborhood N, 3 x and £ > 0 such that for all y € N, h(y) > ¢ > 0.
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Proof of proposition 2.

a) Given corollary (1) and the pf—irredibility, the result follows by theorem (4.3) in Tierney
(1996) and by the fact that if a g(x) is continuous and z, %3 2 then g(z,) %2 g().

b) The fact that the original density and the augmenting one are lower semicontinuous
implies that also pf is lower semicontinuous. The locally boundedness of [p(z)f(x)dz; Vi
follows by the boundedness of the single functions and by the fact that p(z)f(z) = p(zi|r_;)
f(@iley))p(z(—s)) f(x(s). Finally given that D, C Dy then the condition of theorem (2) of
Roberts and Smith (1994) are satisfied and the kernel Kjgg is pf—irreducible and aperiodic.

c) Let K, the transition kernel relative to the functions ¢ and let a(, z) = [IF; a(;, 7| Z(j)
(j <1i), x(j (j >1i)) be the probability that all the blocks of the chain move. The prove is
similar to theorem (3) of Roberts and Smith and it is based on showing that the irreducubility
property of K, implies the irreducibility of Krgsar. Let define Vm(t) = {:E : Két) (x,2) > 0} and
Uét) = {:f : K}gSM(a:,%) > 0} . Assume that U;,(;t) D Vx(t) and let z € VJEHI), SO

/ KO (2,y)K,(y, 2) > 0. (a.1)
(t)

U£t+1)

Suppose that z ¢ , then the support of the function K,gt)(ac, )Krgsm (-, z) has measure

zero. Given that o(Z, ) is positive for every Z,x € D), then it implies that also the support of
K}Z);SM(SC, -)K4(+, z) has measure zero, which is in contradiction with (a.1). So it must be that

Uétﬂ) D Vx(tH) and given that UQE” ) Vw(l) then the pf—irreducibility of K;ggas follows. B

Proof of proposition 3.

fla) o) )
p(z)lz(2)) p(m(l),x@)) = fl(m(l))

f2(z(2))p(7(2)), so the two blocks of the vector are independent. The conditional distribution
J1(z )

p(za)lee)

new measure will be fi(z(;)), while the conditional f(x(2)|z(1)) is proportional to

The new measure will be f(zx),22))p(z0),7@2) =

and the conditional and the marginal of x1 under the

f2(z(2))
p(z)lz2)
pre)lea)
plzylee)

f(z@ylz() is proportional to

and so the conditional and the marginal of x5 under the new measure is fg(x(g )

f2($(2))% x fa(w(2))p(z(2))- W
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10. Appendix 2

Here it is illustrated how to generate St from the conditional density p(St|Zr,Yr) using the
algorithm of Carter and Kohn (1994).
The first step of the algorithm consists in using recursive filtering equation to calculate

p(st| Zt, Yy). Given the observable variables Yrp, it is true that

(St Z¢, Yy) o< p(ye|2t, se)p(ze|2e—1, 5¢)p(St| Ze—1, Yi-1)

and, summing over the realization of s;, the normalizing costant is computed so the probability

is given by

(Y|, se)p(ze|ze—1, 50)p(5¢| Z—1, Y1)
S¢| 4, Yy) = . a.2
plail e, Yi) > p(Welze, se)p(2t|2e—1, s6)p(s¢| Zi—1, Yi-1) (a-2)
St

Given the transition probability p(s¢|s;—1), it follows that
p(sidl Zi—1,Yi1) = > p(silse-1)p(se-1]Zi-1, Yio1). (a.3)
st-1
and so, for ¢t = 1...T, the loop of (a.2) and (a.3) provides the desired probability for every t¢.
To sample from p(Sr|Z7, Yr), note that

T-1

p(St|Zr,Yr) = p(sr|Zr,Yr) [ p(st12e, Yz, s141)
t=1

and
D(St+1lst, Ze, Yi)p(se| Zt, Yz)

p(st41]2t, Y3)

So the last observation is sampled from p(sr|Zr, Yr)and afterward the other realizations for

p(st|Zt, Y, St41) = (a.d)

t < T are sampled backward form (a.4).
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